## Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

- Knowledge Base
- Methodology
- How to Write a Strong Hypothesis | Guide & Examples

## How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

## Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

## Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

## Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

## Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

## Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

## Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

- The relevant variables
- The specific group being studied
- The predicted outcome of the experiment or analysis

## Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

## Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question | Hypothesis | Null hypothesis |
---|---|---|

What are the health benefits of eating an apple a day? | Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. | Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits. |

Which airlines have the most delays? | Low-cost airlines are more likely to have delays than premium airlines. | Low-cost and premium airlines are equally likely to have delays. |

Can flexible work arrangements improve job satisfaction? | Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. | There is no relationship between working hour flexibility and job satisfaction. |

How effective is secondary school sex education at reducing teen pregnancies? | Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. | Secondary school sex education has no effect on teen pregnancy rates. |

What effect does daily use of social media have on the attention span of under-16s? | There is a negative correlation between time spent on social media and attention span in under-16s. | There is no relationship between social media use and attention span in under-16s. |

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

## Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 21 August 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

## Is this article helpful?

## Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

- Privacy Policy

Home » What is a Hypothesis – Types, Examples and Writing Guide

## What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

## Types of Hypothesis

Types of Hypothesis are as follows:

## Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

## Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

## Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

## Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

## Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

## Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

## Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

## Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

## Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

## Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

## Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

- Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
- Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
- Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
- Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
- Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
- Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

## How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

## Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

## Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

## Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

## Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

## Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

## Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

## Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

- Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
- Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
- Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
- Education : “Implementing a new teaching method will result in higher student achievement scores.”
- Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
- Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
- Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

## Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

## When to use Hypothesis

Here are some common situations in which hypotheses are used:

- In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
- In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
- I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

## Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

- Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
- Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
- Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
- Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
- Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
- Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
- Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

## Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

- Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
- Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
- Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
- Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
- Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
- Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

## Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

- Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
- May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
- May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
- Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
- Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
- May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

## About the author

## Muhammad Hassan

Researcher, Academic Writer, Web developer

## You may also like

## Research Topics – Ideas and Examples

## Dissertation vs Thesis – Key Differences

## Research Design – Types, Methods and Examples

## Research Contribution – Thesis Guide

## Appendix in Research Paper – Examples and...

## Research Approach – Types Methods and Examples

- Resources Home 🏠
- Try SciSpace Copilot
- Search research papers
- Add Copilot Extension
- Try AI Detector
- Try Paraphraser
- Try Citation Generator
- April Papers
- June Papers
- July Papers

## The Craft of Writing a Strong Hypothesis

## Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

## What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

## Different Types of Hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

## 1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

## 2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

- Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
- Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

## 3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

## 4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

## 5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

## 6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher the statement after assessing a group of women who take iron tablets and charting the findings.

## 7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

## Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

- A research hypothesis has to be simple yet clear to look justifiable enough.
- It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
- It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
- A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
- If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
- A hypothesis must keep and reflect the scope for further investigations and experiments.

## Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

## Finally, How to Write a Hypothesis

Quick tips on writing a hypothesis

## 1. Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

## 2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

## 3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

## 4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

## 5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

## Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

## 2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

## 3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

## 4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

## 5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

## 6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

## 7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

## 8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

## 9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

## 10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

## 11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

## You might also like

## Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

## Literature Review and Theoretical Framework: Understanding the Differences

## Types of Essays in Academic Writing - Quick Guide (2024)

- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Sweepstakes
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support

## How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

- The Scientific Method

## Hypothesis Format

Falsifiability of a hypothesis.

- Operationalization

## Hypothesis Types

Hypotheses examples.

- Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

## At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

## The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

- Forming a question
- Performing background research
- Creating a hypothesis
- Designing an experiment
- Collecting data
- Analyzing the results
- Drawing conclusions
- Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment do not support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

## Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

- Is your hypothesis based on your research on a topic?
- Can your hypothesis be tested?
- Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the journal articles you read . Many authors will suggest questions that still need to be explored.

## How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

- Collect as many observations about a topic or problem as you can.
- Evaluate these observations and look for possible causes of the problem.
- Create a list of possible explanations that you might want to explore.
- After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method , falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that if something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

## The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

## Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

## Hypothesis Checklist

- Does your hypothesis focus on something that you can actually test?
- Does your hypothesis include both an independent and dependent variable?
- Can you manipulate the variables?
- Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

- Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
- Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
- Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
- Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
- Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
- Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the dependent variable if you change the independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

## A few examples of simple hypotheses:

- "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
- "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."
- "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
- "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

## Examples of a complex hypothesis include:

- "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
- "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

## Examples of a null hypothesis include:

- "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
- "There is no difference in scores on a memory recall task between children and adults."
- "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

## Examples of an alternative hypothesis:

- "People who take St. John's wort supplements will have less anxiety than those who do not."
- "Adults will perform better on a memory task than children."
- "Children who play first-person shooter games will show higher levels of aggression than children who do not."

## Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

## Descriptive Research Methods

Descriptive research such as case studies , naturalistic observations , and surveys are often used when conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

## Experimental Research Methods

Experimental methods are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually cause another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses . R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:]. Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ? PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies . Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

- Thesis Action Plan New
- Academic Project Planner

## Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

- Why students love us
- Rebels Blog
- Why we are different
- All Products
- Coming Soon

## How Do You Write an Hypothesis? Detailed Explanation and Examples

Writing a hypothesis is a fundamental step in the scientific research process. It serves as a tentative explanation or prediction that can be tested through experimentation and observation. A well-crafted hypothesis provides a clear direction for research and helps in drawing meaningful conclusions. This article will guide you through the process of writing a hypothesis, including understanding its concept, formulating it, and avoiding common pitfalls, with illustrative examples from various fields of study.

## Key Takeaways

- A hypothesis is a testable and falsifiable statement that predicts an outcome based on certain conditions.
- There are different types of hypotheses, including null, alternative, and directional hypotheses, each serving a specific purpose in research.
- Formulating a hypothesis involves identifying research questions, conducting preliminary research, and crafting a clear and precise statement.
- A strong hypothesis is characterized by its testability, clarity, precision, and relevance to the research objectives.
- Common pitfalls in hypothesis writing include vague statements, overly complex hypotheses, and lack of testability.

## Understanding the Concept of a Hypothesis

A hypothesis is a foundational element in scientific research, serving as a preliminary statement that proposes a potential relationship between variables. It is essential for guiding the direction of your study and providing a basis for data collection and analysis.

## Steps to Formulate a Hypothesis

Identifying research questions.

The first step in formulating a hypothesis is to identify your research question . This involves observing the subject matter and recognizing patterns or relationships between variables. Crafting a clear, testable, and grounded hypothesis is essential for research success. By pinpointing the exact question you aim to answer, you lay the foundation for a focused and effective hypothesis.

## Conducting Preliminary Research

Once you have your research question, the next step is to conduct preliminary research. This involves gathering as much information as possible about the topic. Evaluate these observations to identify potential causes and effects related to your research question. This stage helps you understand the existing knowledge and gaps, which is crucial for developing a well-informed hypothesis.

## Formulating the Hypothesis Statement

After conducting preliminary research, you can begin formulating your hypothesis statement. This statement should clearly define the variables involved and the expected relationship between them. Ensure that your hypothesis is specific, testable, and falsifiable. A well-crafted hypothesis not only guides your research but also provides a clear direction for your experimental design and data collection methods.

## Characteristics of a Strong Hypothesis

A strong hypothesis is essential for guiding your research and ensuring that your study is both meaningful and scientifically valid. Here are the key characteristics that define a robust hypothesis:

## Testability and Falsifiability

A strong hypothesis must be testable, meaning you can design experiments to verify or refute it. Falsifiability is equally important; there should be a possibility to collect data that could disprove the hypothesis. This ensures that your hypothesis is grounded in empirical research rather than mere speculation.

## Clarity and Precision

Your hypothesis should be clear and precise, leaving no room for ambiguity. This clarity helps in designing experiments and interpreting results. A well-defined hypothesis often begins with a specific research question and is articulated in simple, straightforward language.

## Relevance to Research Objectives

A strong hypothesis is directly related to your research objectives. It should address the core question of your study and be aligned with the goals you aim to achieve. This relevance ensures that your hypothesis is not just an isolated statement but a crucial part of your overall research framework.

## Common Pitfalls in Hypothesis Writing

When crafting a hypothesis, it's crucial to avoid common mistakes that can undermine your research. Vague statements are a frequent issue; they lack the specificity needed to be testable. For instance, saying "exercise improves health" is too broad. Instead, specify the type of exercise and the health outcome you are measuring.

Overly complex hypotheses can also be problematic. A hypothesis should be straightforward and focused. If it includes too many variables or conditions, it becomes difficult to test and analyze. Simplify your hypothesis to ensure clarity and feasibility.

Another major pitfall is the lack of testability. A hypothesis must be testable through empirical methods. If you cannot design an experiment or collect data to support or refute your hypothesis, it is not scientifically valid. Ensure your hypothesis can be tested with the resources and methods available to you.

## Examples of Well-Written Hypotheses

In this section, you will explore various examples of well-crafted hypotheses across different fields of study. Understanding these examples will help you grasp the nuances of formulating a strong hypothesis.

## Hypotheses in Natural Sciences

A well-written hypothesis in the natural sciences is both specific and testable. For instance, consider the hypothesis: "If plants are exposed to higher levels of sunlight, then their growth rate will increase." This statement clearly defines the variables and the expected relationship between them, making it a robust hypothesis for experimental testing.

## Hypotheses in Social Sciences

In the social sciences, hypotheses often address complex human behaviors and societal trends. An example of a good hypothesis in this field is: "Individuals who participate in regular physical activity are more likely to report higher levels of mental well-being." This hypothesis is specific, testable, and relevant to the research objectives, providing a clear direction for the study.

## Hypotheses in Applied Research

Applied research focuses on practical problem-solving. A strong hypothesis in this area might be: "Implementing a new software system will reduce the time required to complete administrative tasks by 20%." This hypothesis is not only testable but also directly applicable to real-world scenarios, making it highly valuable for applied research.

By examining these examples, you can better understand how to construct hypotheses that are clear, precise, and aligned with your research goals.

## Testing and Refining Your Hypothesis

Designing experiments.

Before you dive into any experiment, you first formulate what you think will happen. This is where your hypothesis comes into play. A hypothesis in experimental design is essentially a testable prediction. Ensure that your hypothesis has clear and relevant variables, identifies the relationship between its variables, and is specific and testable. Designing a robust experiment involves controlling the independent variable and observing the dependent variable to validate or refute your hypothesis.

## Data Collection Methods

Once your experiment is designed, the next step is to collect data. This involves choosing appropriate methods to gather data that will support or refute your hypothesis. Whether you use surveys, observations, or experiments, the key is to ensure that your data collection methods are reliable and valid. Remember, the priority of any scientific research is the conclusion, so collect data meticulously.

## Analyzing Results and Making Adjustments

After data collection, the next step is to analyze the results. This involves statistical analysis to determine whether the data supports your hypothesis. If the data does not support your hypothesis, do not worry. This is a normal part of the scientific method. You may need to refine your hypothesis based on the findings. Use the results to identify weaknesses in your hypothesis and revise it if necessary. This iterative process helps in honing a more accurate and testable hypothesis.

## The Importance of Hypotheses in Academic Writing

In academic writing, hypotheses serve as foundational elements that guide the direction and structure of your research. A well-formulated hypothesis not only provides a clear focus for your study but also helps in organizing your research methods and analysis. This is crucial for ensuring that your research remains coherent and targeted.

## Guiding Research Direction

A hypothesis plays an important role in the scientific method by helping to create an appropriate experimental design. By establishing a specific, testable statement, you can streamline your research process and avoid unnecessary detours. This focused approach is essential for producing meaningful and reliable results.

## Facilitating Critical Thinking

Formulating a hypothesis requires you to engage in critical thinking and problem-solving. This process helps you to clarify your research questions and objectives, making your study more robust and intellectually rigorous. It also encourages you to consider various outcomes and their implications, thereby enhancing the depth of your analysis.

## Enhancing Academic Rigor

A well-constructed hypothesis adds a layer of academic rigor to your work. It demonstrates that you have a clear understanding of the theoretical framework and existing literature related to your topic. This not only strengthens your argument but also makes your research more credible and persuasive. In essence, a strong hypothesis is a testament to the quality and seriousness of your academic endeavor.

In academic writing, hypotheses play a crucial role in guiding research and providing a clear focus for your study. They help in formulating research questions and determining the direction of your investigation. If you're struggling with your thesis and need a structured approach, our Thesis Action Plan is here to help. Visit our website to claim your special offer now and overcome the challenges of thesis writing with ease.

In conclusion, writing a hypothesis is a fundamental step in the scientific research process that requires careful consideration and a structured approach. By observing the subject, identifying variables, and formulating a clear and testable statement, researchers can lay a solid foundation for their experiments. A well-crafted hypothesis not only guides the research but also provides a framework for analyzing results and drawing meaningful conclusions. As demonstrated in this article, understanding the components and steps involved in hypothesis writing is crucial for academic success and contributes significantly to the advancement of knowledge in various fields. By following the detailed explanations and examples provided, students and researchers can enhance their ability to construct effective hypotheses, thereby improving the quality and impact of their scientific inquiries.

## Frequently Asked Questions

What is a hypothesis.

A hypothesis is a statement that predicts the outcome of a scientific study. It is an educated guess based on prior knowledge and observations.

## Why is a hypothesis important in scientific research?

A hypothesis provides a focused direction for research. It helps researchers make predictions that can be tested through experiments and observations, thereby advancing scientific knowledge.

## What are the types of hypotheses?

There are several types of hypotheses, including null hypotheses, alternative hypotheses, directional hypotheses, and non-directional hypotheses. Each serves a different purpose in research.

## How do you formulate a hypothesis?

Formulating a hypothesis involves identifying a research question, conducting preliminary research, and then crafting a clear and testable statement that predicts an outcome.

## What makes a hypothesis strong?

A strong hypothesis is testable, falsifiable, clear, precise, and relevant to the research objectives. It should be specific enough to be tested but broad enough to cover the scope of the research.

## What are common pitfalls in writing a hypothesis?

Common pitfalls include making vague statements, creating overly complex hypotheses, and failing to ensure that the hypothesis is testable.

## एक शोध परियोजना कैसे शुरू करें: शुरुआती लोगों के लिए एक चरण-दर-चरण मार्गदर्शिका

## Cara Memulai Proyek Penelitian: Panduan Langkah-demi-Langkah untuk Pemula

## Cómo iniciar un proyecto de investigación: Una guía paso a paso para principiantes

## How to Start a Research Project: A Step-by-Step Guide for Beginners

## كيفية بدء مشروع بحث: دليل خطوة بخطوة للمبتدئين

## Thesis Revision Made Simple: Techniques for Perfecting Your Academic Work

## Integrating Calm into Your Study Routine: The Power of Mindfulness in Education

## How to Determine the Perfect Research Proposal Length

## How Do I Start Writing My Thesis: A Step-by-Step Guide

## From Idea to Proposal: 6 Steps to Efficiently Plan Your Research Project in 2024

## Thesis Action Plan

- Blog Articles
- Affiliate Program
- Terms and Conditions
- Payment and Shipping Terms
- Privacy Policy
- Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

## How to Write a Hypothesis [31 Tips + Examples]

Writing hypotheses can seem tricky, but it’s essential for a solid scientific inquiry.

Here is a quick summary of how to write a hypothesis:

Write a hypothesis by clearly defining your research question, identifying independent and dependent variables, formulating a measurable prediction, and ensuring it can be tested through experimentation. Include an “if…then” statement for clarity.

I’ve crafted dozens in my research, from basic biology experiments to business marketing strategies.

Let me walk you through how to write a solid hypothesis, step by step.

## Writing a Hypothesis: The Basics

Table of Contents

A hypothesis is a statement predicting the relationship between variables based on observations and existing knowledge. To craft a good hypothesis:

- Identify variables – Determine the independent and dependent variables involved.
- Predict relationships – Predict the interaction between these variables.
- Test the statement – Ensure the hypothesis is testable and falsifiable.

A solid hypothesis guides your research and sets the foundation for your experiment.

## 31 Tips for Writing a Hypothesis

There are at least 31 tips to write a good hypothesis.

Keep reading to learn every tip plus three examples to make sure that you can instantly apply it to your writing.

## Tip 1: Start with a Clear Research Question

A clear research question ensures your hypothesis is targeted.

- Identify the broad topic you’re curious about, then refine it to a specific question.
- Use guiding questions like “What impact does variable X have on variable Y?”
- How does fertilizer affect plant growth?
- Does social media influence mental health in teens?
- Can personalized ads increase customer engagement?

## Tip 2: Do Background Research

Research helps you understand current knowledge and any existing gaps.

- Review scholarly articles, reputable websites, and textbooks.
- Focus on understanding the relationships between variables in existing research.
- Academic journals like ScienceDirect or JSTOR.
- Google Scholar.
- Reputable news articles.

## Tip 3: Identify Independent and Dependent Variables

The independent variable is what you change or control. The dependent variable is what you measure.

- Clearly define these variables to make your hypothesis precise.
- Think of different factors that could be influencing your dependent variable.
- Type of fertilizer (independent) and plant growth (dependent).
- Amount of screen time (independent) and anxiety levels (dependent).
- Marketing strategies (independent) and customer engagement (dependent).

## Tip 4: Make Your Hypothesis Testable

A hypothesis must be measurable and falsifiable.

- Ensure your hypothesis can be supported or refuted through data collection.
- Include numerical variables or qualitative changes to ensure measurability.
- “Increasing screen time will increase anxiety levels in teenagers.”
- “Using fertilizer X will yield higher crop productivity.”
- “A/B testing marketing strategies will show higher engagement with personalized ads.”

## Tip 5: Be Specific and Concise

Keep your hypothesis straightforward and to the point.

- Avoid vague terms that could mislead or cause confusion.
- Clearly outline what you’re measuring and how the variables interact.
- “Replacing chemical fertilizers with organic ones will result in slower plant growth.”
- “A social media break will decrease anxiety in high school students.”
- “Ads targeting user preferences will boost click-through rates by 10%.”

## Tip 6: Choose Simple Language

Use simple, understandable language to ensure clarity.

- Avoid jargon and overly complex terms that could confuse readers.
- Make the hypothesis comprehensible to non-experts in the field.
- “Organic fertilizer will reduce plant growth.”
- “High schoolers will feel less anxious after a social media detox.”
- “Targeted ads will increase customer engagement.”

## Tip 7: Formulate a Null Hypothesis

A null hypothesis assumes no relationship between variables.

- Create a counterpoint to your main hypothesis, asserting that there is no effect.
- This allows you to compare results directly and identify statistical significance.
- “Fertilizer type will not affect plant growth.”
- “Social media use will not influence anxiety.”
- “Targeted ads will not affect customer engagement.”

## Tip 8: State Alternative Hypotheses

Provide alternative hypotheses to explore other plausible relationships.

- They offer a contingency plan if your primary hypothesis is not supported.
- These should still align with your research question and measurable variables.
- “Fertilizer X will only affect plant growth if used in specific soil types.”
- “Social media might impact anxiety only in certain age groups.”
- “Customer engagement might only improve with highly personalized ads.”

## Tip 9: Use “If…Then” Statements

“If…then” statements simplify the cause-and-effect structure.

- The “if” clause identifies the independent variable, while “then” identifies the dependent.
- It makes your hypothesis easier to understand and directly testable.
- “If plants receive organic fertilizer, then their growth rate will slow.”
- “If teens stop using social media, then their anxiety will decrease.”
- “If ads are personalized, then click-through rates will increase.”

## Tip 10: Avoid Assumptions

Don’t assume the audience understands your variables or relationships.

- Clearly define terms and relationships to avoid misinterpretation.
- Provide background context where necessary for clarity.
- Define “anxiety” as a feeling of worry or unease.
- Specify “plant growth” as the height and health of plants.
- Describe “personalized ads” as ads matching user preferences.

## Tip 11: Review Existing Literature

Previous research offers insights into forming a hypothesis.

- Conduct a thorough literature review to identify trends and gaps.
- Use these studies to refine and build upon your hypothesis.
- Studies showing a link between screen time and anxiety.
- Research on organic versus chemical fertilizers.
- Customer behavior analysis in different marketing channels.

## Tip 12: Consider Multiple Variables

Hypotheses with multiple variables can offer deeper insights.

- Explore combinations of independent and dependent variables to see their relationships.
- Plan experiments accordingly to distinguish separate effects.
- Studying fertilizer type and soil composition effects on plant growth.
- Testing social media use frequency and content type on anxiety.
- Analyzing marketing strategies combined with product preferences.

## Tip 13: Review Ethical Considerations

Ethics are essential for trustworthy research.

- Avoid hypotheses that could cause harm to participants or the environment.
- Seek approval from relevant ethical boards or committees.
- Avoiding experiments causing undue stress to teenagers.
- Preventing chemical contamination when testing fertilizers.
- Respecting privacy with personalized ads.

## Tip 14: Test with Pilot Studies

Small-scale pilot studies test feasibility and refine hypotheses.

- Use them to identify potential issues and adjust before full-scale research.
- Ensure pilot tests align with ethical standards.
- Testing different fertilizer types on small plant samples.
- Trying brief social media breaks with a small group of teens.
- Conducting A/B tests on ad personalization with a subset of customers.

## Tip 15: Build Hypotheses on Existing Theories

Existing theories provide strong foundations.

- Use established frameworks to develop or refine your hypothesis.
- Testing theoretical predictions can yield meaningful data.
- Applying agricultural theories on soil and crop management.
- Using psychology theories on screen addiction and mental health.
- Referencing marketing theories like consumer behavior analysis.

## Tip 16: Address Real-World Problems

Solve real-world problems through practical hypotheses.

- Make sure your research question has relevant, impactful applications.
- Focus on everyday challenges where actionable insights can help.
- Testing new eco-friendly farming methods.
- Reducing anxiety by improving digital wellbeing.
- Improving marketing ROI with personalized strategies.

## Tip 17: Aim for Clear, Measurable Outcomes

The results should be easy to measure and interpret.

- Quantify your dependent variable or use defined qualitative measures.
- Avoid overly broad or ambiguous outcomes.
- Measuring plant growth as a percentage change in height.
- Quantifying anxiety levels through standard surveys.
- Tracking click-through rates as a percentage of total views.

## Tip 18: Stay Open to Unexpected Results

Not all hypotheses yield expected results.

- Be open to learning new insights, even if they contradict your prediction.
- Unexpected findings often reveal unique, significant knowledge.
- Unexpected fertilizer types boosting growth differently than anticipated.
- Screen time affecting anxiety differently across various age groups.
- Targeted ads backfiring with specific customer segments.

## Tip 19: Keep Hypotheses Relevant

Ensure your hypothesis aligns with the purpose of your research.

- Avoid straying from the original question or focusing on tangential issues.
- Stick to the research scope to ensure accurate and meaningful data.
- Focus on a specific type of fertilizer for plant growth.
- Restrict studies to relevant age groups for anxiety research.
- Keep marketing hypotheses within the same target customer segment.

## Tip 20: Collaborate with Peers

Collaboration strengthens hypothesis development.

- Work with colleagues or mentors for valuable feedback.
- Peer review helps identify flaws or assumptions in your hypothesis.
- Reviewing hypothesis clarity with a lab partner.
- Sharing research plans with a mentor to refine focus.
- Engaging in academic peer-review groups.

## Tip 21: Re-evaluate Hypotheses Periodically

Revising hypotheses ensures relevance.

- Update based on new literature, data, or technological advances.
- A dynamic approach keeps your research current.
- Refining fertilizer studies with recent organic farming research.
- Adjusting social media hypotheses for new platforms like TikTok.
- Modifying marketing hypotheses based on changing customer preferences.

## Tip 22: Develop Compelling Visuals

Illustrating hypotheses can help communicate relationships effectively.

- Use diagrams or flowcharts to show how variables interact visually.
- Infographics make it easier for others to grasp your research concept.
- A flowchart showing fertilizer effects on different plant growth stages.
- Diagrams illustrating social media use and its psychological impact.
- Infographics depicting how various marketing strategies boost engagement.

## Tip 23: Refine Your Data Collection Plan

A solid data collection plan is vital for a testable hypothesis.

- Determine the best ways to measure your dependent variable.
- Ensure your data collection tools are reliable and accurate.
- Using a ruler and image analysis software to measure plant height.
- Designing standardized surveys to assess anxiety levels consistently.
- Setting up click-through tracking with analytics software.

## Tip 24: Focus on Logical Progression

Ensure your hypothesis logically follows your research question.

- The relationship between variables should naturally flow from your observations.
- Avoid logical leaps that might confuse your reasoning.
- Predicting plant growth after observing effects of different fertilizers.
- Linking anxiety to social media use based on screen time studies.
- Connecting ad personalization with customer behavior data.

## Tip 25: Test Against Diverse Samples

Testing across diverse samples ensures broader applicability.

- Avoid drawing conclusions from overly narrow sample groups.
- Try to include different demographics or subgroups in your testing.
- Testing fertilizer effects on multiple plant species.
- Including different age groups in anxiety research.
- Experimenting with personalized ads across varied customer segments.

## Tip 26: Use Control Groups

Control groups provide a baseline for comparison.

- Compare your test group with a control group under unchanged conditions.
- This allows you to isolate the effect of your independent variable.
- Comparing plant growth with organic versus no fertilizer.
- Testing anxiety levels with and without social media breaks.
- Comparing personalized ads with general marketing content.

## Tip 27: Consider Practical Constraints

Work within realistic constraints for your resources and timeline.

- Assess the feasibility of testing your hypothesis.
- Modify the hypothesis if the required testing is unmanageable.
- Reducing fertilizer types to a manageable number for testing.
- Shortening social media detox periods to realistic durations.
- Targeting only specific marketing strategies to optimize testing.

## Tip 28: Recognize Bias Risks

Biases can skew hypothesis formation.

- Acknowledge your assumptions and how they may affect your research.
- Minimize biases by clearly defining and measuring variables.
- Avoiding assumptions that organic fertilizer is inherently better.
- Ensuring survey questions don’t lead to specific anxiety outcomes.
- Testing marketing strategies objectively without favoring any method.

## Tip 29: Prepare for Peer Review

Peer review ensures your hypothesis holds up to scrutiny.

- Provide a clear rationale for why your hypothesis is sound.
- Address potential criticisms to strengthen your research.
- Showing your plant growth study builds on existing fertilizer research.
- Demonstrating social media anxiety links through data and literature.
- Supporting your marketing hypotheses with solid behavioral data.

## Tip 30: Create a Research Proposal

A proposal outlines your hypothesis, methodology, and significance.

- It ensures your hypothesis is clear and your methods are well-thought-out.
- Proposals also help secure funding or institutional approval.
- A proposal for fertilizer studies linking plant growth and soil health.
- Research plans connecting social media habits to anxiety measures.
- Marketing proposals tying customer behavior to personalized advertising.

## Tip 31: Document Your Findings

Recording findings helps validate or challenge your hypothesis.

- Document the methodology, data, and conclusions clearly.
- This allows others to verify, replicate, or expand on your work.
- Recording fertilizer effects on plant height in different soil types.
- Survey results linking social media use with anxiety levels.
- Click-through data proving personalized ads’ impact on engagement.

Check out this really good video about how to write a hypothesis:

## Hypothesis Examples for Different Situations

Let’s look at some examples of how to write a hypothesis in different circumstances.

- Marketing Analysis : “If personalized ads are shown to our target demographic, then click-through rates will increase by at least 10%.”
- Process Improvement : “If automated workflows replace manual data entry, then task completion times will decrease by 20%.”
- Product Development : “If adding a chatbot feature to our app increases customer support efficiency, then user satisfaction will improve by 15%.”
- Biology Experiment : “If students grow plants with different fertilizers, then the organic fertilizer will result in slower growth compared to the chemical fertilizer.”
- Psychology Research : “If high school students take a break from social media, then their levels of anxiety will decrease.”
- Environmental Study : “If a controlled forest area is exposed to a certain pollutant, then the local plant species will show signs of damage within two weeks.”

## Professional Contacts

- Medical Research : “If a novel treatment method is applied to patients with chronic illness, then their recovery rate will increase significantly compared to standard treatment.”
- Technology Research : “If machine learning algorithms analyze big data sets, then the accuracy of predictive models will surpass traditional data analysis.”
- Engineering Project : “If new composite materials replace standard components in bridge construction, then the resulting structure will be more durable.”

## Super Personal

- Gardening Experiment : “If different types of compost are used in home gardens, then plants receiving homemade compost will yield the most produce.”
- Fitness Routine : “If consistent strength training is combined with a high-protein diet, then muscle mass will increase more than with diet alone.”
- Cooking Techniques : “If searing is added before baking, then the resulting roast will retain more moisture.”

## Final Thoughts: How to Write a Hypothesis

Crafting hypotheses is both a science and an art. It’s about channeling curiosity into testable questions that propel meaningful discovery.

Each well-thought-out hypothesis is a stepping stone that could lead to the breakthrough you’ve been seeking.

Stay curious and let your research journey unfold.

Read This Next:

- How to Write a Topic Sentence (30+ Tips & Examples)
- How to Describe a Graph in Writing [+ 22 Examples]
- How to Write an Address (21+ Examples)
- How to Write an Email (Ultimate Guide + 60 Examples)
- How to Write a Recommendation Letter (Examples & Templates)

## How to Write a Hypothesis: A Step-by-Step Guide

## Introduction

An overview of the research hypothesis, different types of hypotheses, variables in a hypothesis, how to formulate an effective research hypothesis, designing a study around your hypothesis.

The scientific method can derive and test predictions as hypotheses. Empirical research can then provide support (or lack thereof) for the hypotheses. Even failure to find support for a hypothesis still represents a valuable contribution to scientific knowledge. Let's look more closely at the idea of the hypothesis and the role it plays in research.

As much as the term exists in everyday language, there is a detailed development that informs the word "hypothesis" when applied to research. A good research hypothesis is informed by prior research and guides research design and data analysis , so it is important to understand how a hypothesis is defined and understood by researchers.

## What is the simple definition of a hypothesis?

A hypothesis is a testable prediction about an outcome between two or more variables . It functions as a navigational tool in the research process, directing what you aim to predict and how.

## What is the hypothesis for in research?

In research, a hypothesis serves as the cornerstone for your empirical study. It not only lays out what you aim to investigate but also provides a structured approach for your data collection and analysis.

Essentially, it bridges the gap between the theoretical and the empirical, guiding your investigation throughout its course.

## What is an example of a hypothesis?

If you are studying the relationship between physical exercise and mental health, a suitable hypothesis could be: "Regular physical exercise leads to improved mental well-being among adults."

This statement constitutes a specific and testable hypothesis that directly relates to the variables you are investigating.

## What makes a good hypothesis?

A good hypothesis possesses several key characteristics. Firstly, it must be testable, allowing you to analyze data through empirical means, such as observation or experimentation, to assess if there is significant support for the hypothesis. Secondly, a hypothesis should be specific and unambiguous, giving a clear understanding of the expected relationship between variables. Lastly, it should be grounded in existing research or theoretical frameworks , ensuring its relevance and applicability.

Understanding the types of hypotheses can greatly enhance how you construct and work with hypotheses. While all hypotheses serve the essential function of guiding your study, there are varying purposes among the types of hypotheses. In addition, all hypotheses stand in contrast to the null hypothesis, or the assumption that there is no significant relationship between the variables .

Here, we explore various kinds of hypotheses to provide you with the tools needed to craft effective hypotheses for your specific research needs. Bear in mind that many of these hypothesis types may overlap with one another, and the specific type that is typically used will likely depend on the area of research and methodology you are following.

## Null hypothesis

The null hypothesis is a statement that there is no effect or relationship between the variables being studied. In statistical terms, it serves as the default assumption that any observed differences are due to random chance.

For example, if you're studying the effect of a drug on blood pressure, the null hypothesis might state that the drug has no effect.

## Alternative hypothesis

Contrary to the null hypothesis, the alternative hypothesis suggests that there is a significant relationship or effect between variables.

Using the drug example, the alternative hypothesis would posit that the drug does indeed affect blood pressure. This is what researchers aim to prove.

## Simple hypothesis

A simple hypothesis makes a prediction about the relationship between two variables, and only two variables.

For example, "Increased study time results in better exam scores." Here, "study time" and "exam scores" are the only variables involved.

## Complex hypothesis

A complex hypothesis, as the name suggests, involves more than two variables. For instance, "Increased study time and access to resources result in better exam scores." Here, "study time," "access to resources," and "exam scores" are all variables.

This hypothesis refers to multiple potential mediating variables. Other hypotheses could also include predictions about variables that moderate the relationship between the independent variable and dependent variable .

## Directional hypothesis

A directional hypothesis specifies the direction of the expected relationship between variables. For example, "Eating more fruits and vegetables leads to a decrease in heart disease."

Here, the direction of heart disease is explicitly predicted to decrease, due to effects from eating more fruits and vegetables. All hypotheses typically specify the expected direction of the relationship between the independent and dependent variable, such that researchers can test if this prediction holds in their data analysis .

## Statistical hypothesis

A statistical hypothesis is one that is testable through statistical methods, providing a numerical value that can be analyzed. This is commonly seen in quantitative research .

For example, "There is a statistically significant difference in test scores between students who study for one hour and those who study for two."

## Empirical hypothesis

An empirical hypothesis is derived from observations and is tested through empirical methods, often through experimentation or survey data . Empirical hypotheses may also be assessed with statistical analyses.

For example, "Regular exercise is correlated with a lower incidence of depression," could be tested through surveys that measure exercise frequency and depression levels.

## Causal hypothesis

A causal hypothesis proposes that one variable causes a change in another. This type of hypothesis is often tested through controlled experiments.

For example, "Smoking causes lung cancer," assumes a direct causal relationship.

## Associative hypothesis

Unlike causal hypotheses, associative hypotheses suggest a relationship between variables but do not imply causation.

For instance, "People who smoke are more likely to get lung cancer," notes an association but doesn't claim that smoking causes lung cancer directly.

## Relational hypothesis

A relational hypothesis explores the relationship between two or more variables but doesn't specify the nature of the relationship.

For example, "There is a relationship between diet and heart health," leaves the nature of the relationship (causal, associative, etc.) open to interpretation.

## Logical hypothesis

A logical hypothesis is based on sound reasoning and logical principles. It's often used in theoretical research to explore abstract concepts, rather than being based on empirical data.

For example, "If all men are mortal and Socrates is a man, then Socrates is mortal," employs logical reasoning to make its point.

## Let ATLAS.ti take you from research question to key insights

Get started with a free trial and see how ATLAS.ti can make the most of your data.

In any research hypothesis, variables play a critical role. These are the elements or factors that the researcher manipulates, controls, or measures. Understanding variables is essential for crafting a clear, testable hypothesis and for the stages of research that follow, such as data collection and analysis.

In the realm of hypotheses, there are generally two types of variables to consider: independent and dependent. Independent variables are what you, as the researcher, manipulate or change in your study. It's considered the cause in the relationship you're investigating. For instance, in a study examining the impact of sleep duration on academic performance, the independent variable would be the amount of sleep participants get.

Conversely, the dependent variable is the outcome you measure to gauge the effect of your manipulation. It's the effect in the cause-and-effect relationship. The dependent variable thus refers to the main outcome of interest in your study. In the same sleep study example, the academic performance, perhaps measured by exam scores or GPA, would be the dependent variable.

Beyond these two primary types, you might also encounter control variables. These are variables that could potentially influence the outcome and are therefore kept constant to isolate the relationship between the independent and dependent variables . For example, in the sleep and academic performance study, control variables could include age, diet, or even the subject of study.

By clearly identifying and understanding the roles of these variables in your hypothesis, you set the stage for a methodologically sound research project. It helps you develop focused research questions, design appropriate experiments or observations, and carry out meaningful data analysis . It's a step that lays the groundwork for the success of your entire study.

Crafting a strong, testable hypothesis is crucial for the success of any research project. It sets the stage for everything from your study design to data collection and analysis . Below are some key considerations to keep in mind when formulating your hypothesis:

- Be specific : A vague hypothesis can lead to ambiguous results and interpretations . Clearly define your variables and the expected relationship between them.
- Ensure testability : A good hypothesis should be testable through empirical means, whether by observation , experimentation, or other forms of data analysis.
- Ground in literature : Before creating your hypothesis, consult existing research and theories. This not only helps you identify gaps in current knowledge but also gives you valuable context and credibility for crafting your hypothesis.
- Use simple language : While your hypothesis should be conceptually sound, it doesn't have to be complicated. Aim for clarity and simplicity in your wording.
- State direction, if applicable : If your hypothesis involves a directional outcome (e.g., "increase" or "decrease"), make sure to specify this. You also need to think about how you will measure whether or not the outcome moved in the direction you predicted.
- Keep it focused : One of the common pitfalls in hypothesis formulation is trying to answer too many questions at once. Keep your hypothesis focused on a specific issue or relationship.
- Account for control variables : Identify any variables that could potentially impact the outcome and consider how you will control for them in your study.
- Be ethical : Make sure your hypothesis and the methods for testing it comply with ethical standards , particularly if your research involves human or animal subjects.

Designing your study involves multiple key phases that help ensure the rigor and validity of your research. Here we discuss these crucial components in more detail.

## Literature review

Starting with a comprehensive literature review is essential. This step allows you to understand the existing body of knowledge related to your hypothesis and helps you identify gaps that your research could fill. Your research should aim to contribute some novel understanding to existing literature, and your hypotheses can reflect this. A literature review also provides valuable insights into how similar research projects were executed, thereby helping you fine-tune your own approach.

## Research methods

Choosing the right research methods is critical. Whether it's a survey, an experiment, or observational study, the methodology should be the most appropriate for testing your hypothesis. Your choice of methods will also depend on whether your research is quantitative, qualitative, or mixed-methods. Make sure the chosen methods align well with the variables you are studying and the type of data you need.

## Preliminary research

Before diving into a full-scale study, it’s often beneficial to conduct preliminary research or a pilot study . This allows you to test your research methods on a smaller scale, refine your tools, and identify any potential issues. For instance, a pilot survey can help you determine if your questions are clear and if the survey effectively captures the data you need. This step can save you both time and resources in the long run.

## Data analysis

Finally, planning your data analysis in advance is crucial for a successful study. Decide which statistical or analytical tools are most suited for your data type and research questions . For quantitative research, you might opt for t-tests, ANOVA, or regression analyses. For qualitative research , thematic analysis or grounded theory may be more appropriate. This phase is integral for interpreting your results and drawing meaningful conclusions in relation to your research question.

## Turn data into evidence for insights with ATLAS.ti

Powerful analysis for your research paper or presentation is at your fingertips starting with a free trial.

- Affiliate Program

- UNITED STATES
- 台灣 (TAIWAN)
- TÜRKIYE (TURKEY)
- Academic Editing Services
- - Research Paper
- - Journal Manuscript
- - Dissertation
- - College & University Assignments
- Admissions Editing Services
- - Application Essay
- - Personal Statement
- - Recommendation Letter
- - Cover Letter
- - CV/Resume
- Business Editing Services
- - Business Documents
- - Report & Brochure
- - Website & Blog
- Writer Editing Services
- - Script & Screenplay
- Our Editors
- Client Reviews
- Editing & Proofreading Prices
- Wordvice Points
- Partner Discount
- Plagiarism Checker
- APA Citation Generator
- MLA Citation Generator
- Chicago Citation Generator
- Vancouver Citation Generator
- - APA Style
- - MLA Style
- - Chicago Style
- - Vancouver Style
- Writing & Editing Guide
- Academic Resources
- Admissions Resources

## How to Write a Research Hypothesis: Good & Bad Examples

## What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis.

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with.

## What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper.

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

## Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

## Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories.

## Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1.

## Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis.

Another example for a directional one-tailed alternative hypothesis would be that

H1: Attending private classes before important exams has a positive effect on performance.

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

## Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

## How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

## Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder:

What is it that makes dog owners even happier than cat owners?

Let’s move on to Step 2 and find an answer to that question.

## Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.

## Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being .

## Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

## Good Hypothesis Examples

Working from home improves job satisfaction. | Employees who are allowed to work from home are less likely to quit within 2 years than those who need to come to the office. |

Sleep deprivation affects cognition. | Students who sleep <5 hours/night don’t perform as well on exams as those who sleep >7 hours/night. |

Animals adapt to their environment. | Birds of the same species living on different islands have differently shaped beaks depending on the available food source. |

Social media use causes anxiety. | Do teenagers who refrain from using social media for 4 weeks show improvements in anxiety symptoms? |

## Bad Hypothesis Examples

Garlic repels vampires. | Participants who eat garlic daily will not be harmed by vampires. | Nobody gets harmed by vampires— . |

Chocolate is better than vanilla. | No clearly defined variables— . |

## Tips for Writing a Research Hypothesis

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on…

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript.

## Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI Proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

Educational resources and simple solutions for your research journey

## What is a Research Hypothesis: How to Write it, Types, and Examples

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .

Table of Contents

## What is a hypothesis ?

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.

## What is a research hypothesis ?

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.

## Characteristics of a good hypothesis

Here are the characteristics of a good hypothesis :

- Clearly formulated and free of language errors and ambiguity
- Concise and not unnecessarily verbose
- Has clearly defined variables
- Testable and stated in a way that allows for it to be disproven
- Can be tested using a research design that is feasible, ethical, and practical
- Specific and relevant to the research problem
- Rooted in a thorough literature search
- Can generate new knowledge or understanding.

## How to create an effective research hypothesis

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.

Let’s look at each step for creating an effective, testable, and good research hypothesis :

- Identify a research problem or question: Start by identifying a specific research problem.
- Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.
- Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.
- State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.
- Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.
- Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.

## How to write a research hypothesis

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.

An example of a research hypothesis in this format is as follows:

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”

Population: athletes

Independent variable: daily cold water showers

Dependent variable: endurance

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.

## Research hypothesis checklist

Following from above, here is a 10-point checklist for a good research hypothesis :

- Testable: A research hypothesis should be able to be tested via experimentation or observation.
- Specific: A research hypothesis should clearly state the relationship between the variables being studied.
- Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.
- Falsifiable: A research hypothesis should be able to be disproven through testing.
- Clear and concise: A research hypothesis should be stated in a clear and concise manner.
- Logical: A research hypothesis should be logical and consistent with current understanding of the subject.
- Relevant: A research hypothesis should be relevant to the research question and objectives.
- Feasible: A research hypothesis should be feasible to test within the scope of the study.
- Reflects the population: A research hypothesis should consider the population or sample being studied.
- Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.

## Types of research hypothesis

Different types of research hypothesis are used in scientific research:

## 1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.

Example: “ The newly identified virus is not zoonotic .”

## 2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.

Example: “ The newly identified virus is zoonotic .”

## 3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”

## 4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.

Example, “ Cats and dogs differ in the amount of affection they express .”

## 5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.

Example: “ Applying sunscreen every day slows skin aging .”

## 6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)

## 7. Associative hypothesis:

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.

Example: “ There is a positive association between physical activity levels and overall health .”

## 8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.

Example: “ Long-term alcohol use causes liver damage .”

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.

## Research hypothesis examples

Here are some good research hypothesis examples :

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)

## Importance of testable hypothesis

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.

## Frequently Asked Questions (FAQs) on research hypothesis

1. What is the difference between research question and research hypothesis ?

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.

3. How can I be sure my hypothesis is testable?

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:

- Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.
- The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.
- You should be able to collect the necessary data within the constraints of your study.
- It should be possible for other researchers to replicate your study, using the same methods and variables.
- Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.
- The hypothesis should be able to be disproven or rejected through the collection of data.

4. How do I revise my research hypothesis if my data does not support it?

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.

5. I am performing exploratory research. Do I need to formulate a research hypothesis?

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place – Get All Access now starting at just $14 a month !

## Related Posts

## What are the Best Research Funding Sources

## Inductive vs. Deductive Research Approach

- How it works

## How to Write a Hypothesis – Steps & Tips

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 26, 2023

## What is a Research Hypothesis?

You can test a research statement with the help of experimental or theoretical research, known as a hypothesis.

If you want to find out the similarities, differences, and relationships between variables, you must write a testable hypothesis before compiling the data, performing analysis, and generating results to complete.

The data analysis and findings will help you test the hypothesis and see whether it is true or false. Here is all you need to know about how to write a hypothesis for a dissertation .

## Research Hypothesis Definition

Not sure what the meaning of the research hypothesis is?

A research hypothesis predicts an answer to the research question based on existing theoretical knowledge or experimental data.

Some studies may have multiple hypothesis statements depending on the research question(s). A research hypothesis must be based on formulas, facts, and theories. It should be testable by data analysis, observations, experiments, or other scientific methodologies that can refute or support the statement.

## Variables in Hypothesis

Developing a hypothesis is easy. Most research studies have two or more variables in the hypothesis, particularly studies involving correlational and experimental research. The researcher can control or change the independent variable(s) while measuring and observing the independent variable(s).

“How long a student sleeps affects test scores.”

In the above statement, the dependent variable is the test score, while the independent variable is the length of time spent in sleep. Developing a hypothesis will be easy if you know your research’s dependent and independent variables.

Once you have developed a thesis statement, questions such as how to write a hypothesis for the dissertation and how to test a research hypothesis become pretty straightforward.

## Looking for dissertation help?

Researchprospect to the rescue then.

We have expert writers on our team who are skilled at helping students with quantitative dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!

## Step-by-Step Guide on How to Write a Hypothesis

Here are the steps involved in how to write a hypothesis for a dissertation.

## Step 1: Start with a Research Question

- Begin by asking a specific question about a topic of interest.
- This question should be clear, concise, and researchable.

Example: Does exposure to sunlight affect plant growth?

## Step 2: Do Preliminary Research

- Before formulating a hypothesis, conduct background research to understand existing knowledge on the topic.
- Familiarise yourself with prior studies, theories, or observations related to the research question.

## Step 3: Define Variables

- Independent Variable (IV): The factor that you change or manipulate in an experiment.
- Dependent Variable (DV): The factor that you measure.

Example: IV: Amount of sunlight exposure (e.g., 2 hours/day, 4 hours/day, 8 hours/day) DV: Plant growth (e.g., height in centimetres)

## Step 4: Formulate the Hypothesis

- A hypothesis is a statement that predicts the relationship between variables.
- It is often written as an “if-then” statement.

Example: If plants receive more sunlight, then they will grow taller.

## Step 5: Ensure it is Testable

A good hypothesis is empirically testable. This means you should be able to design an experiment or observation to test its validity.

Example: You can set up an experiment where plants are exposed to varying amounts of sunlight and then measure their growth over a period of time.

## Step 6: Consider Potential Confounding Variables

- Confounding variables are factors other than the independent variable that might affect the outcome.
- It is important to identify these to ensure that they do not skew your results.

Example: Soil quality, water frequency, or type of plant can all affect growth. Consider keeping these constant in your experiment.

## Step 7: Write the Null Hypothesis

- The null hypothesis is a statement that there is no effect or no relationship between the variables.
- It is what you aim to disprove or reject through your research.

Example: There is no difference in plant growth regardless of the amount of sunlight exposure.

## Step 8: Test your Hypothesis

Design an experiment or conduct observations to test your hypothesis.

Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

## Step 9: Analyse the Results

After testing, review your data to determine if it supports your hypothesis.

## Step 10: Draw Conclusions

- Based on your findings, determine whether you can accept or reject the hypothesis.
- Remember, even if you reject your hypothesis, it’s a valuable result. It can guide future research and refine questions.

## Three Ways to Phrase a Hypothesis

Try to use “if”… and “then”… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent variable will form the second part of the statement. Consider understanding the below research hypothesis example to create a specific, clear, and concise research hypothesis;

If an obese lady starts attending Zomba fitness classes, her health will improve.

In academic research, you can write the predicted variable relationship directly because most research studies correlate terms.

The number of Zomba fitness classes attended by the obese lady has a positive effect on health.

If your research compares two groups, then you can develop a hypothesis statement on their differences.

An obese lady who attended most Zumba fitness classes will have better health than those who attended a few.

## How to Write a Null Hypothesis

If a statistical analysis is involved in your research, then you must create a null hypothesis. If you find any relationship between the variables, then the null hypothesis will be the default position that there is no relationship between them. H0 is the symbol for the null hypothesis, while the hypothesis is represented as H1. The null hypothesis will also answer your question, “How to test the research hypothesis in the dissertation.”

H0: The number of Zumba fitness classes attended by the obese lady does not affect her health.

H1: The number of Zumba fitness classes attended by obese lady positively affects health.

Also see: Your Dissertation in Education

## Hypothesis Examples

Research Question: Does the amount of sunlight a plant receives affect its growth? Hypothesis: Plants that receive more sunlight will grow taller than plants that receive less sunlight.

Research Question: Do students who eat breakfast perform better in school exams than those who don’t? Hypothesis: Students who eat a morning breakfast will score higher on school exams compared to students who skip breakfast.

Research Question: Does listening to music while studying impact a student’s ability to retain information? Hypothesis 1 (Directional): Students who listen to music while studying will retain less information than those who study in silence. Hypothesis 2 (Non-directional): There will be a difference in information retention between students who listen to music while studying and those who study in silence.

## How can ResearchProspect Help?

If you are unsure about how to rest a research hypothesis in a dissertation or simply unsure about how to develop a hypothesis for your research, then you can take advantage of our dissertation services which cover every tiny aspect of a dissertation project you might need help with including but not limited to setting up a hypothesis and research questions, help with individual chapters , full dissertation writing , statistical analysis , and much more.

## Frequently Asked Questions

What are the 5 rules for writing a good hypothesis.

- Clear Statement: State a clear relationship between variables.
- Testable: Ensure it can be investigated and measured.
- Specific: Avoid vague terms, be precise in predictions.
- Falsifiable: Design to allow potential disproof.
- Relevant: Address research question and align with existing knowledge.

## What is a hypothesis in simple words?

A hypothesis is an educated guess or prediction about something that can be tested. It is a statement that suggests a possible explanation for an event or phenomenon based on prior knowledge or observation. Scientists use hypotheses as a starting point for experiments to discover if they are true or false.

## What is the hypothesis and examples?

A hypothesis is a testable prediction or explanation for an observation or phenomenon. For example, if plants are given sunlight, then they will grow. In this case, the hypothesis suggests that sunlight has a positive effect on plant growth. It can be tested by experimenting with plants in varying light conditions.

## What is the hypothesis in research definition?

A hypothesis in research is a clear, testable statement predicting the possible outcome of a study based on prior knowledge and observation. It serves as the foundation for conducting experiments or investigations. Researchers test the validity of the hypothesis to draw conclusions and advance knowledge in a particular field.

## Why is it called a hypothesis?

The term “hypothesis” originates from the Greek word “hypothesis,” which means “base” or “foundation.” It’s used to describe a foundational statement or proposition that can be tested. In scientific contexts, it denotes a tentative explanation for a phenomenon, serving as a starting point for investigation or experimentation.

## You May Also Like

Let’s briefly examine the concept of research paradigms, their pillars, purposes, types, examples, and how they can be combined.

Make sure that your selected topic is intriguing, manageable, and relevant. Here are some guidelines to help understand how to find a good dissertation topic.

Penning your dissertation proposal can be a rather daunting task. Here are comprehensive guidelines on how to write a dissertation proposal.

USEFUL LINKS

LEARNING RESOURCES

COMPANY DETAILS

- How It Works

## How to Develop a Good Research Hypothesis

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

## What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study. Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

## What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

## Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

- Is the language clear and focused?
- What is the relationship between your hypothesis and your research topic?
- Is your hypothesis testable? If yes, then how?
- What are the possible explanations that you might want to explore?
- Does your hypothesis include both an independent and dependent variable?
- Can you manipulate your variables without hampering the ethical standards?
- Does your research predict the relationship and outcome?
- Is your research simple and concise (avoids wordiness)?
- Is it clear with no ambiguity or assumptions about the readers’ knowledge
- Is your research observable and testable results?
- Is it relevant and specific to the research question or problem?

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

## Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

## 1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

## 2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

## 3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

## 4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

## Types of Research Hypothesis

The types of research hypothesis are stated below:

## 1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

## 2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

## 3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

## 4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

## 5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

## 6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

## 7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

## Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).

Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

## Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

- There must be a possibility to prove that the hypothesis is true.
- There must be a possibility to prove that the hypothesis is false.
- The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

## Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Brief and easily digested

Rate this article Cancel Reply

Your email address will not be published.

## Enago Academy's Most Popular Articles

- Reporting Research

## Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

## Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

- Industry News

## COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

- Career Corner

## Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

- 2000+ blog articles
- 50+ Webinars
- 10+ Expert podcasts
- 50+ Infographics
- 10+ Checklists
- Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

- Publishing Research
- AI in Academia
- Promoting Research
- Diversity and Inclusion
- Infographics
- Expert Video Library
- Other Resources
- Enago Learn
- Upcoming & On-Demand Webinars
- Peer Review Week 2024
- Open Access Week 2023
- Conference Videos
- Enago Report
- Journal Finder
- Enago Plagiarism & AI Grammar Check
- Editing Services
- Publication Support Services
- Research Impact
- Translation Services
- Publication solutions
- AI-Based Solutions
- Thought Leadership
- Call for Articles
- Call for Speakers
- Author Training
- Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

In your opinion, what is the most effective way to improve integrity in the peer review process?

- Skip to secondary menu
- Skip to main content
- Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

## Hypothesis Testing: Uses, Steps & Example

By Jim Frost 4 Comments

## What is Hypothesis Testing?

Hypothesis testing in statistics uses sample data to infer the properties of a whole population . These tests determine whether a random sample provides sufficient evidence to conclude an effect or relationship exists in the population. Researchers use them to help separate genuine population-level effects from false effects that random chance can create in samples. These methods are also known as significance testing.

For example, researchers are testing a new medication to see if it lowers blood pressure. They compare a group taking the drug to a control group taking a placebo. If their hypothesis test results are statistically significant, the medication’s effect of lowering blood pressure likely exists in the broader population, not just the sample studied.

## Using Hypothesis Tests

A hypothesis test evaluates two mutually exclusive statements about a population to determine which statement the sample data best supports. These two statements are called the null hypothesis and the alternative hypothesis . The following are typical examples:

- Null Hypothesis : The effect does not exist in the population.
- Alternative Hypothesis : The effect does exist in the population.

Hypothesis testing accounts for the inherent uncertainty of using a sample to draw conclusions about a population, which reduces the chances of false discoveries. These procedures determine whether the sample data are sufficiently inconsistent with the null hypothesis that you can reject it. If you can reject the null, your data favor the alternative statement that an effect exists in the population.

Statistical significance in hypothesis testing indicates that an effect you see in sample data also likely exists in the population after accounting for random sampling error , variability, and sample size. Your results are statistically significant when the p-value is less than your significance level or, equivalently, when your confidence interval excludes the null hypothesis value.

Conversely, non-significant results indicate that despite an apparent sample effect, you can’t be sure it exists in the population. It could be chance variation in the sample and not a genuine effect.

Learn more about Failing to Reject the Null .

## 5 Steps of Significance Testing

Hypothesis testing involves five key steps, each critical to validating a research hypothesis using statistical methods:

- Formulate the Hypotheses : Write your research hypotheses as a null hypothesis (H 0 ) and an alternative hypothesis (H A ).
- Data Collection : Gather data specifically aimed at testing the hypothesis.
- Conduct A Test : Use a suitable statistical test to analyze your data.
- Make a Decision : Based on the statistical test results, decide whether to reject the null hypothesis or fail to reject it.
- Report the Results : Summarize and present the outcomes in your report’s results and discussion sections.

While the specifics of these steps can vary depending on the research context and the data type, the fundamental process of hypothesis testing remains consistent across different studies.

Let’s work through these steps in an example!

## Hypothesis Testing Example

Researchers want to determine if a new educational program improves student performance on standardized tests. They randomly assign 30 students to a control group , which follows the standard curriculum, and another 30 students to a treatment group, which participates in the new educational program. After a semester, they compare the test scores of both groups.

Download the CSV data file to perform the hypothesis testing yourself: Hypothesis_Testing .

The researchers write their hypotheses. These statements apply to the population, so they use the mu (μ) symbol for the population mean parameter .

- Null Hypothesis (H 0 ) : The population means of the test scores for the two groups are equal (μ 1 = μ 2 ).
- Alternative Hypothesis (H A ) : The population means of the test scores for the two groups are unequal (μ 1 ≠ μ 2 ).

Choosing the correct hypothesis test depends on attributes such as data type and number of groups. Because they’re using continuous data and comparing two means, the researchers use a 2-sample t-test .

Here are the results.

The treatment group’s mean is 58.70, compared to the control group’s mean of 48.12. The mean difference is 10.67 points. Use the test’s p-value and significance level to determine whether this difference is likely a product of random fluctuation in the sample or a genuine population effect.

Because the p-value (0.000) is less than the standard significance level of 0.05, the results are statistically significant, and we can reject the null hypothesis. The sample data provides sufficient evidence to conclude that the new program’s effect exists in the population.

## Limitations

Hypothesis testing improves your effectiveness in making data-driven decisions. However, it is not 100% accurate because random samples occasionally produce fluky results. Hypothesis tests have two types of errors, both relating to drawing incorrect conclusions.

- Type I error: The test rejects a true null hypothesis—a false positive.
- Type II error: The test fails to reject a false null hypothesis—a false negative.

Learn more about Type I and Type II Errors .

Our exploration of hypothesis testing using a practical example of an educational program reveals its powerful ability to guide decisions based on statistical evidence. Whether you’re a student, researcher, or professional, understanding and applying these procedures can open new doors to discovering insights and making informed decisions. Let this tool empower your analytical endeavors as you navigate through the vast seas of data.

Learn more about the Hypothesis Tests for Various Data Types .

## Share this:

## Reader Interactions

June 10, 2024 at 10:51 am

Thank you, Jim, for another helpful article; timely too since I have started reading your new book on hypothesis testing and, now that we are at the end of the school year, my district is asking me to perform a number of evaluations on instructional programs. This is where my question/concern comes in. You mention that hypothesis testing is all about testing samples. However, I use all the students in my district when I make these comparisons. Since I am using the entire “population” in my evaluations (I don’t select a sample of third grade students, for example, but I use all 700 third graders), am I somehow misusing the tests? Or can I rest assured that my district’s student population is only a sample of the universal population of students?

June 10, 2024 at 1:50 pm

I hope you are finding the book helpful!

Yes, the purpose of hypothesis testing is to infer the properties of a population while accounting for random sampling error.

In your case, it comes down to how you want to use the results. Who do you want the results to apply to?

If you’re summarizing the sample, looking for trends and patterns, or evaluating those students and don’t plan to apply those results to other students, you don’t need hypothesis testing because there is no sampling error. They are the population and you can just use descriptive statistics. In this case, you’d only need to focus on the practical significance of the effect sizes.

On the other hand, if you want to apply the results from this group to other students, you’ll need hypothesis testing. However, there is the complicating issue of what population your sample of students represent. I’m sure your district has its own unique characteristics, demographics, etc. Your district’s students probably don’t adequately represent a universal population. At the very least, you’d need to recognize any special attributes of your district and how they could bias the results when trying to apply them outside the district. Or they might apply to similar districts in your region.

However, I’d imagine your 3rd graders probably adequately represent future classes of 3rd graders in your district. You need to be alert to changing demographics. At least in the short run I’d imagine they’d be representative of future classes.

Think about how these results will be used. Do they just apply to the students you measured? Then you don’t need hypothesis tests. However, if the results are being used to infer things about other students outside of the sample, you’ll need hypothesis testing along with considering how well your students represent the other students and how they differ.

I hope that helps!

June 10, 2024 at 3:21 pm

Thank you so much, Jim, for the suggestions in terms of what I need to think about and consider! You are always so clear in your explanations!!!!

June 10, 2024 at 3:22 pm

You’re very welcome! Best of luck with your evaluations!

## Comments and Questions Cancel reply

## Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

- Knowledge Base

## Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

- State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a or H 1 ).
- Collect data in a way designed to test the hypothesis.
- Perform an appropriate statistical test .
- Decide whether to reject or fail to reject your null hypothesis.
- Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

## Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

- H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

## Here's why students love Scribbr's proofreading services

Discover proofreading & editing

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

- an estimate of the difference in average height between the two groups.
- a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

- Normal distribution
- Descriptive statistics
- Measures of central tendency
- Correlation coefficient

Methodology

- Cluster sampling
- Stratified sampling
- Types of interviews
- Cohort study
- Thematic analysis

Research bias

- Implicit bias
- Cognitive bias
- Survivorship bias
- Availability heuristic
- Nonresponse bias
- Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

## Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved August 21, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

## Is this article helpful?

## Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

## Research Hypothesis In Psychology: Types, & Examples

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

## Some key points about hypotheses:

- A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
- It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
- A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
- Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
- For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
- Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.

Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

## Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

- Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

## Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

## Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

## Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

## Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

## Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.

- Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
- However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

## How to Write a Hypothesis

- Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
- Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
- Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
- Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
- Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

- The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
- The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

## More Examples

- Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
- Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
- Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
- Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
- Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
- Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
- Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
- Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

## A concise guide to reproducible research using secondary data

Chapter 2 formulating a hypothesis.

“There is no single best way to develop a research idea.” ( Pischke 2012 )

## 2.1 How do you develop a research question and formulate a hypothesis?

You decide to undertake a scientific project. Where do you start? First, you need to find a research question that interests you and formulate a hypothesis. We will introduce some key terminology, steps you can take, and examples how to develop research questions. Note that .

What if someone assigns a topic to me? For students attending undergraduate and graduate courses that often pick topics from a list, all of these steps are equally important and necessary. You still need to formulate a research question and a hypothesis. And it is important to clarify the relevance of your topic for yourself.

When thinking about a research question, you need to identify a topic that is:

- Relevant , important in the world and interesting to you as a researcher: Does working on the topic excites you? You will spend many hours thinking about it and working on it. Therefore, it should be interesting and engaging enough for you to motivate your continued work on this topic.
- Specific : not too broad and not too narrow
- Feasible to research within a given time frame: Is it possible to answer the research question based on your time budget, data and additional resources.

How do you find a topic or develop a feasible research idea in the first place? Finding an idea is not difficult, the critical part is to find a good idea. How do you do that? There is no one specific way how one gets an idea, rather there is a myriad of ways how people come up with potential ideas (for example, as stated by Varian ( 2016 ) ).

You can find inspiration by

- Looking at insights from the world around you: your own life and experiences, observe the behavior of people around you
- Talking to people around you, experts, other students, family members
- Talking to individuals outside your field (non-economists)
- Talking to professionals working in the area you are interested in (you may use social media and professional platforms like LinkedIN or Twitter to make contact)
- Reading journal articles from other non-economic social sciences and the medical literature
- What are the issues being discussed?
- How do these issues affect people’s lives?

In addition you could

- Go to virtual and in-person seminars, for example, the Essen Health Economics Seminar
- Look at abstracts of scientific articles and working papers
- Look at the literature in a specific field you are interested in, for example, screening complete issues of journals or editorials about certain research advancements. By reading this literature you might come up with the idea on how to extend and refine previous research.

Once you identified a research question that is of interest to you, you need to define a hypothesis.

## 2.2 What is a hypothesis?

A hypothesis is a statement that introduces your research question and suggests the results you might find. It is an educated guess. You start by posing an economic question and formulate a hypothesis about this question. Then you test it with your data and empirical analysis and either accept or reject the hypothesis. It constitutes the main basis of your scientific investigation and you should be careful when creating it.

## 2.2.1 Develop a hypothesis

Before you formulate your hypothesis, read up on the topic of interest. This should provide you with sufficient information to narrow down your research question. Once you find your question you need to develop a hypothesis, which contains a statement of your expectations regarding your research question’s results. You propose to prove your hypothesis with your research by testing the relationship between two variables of interest. Thus, a hypothesis should be testable with the data at hand. There are two types of hypotheses: alternative or null. Null states that there is no effect. Alternative states that there is an effect.

There is an alternative view on this that suggests one should not look at the literature too early on in the idea-generating process to not be influenced and shaped by someone else’s ideas ( Varian 2016 ) . According to this view you can spend some time (i.e. a few weeks) trying to develop your own original idea. Even if you end up with an idea that has already been pursued by someone else, this will still provide you with good practice in developing publishable ideas. After you have developed an idea and made sure that it was not yet investigated in the literature, you can start conducting a systematic literature review. By doing this, you can find some other interesting insights from the work of others that you can synthesize in your own work to produce something novel and original.

## 2.2.2 Identify relevant literature

For your research project you will need to identify and collect previous relevant literature. It should involve a thorough search of the keywords in relevant databases and journals. Place emphasis on articles from high-ranking journals with significant numbers of citations. This will give you an indication of the most influential and important work in the field. Once you identify and collect the relevant literature for your topic, you will need to critically synthesize it in your literature review.

When you perform your literature review, consider theories that may inform your research question. For example, when studying physician behavior you may consider principal-agent theory.

## 2.2.3 Research question or literature review: the chicken or the egg problem?

Whether you start reading the literature first or by developing an idea may depend on your level (graduate student, early career researcher) and other goals. However, thinking freely about what you like to investigate first may help to critically develop a feasible and interesting research question.

We highlight an example how to start with investigating the real world and subsequently posing a research question ( “How to Write a Strong Hypothesis Steps and Examples ” 2019 ; “Developing Strong Research Questions Criteria and Examples ” 2019 ; Schilbach 2019 ) . For example, based on your observation you notice that people spend extensive amount of time looking at their smartphones. Maybe even you yourself engage in the same behavior. In addition, you read a BBC News article Social media damages teenagers’ mental health, report says .

(#fig:social_media)Social media and mental health

Source: BBC

You decide to translate this article and your observations into a research question : How does social media use affect mental health? Before you formulate your hypothesis, read up on the topic of interest. Read economic, medical and other social science literature on the topic. There is likely to be a vast amount of literature from non-economic fields that are doing research on your topic of interest, for example, psychology or neuroscience. Familiarize yourself with it and master it. Do not get distracted by different scientific methodologies and techniques that might seem not up-to-par to the economic studies (small sample sizes, endogeneity, uncovering association rather than causation, etc.), but rather focus on suggestions of potential mechanisms.

A hypothesis is then your research question distilled into a one sentence statement, which presents your expectations regarding the results. You propose to prove your hypothesis by testing the relationship between two variables of interest with the data at hand. There are two types of hypotheses: alternative or null. The null hypothesis states that there is no effect. The alternative hypothesis states that there is an effect.

A hypothesis related to the above-stated research question could be: The increased use of social media among teenagers leads to (is associated with) worse mental health outcomes, i.e. increased incidence of depression, eating disorders, worse well-being and lower self-esteem. It suggests a direction of a relationship that you expect to find that is guided by your observations and existing evidence. It is testable with scientific research methods by using statistical analysis of the relevant data.

Your hypothesis suggests a relationship between two variables: social media use (your independent variable \(X\) ) and mental health (dependent variable \(Y\) ). It could be framed in terms of correlation (is associated with) or causation (leads to). This should be reflected in the choice of scientific investigation you decide to undertake.

The null hypothesis is: There is no relationship between social media use among teenagers and their mental health .

## 2.3 Resources box

2.3.1 how to develop strong research questions.

- The form of the research process
- Varian, H. R. (2016). How to build an economic model in your spare time. The American Economist, 61(1), 81-90.

## 2.3.2 Identify relevant literature from major general interest and field literature

To identify the relevant literature you can

- use academic search engines such as Google Scholar, Web of Science, EconLit, PubMed.
- search working paper series such as the National Bureau of Economic Research , NetEc or IZA
- search more general resource sites such as Resources for Economists
- go to the library/use library database

## 2.3.3 Assess the quality of a journal article

Several rankings may help to assess the quality of research you consider

- Journals of general interest and by field in economics and management - For German-speaking countries, consider the VWL / BWL Handelsblatt Ranking for economics and management - The German Association of Management Scholars provides an expert-based ranking VHB JourQual 3.0, Teilranking Management im Gesundheitswesen - Web of Science Impact Factors - Scimago
- Health Economics, Health Services and Health Care Managment Research: Health Economics Journals List
- Be aware that like in any other domain there are predatory publishing practices .

Use tools to investigate how a journal article is connected to other works

- Citationgecko
- Connected papers
- scite_ – a tool to get a first impression whether a study is disputed or academic consensus

## 2.3.4 Organize your literature

- Zotero (free of charge)
- Mendeley (free of charge)
- EndNote (potentially free of charge via your university)
- Citavi (potentially free of charge via your university)
- BibTEX if you work with TEX
- Excel spread sheet

## 2.4 Checklist to get started with formulating your hypothesis

- Find an interesting and relevant research topic, if not assigned
- Try to suck up all information you can easily obtain from various sources within and outside academic literature
- Formulate one compelling research question
- Find the best available empirical and theoretical evidence that is related to your research question
- Formulate a hypothesis
- Check whether data are available for analysis
- Challenge your idea with your fellows or senior researchers

## 2.5 Example: Hellerstein ( 1998 )

As an illustration of the research process of formulating a hypothesis, designing a study, running a study, collecting and analyzing the data and, finally, reporting the study, we provide an example by replicating Judith K. Hellerstein’s paper “The Importance of the Physician in the Generic versus Trade-Name Prescription Decision” that was published in 1998 in the RAND Journal of Economics.

Hellerstein’s 1998 paper has impacted discussion about behavioral factors of physician decisions and pharmaceutical markets over two decades. The study received 448 citations on Google Scholar since 1998 by 27/03/2022, including recent mentions in top field journals such as Journal of Public Economics (2021) , Journal of Health Economics (2019) , and Health Economics (2019) .

Figure 2.1: Connected graph of Hellerstein ( 1998 ) , February 2022

Figure 2.1 shows a connected graph of prior and derivative works related to the study.

The work has impacted the literature researching the role of physician behavior and its influence on access, adoption and diffusion of health services, moral hazard and incentives in prescription and treatment decisions and the influence of different payment schemes, and a vast body of literature studying the pharmaceutical market.

The research that has been influenced by Hellerstein includes evidence on:

- generic drug entries and market efficiency
- the effectiveness of pharmaceutical promotion
- the effectiveness of price regulations
- the role of patents and dynamics of market segmentation

At the end of each chapter, we demonstrate insights into this study that we replicate.

## 2.5.1 Context of the study - escalating health expenditures

In the United States, the total prescription drug expenditure in 2020 marked about 358.7 billion US Dollars ( Statista n.d. ) . The prescription of generic drugs in comparison to more expensive brand-name versions is an option in reducing the total health care expenditure. Generic drugs are bioequivalent in the active ingredients and can serve as a channel to contain prescription expenditure ( Kesselheim 2008 ) as generic drugs are between 20 and 90% cheaper than their trade-name alternatives ( Dunne et al. 2013 ) .

## 2.5.2 Research question - How does a patient’s insurance status influence the physician’s choice between generic compared to brand-name drugs?

Physicians are faced with a multitude of medication options, including the choice between generic and trade-name drugs. Physicians ideally act as agents for their patients to identify the best available treatment option based on their needs. Choosing the best treatment entails cost of coordination and cognition. The prescription of generic drugs may serve as an example to what extent physicians customize treatments according to patients’ needs with regards to cost. From an economic point of view we may expect that once a generic drug is available, a perfectly rational agent (i.e. physician) would prescribe a generic drug instead of the trade-name version if therapeutically identical ( Dranove 1989 ) . This leads to the following research question: “Do physicians vary their prescription decisions on a patient-by-patient basis or do they systematically prescribe the same version, trade-name or generic, to all patients?” .

The 1998 Hellerstein’s study examines two hypotheses:

- The physician prescribing choice influences the selection of a generic over a brand-name drug
- The patient’s insurance status influences the physician’s choice between generic and brand-name drugs.

For the purpose of this example and in the replication exercise we focus on the second aspect.

## 2.5.3 Hypothesis

The paper formulates the following hypothesis:

Physicians are more likely to prescribe generics to patients who do not have insurance coverage for prescription pharmaceuticals (moral hazard in insurance)

Hellerstein ( 1998 ) discusses that, based on insurance status, some patients may demand certain care more than others. If, for example, the prescription drug is reimbursed by the patient’s health insurance, this may cause overconsumption. This behavior can potentially differ by the patient’s insurance scheme. A patient that has no insurance and, thus, does not get any reimbursement for prescription drugs, might have a higher incentive to demand cheaper generic drugs ( Danzon and Furukawa 2011 ) than a patient with insurance that covers prescription drugs, either generic or trade-name. Given that the United States have different insurance schemes with varying prescription drug coverage, it is of interest to investigate the role of a patient’s insurance status in the physician’s choice between generic compared to brand-name drugs.

Hellerstein ( 1998 ) considers a patient’s insurance status as a matter of dividing the study population in groups for which the choice between generic and brand-name drugs differs. She suggests that There is a relationship between the prescription of a generic drug and insurance status of a patient. ( Hellerstein 1998 ) .

Providing answers to a research question requires formulating and testing a hypothesis. Based on logic, theory or previous research, a hypothesis proposes an expected relationship within the given data. According to her research question, Hellerstein hypothesizes that: Physicians are more likely to prescribe generics to patients who do not have insurance coverage for prescription pharmaceuticals.

Specifically, she writes “if there is moral hazard in insurance when it comes to physician prescription behavior, there will be differences in the propensity of physicians to prescribe low-cost generic drugs, and these differences will be (partially) a function of the insurance held by the patient. In particular, if moral hazard exists, patients with extensive insurance coverage for prescription drugs (like those on Medicaid in 1989) should receive prescriptions written for generic drugs less frequently than patients with no prescription drug coverage.” ( Hellerstein 1998, 113 )

Based on Hellerstein’s considerations, we expect the effect of the insurance status on whether a patient receives a generic to be different from zero. To obtain a testable null hypothesis, we reformulate this relationship so that we reject the hypothesis if our expectations are correct. This means, if we expect to see an effect of insurance on prescriptions of generics, our null hypothesis is that insurance status has no effect on the outcome (prescription of generic drugs). No moral hazard arises from having obtained insurance.

- Customer Reviews
- Extended Essays
- IB Internal Assessment
- Theory of Knowledge
- Literature Review
- Dissertations
- Essay Writing
- Research Writing
- Assignment Help
- Capstone Projects
- College Application
- Online Class

## 15 Examples of Hypothesis to Inform Your Research Project

by Antony W

August 5, 2024

What first comes to your mind when someone mentions the word hypothesis? For many students, terms such as prediction, dependent variables, and independent variables come to mind.

Primarily, a hypothesis is a statement derived from a research question, subject to debate, and can be proven or disapproved based on scientific research methods such as objective observations, lab experiments, and statistical analysis.

A hypothesis predicts an outcome based on evidence, knowledge, or theories and it forms the initial point of an investigation.

You already know how to write a hypothesis .

You also know about hypothesis vs research question .

If you haven’t looked at the two in detail, we suggest that you look at the two posts for more insights.

In this lesson, we’ll look at some examples of hypothesis to help you understand how you can formulate your own.

Let’s get started.

## Can You Prove a Hypothesis?

Credit: CrazyEgg

Since a hypothesis is an assumption of an expected result from a scientific experiment, you can’t prove it to be correct.

You can only reject or support it depending on the results that you get from the experiment.

It’s important to avoid references that try to prove a theory with 100% certainty when formulating a hypothesis because there may exist solid evidence that refutes the theory.

## What’s the Purpose of a Hypothesis?

Credit: PublicHealthNotes

A hypothesis describes a research study in correct terms and provides a basis that you can use to evaluate and prove the validity or invalidity of a specific research.

Because hypothesis helps to analyze the scientific validity of research methodologies, researchers can assume an almost accurate probability of the progress of failure of a research.

Moreover, it’s only by formulating a hypothesis that a researcher can easily establish a relationship between a theory and a research question.

## Example of Hypothesis

Credit: Study.com

To make things easier for you, we’ll give you examples for each type of hypothesis. So whether you’re struggling to formulate a concrete hypothesis or you need some ideas to add to your checklist, this guide is for you.

## 1. Simple Hypothesis

The hypothesis predicts the outcome between an independent (cause) and a dependent variable (effect).

- Getting 6 to 8 hours of sleep can improve a student’s alertness in class
- Excessive consumption of alcohol can cause liver disease
- Smoking cigarette can cause lung cancer
- Drinking a lot of sugary beverages can cause obesity

## 2. Complex Hypothesis

A complex hypothesis gives a relationship between two or more independent and dependent variables.

- Obese persons who continue to eat oily foods are likely to accumulate high cholesterol and develop heart complications
- Individuals who live in cities and smoke have a higher chance of developing respiratory disease and suffer from cancer
- Overweight adults who want to live long are more likely to lose weight

## 3. Directional Hypothesis

This kind of a hypothesis gives a researcher or student the direction he or she should follow to determine the relationship between a dependent and an independent variable.

- Boys perform better than girls in school
- The prediction that health decreases as stress decreases

## 4. Non-directional Hypothesis

It’s the opposite of a directional hypothesis, which means it doesn’t show the nature of the relationship between dependent and independent variables.

- The likelihood that there will be a difference between the performance of boys and girls

## 5. Associative and Causal Hypothesis

An associative and causal hypothesis uses statistical information to analyze a sample population from a specific area.

- 13% of the US population are poor
- The current rate of divorce in the US stands at the rate of 80% because of irreconcilable differences
- Nearly 40% of the Savannah population lives past the age of 60

## 6. Null Hypothesis

A null hypothesis exists where there’s no relationship between two variable. A researcher can also formulate a null hypothesis if they don’t have the information to state a scientific hypothesis.

- There is no significant change in an individual’s work habit if they get more than 6 hours of sleep
- There’s no significant change in health status if you drink root beer
- Age doesn’t have an effect on someone’s ability to write Math assignments

## 7. Alternative Hypothesis

Researchers use an alternative hypothesis (H1) to try to disprove the null hypothesis (H0). In other words, they try to come up with a reasonable alternative that they can use in the place of th null hypothesis.

- Your health can increase if you drink green tea instead of root beer
- Your work habits can improve if you get six hours of sleep instead of nine
- You can improve the growth of plant if you use water rich in vitamins instead of distilled water

## Null Hypothesis vs Alternative Hypothesis

The table below shows the difference between a null hypothesis and an alternate hypothesis.

## 8. Logical Hypothesis

A logical hypothesis is a proposed assumption or explanation with limited evidence.

- Creatures that live in the bottom of an ocean use aerobic respiration instead of anaerobic respiration
- Cactus experience successful growth rates than tulips on planet Mars

## 9. Empirical Hypothesis

By putting a theory to the test, and changing around independent variable, and using observations and experiments, a researcher comes up with an empirical hypothesis also known as a working hypothesis. An empirical hypothesis ceases to be just an idea, assumption or notion.

- A woman to takes vitamin E grows her hair faster than a woman who takes vitamin K

Note that until you’re able to test a theory for an extended period, the evidence for any claim can only remain logical.

About the author

Antony W is a professional writer and coach at Help for Assessment. He spends countless hours every day researching and writing great content filled with expert advice on how to write engaging essays, research papers, and assignments.

## Tutorial Playlist

Statistics tutorial, everything you need to know about the probability density function in statistics, the best guide to understand central limit theorem, an in-depth guide to measures of central tendency : mean, median and mode, the ultimate guide to understand conditional probability.

A Comprehensive Look at Percentile in Statistics

## The Best Guide to Understand Bayes Theorem

Everything you need to know about the normal distribution, an in-depth explanation of cumulative distribution function, a complete guide to chi-square test, what is hypothesis testing in statistics types and examples, understanding the fundamentals of arithmetic and geometric progression, the definitive guide to understand spearman’s rank correlation, mean squared error: overview, examples, concepts and more, all you need to know about the empirical rule in statistics, the complete guide to skewness and kurtosis, a holistic look at bernoulli distribution.

All You Need to Know About Bias in Statistics

## A Complete Guide to Get a Grasp of Time Series Analysis

The Key Differences Between Z-Test Vs. T-Test

## The Complete Guide to Understand Pearson's Correlation

A complete guide on the types of statistical studies, everything you need to know about poisson distribution, your best guide to understand correlation vs. regression, the most comprehensive guide for beginners on what is correlation, hypothesis testing in statistics - types | examples.

Lesson 10 of 24 By Avijeet Biswal

## Table of Contents

In today’s data-driven world, decisions are based on data all the time. Hypothesis plays a crucial role in that process, whether it may be making business decisions, in the health sector, academia, or in quality improvement. Without hypothesis & hypothesis tests, you risk drawing the wrong conclusions and making bad decisions. In this tutorial, you will look at Hypothesis Testing in Statistics.

## The Ultimate Ticket to Top Data Science Job Roles

## What Is Hypothesis Testing in Statistics?

Hypothesis Testing is a type of statistical analysis in which you put your assumptions about a population parameter to the test. It is used to estimate the relationship between 2 statistical variables.

Let's discuss few examples of statistical hypothesis from real-life -

- A teacher assumes that 60% of his college's students come from lower-middle-class families.
- A doctor believes that 3D (Diet, Dose, and Discipline) is 90% effective for diabetic patients.

Now that you know about hypothesis testing, look at the two types of hypothesis testing in statistics.

## Hypothesis Testing Formula

Z = ( x̅ – μ0 ) / (σ /√n)

- Here, x̅ is the sample mean,
- μ0 is the population mean,
- σ is the standard deviation,
- n is the sample size.

## How Hypothesis Testing Works?

An analyst performs hypothesis testing on a statistical sample to present evidence of the plausibility of the null hypothesis. Measurements and analyses are conducted on a random sample of the population to test a theory. Analysts use a random population sample to test two hypotheses: the null and alternative hypotheses.

The null hypothesis is typically an equality hypothesis between population parameters; for example, a null hypothesis may claim that the population means return equals zero. The alternate hypothesis is essentially the inverse of the null hypothesis (e.g., the population means the return is not equal to zero). As a result, they are mutually exclusive, and only one can be correct. One of the two possibilities, however, will always be correct.

## Your Dream Career is Just Around The Corner!

## Null Hypothesis and Alternative Hypothesis

The Null Hypothesis is the assumption that the event will not occur. A null hypothesis has no bearing on the study's outcome unless it is rejected.

H0 is the symbol for it, and it is pronounced H-naught.

The Alternate Hypothesis is the logical opposite of the null hypothesis. The acceptance of the alternative hypothesis follows the rejection of the null hypothesis. H1 is the symbol for it.

Let's understand this with an example.

A sanitizer manufacturer claims that its product kills 95 percent of germs on average.

To put this company's claim to the test, create a null and alternate hypothesis.

H0 (Null Hypothesis): Average = 95%.

Alternative Hypothesis (H1): The average is less than 95%.

Another straightforward example to understand this concept is determining whether or not a coin is fair and balanced. The null hypothesis states that the probability of a show of heads is equal to the likelihood of a show of tails. In contrast, the alternate theory states that the probability of a show of heads and tails would be very different.

## Become a Data Scientist with Hands-on Training!

## Hypothesis Testing Calculation With Examples

Let's consider a hypothesis test for the average height of women in the United States. Suppose our null hypothesis is that the average height is 5'4". We gather a sample of 100 women and determine that their average height is 5'5". The standard deviation of population is 2.

To calculate the z-score, we would use the following formula:

z = ( x̅ – μ0 ) / (σ /√n)

z = (5'5" - 5'4") / (2" / √100)

z = 0.5 / (0.045)

We will reject the null hypothesis as the z-score of 11.11 is very large and conclude that there is evidence to suggest that the average height of women in the US is greater than 5'4".

## Steps in Hypothesis Testing

Hypothesis testing is a statistical method to determine if there is enough evidence in a sample of data to infer that a certain condition is true for the entire population. Here’s a breakdown of the typical steps involved in hypothesis testing:

## Formulate Hypotheses

- Null Hypothesis (H0): This hypothesis states that there is no effect or difference, and it is the hypothesis you attempt to reject with your test.
- Alternative Hypothesis (H1 or Ha): This hypothesis is what you might believe to be true or hope to prove true. It is usually considered the opposite of the null hypothesis.

## Choose the Significance Level (α)

The significance level, often denoted by alpha (α), is the probability of rejecting the null hypothesis when it is true. Common choices for α are 0.05 (5%), 0.01 (1%), and 0.10 (10%).

## Select the Appropriate Test

Choose a statistical test based on the type of data and the hypothesis. Common tests include t-tests, chi-square tests, ANOVA, and regression analysis. The selection depends on data type, distribution, sample size, and whether the hypothesis is one-tailed or two-tailed.

## Collect Data

Gather the data that will be analyzed in the test. This data should be representative of the population to infer conclusions accurately.

## Calculate the Test Statistic

Based on the collected data and the chosen test, calculate a test statistic that reflects how much the observed data deviates from the null hypothesis.

## Determine the p-value

The p-value is the probability of observing test results at least as extreme as the results observed, assuming the null hypothesis is correct. It helps determine the strength of the evidence against the null hypothesis.

## Make a Decision

Compare the p-value to the chosen significance level:

- If the p-value ≤ α: Reject the null hypothesis, suggesting sufficient evidence in the data supports the alternative hypothesis.
- If the p-value > α: Do not reject the null hypothesis, suggesting insufficient evidence to support the alternative hypothesis.

## Report the Results

Present the findings from the hypothesis test, including the test statistic, p-value, and the conclusion about the hypotheses.

## Perform Post-hoc Analysis (if necessary)

Depending on the results and the study design, further analysis may be needed to explore the data more deeply or to address multiple comparisons if several hypotheses were tested simultaneously.

## Types of Hypothesis Testing

To determine whether a discovery or relationship is statistically significant, hypothesis testing uses a z-test. It usually checks to see if two means are the same (the null hypothesis). Only when the population standard deviation is known and the sample size is 30 data points or more, can a z-test be applied.

A statistical test called a t-test is employed to compare the means of two groups. To determine whether two groups differ or if a procedure or treatment affects the population of interest, it is frequently used in hypothesis testing.

## Chi-Square

You utilize a Chi-square test for hypothesis testing concerning whether your data is as predicted. To determine if the expected and observed results are well-fitted, the Chi-square test analyzes the differences between categorical variables from a random sample. The test's fundamental premise is that the observed values in your data should be compared to the predicted values that would be present if the null hypothesis were true.

## Hypothesis Testing and Confidence Intervals

Both confidence intervals and hypothesis tests are inferential techniques that depend on approximating the sample distribution. Data from a sample is used to estimate a population parameter using confidence intervals. Data from a sample is used in hypothesis testing to examine a given hypothesis. We must have a postulated parameter to conduct hypothesis testing.

Bootstrap distributions and randomization distributions are created using comparable simulation techniques. The observed sample statistic is the focal point of a bootstrap distribution, whereas the null hypothesis value is the focal point of a randomization distribution.

A variety of feasible population parameter estimates are included in confidence ranges. In this lesson, we created just two-tailed confidence intervals. There is a direct connection between these two-tail confidence intervals and these two-tail hypothesis tests. The results of a two-tailed hypothesis test and two-tailed confidence intervals typically provide the same results. In other words, a hypothesis test at the 0.05 level will virtually always fail to reject the null hypothesis if the 95% confidence interval contains the predicted value. A hypothesis test at the 0.05 level will nearly certainly reject the null hypothesis if the 95% confidence interval does not include the hypothesized parameter.

Become a Data Scientist through hands-on learning with hackathons, masterclasses, webinars, and Ask-Me-Anything! Start learning now!

## Simple and Composite Hypothesis Testing

Depending on the population distribution, you can classify the statistical hypothesis into two types.

Simple Hypothesis: A simple hypothesis specifies an exact value for the parameter.

Composite Hypothesis: A composite hypothesis specifies a range of values.

A company is claiming that their average sales for this quarter are 1000 units. This is an example of a simple hypothesis.

Suppose the company claims that the sales are in the range of 900 to 1000 units. Then this is a case of a composite hypothesis.

## One-Tailed and Two-Tailed Hypothesis Testing

The One-Tailed test, also called a directional test, considers a critical region of data that would result in the null hypothesis being rejected if the test sample falls into it, inevitably meaning the acceptance of the alternate hypothesis.

In a one-tailed test, the critical distribution area is one-sided, meaning the test sample is either greater or lesser than a specific value.

In two tails, the test sample is checked to be greater or less than a range of values in a Two-Tailed test, implying that the critical distribution area is two-sided.

If the sample falls within this range, the alternate hypothesis will be accepted, and the null hypothesis will be rejected.

## Become a Data Scientist With Real-World Experience

## Right Tailed Hypothesis Testing

If the larger than (>) sign appears in your hypothesis statement, you are using a right-tailed test, also known as an upper test. Or, to put it another way, the disparity is to the right. For instance, you can contrast the battery life before and after a change in production. Your hypothesis statements can be the following if you want to know if the battery life is longer than the original (let's say 90 hours):

- The null hypothesis is (H0 <= 90) or less change.
- A possibility is that battery life has risen (H1) > 90.

The crucial point in this situation is that the alternate hypothesis (H1), not the null hypothesis, decides whether you get a right-tailed test.

## Left Tailed Hypothesis Testing

Alternative hypotheses that assert the true value of a parameter is lower than the null hypothesis are tested with a left-tailed test; they are indicated by the asterisk "<".

Suppose H0: mean = 50 and H1: mean not equal to 50

According to the H1, the mean can be greater than or less than 50. This is an example of a Two-tailed test.

In a similar manner, if H0: mean >=50, then H1: mean <50

Here the mean is less than 50. It is called a One-tailed test.

## Type 1 and Type 2 Error

A hypothesis test can result in two types of errors.

Type 1 Error: A Type-I error occurs when sample results reject the null hypothesis despite being true.

Type 2 Error: A Type-II error occurs when the null hypothesis is not rejected when it is false, unlike a Type-I error.

Suppose a teacher evaluates the examination paper to decide whether a student passes or fails.

H0: Student has passed

H1: Student has failed

Type I error will be the teacher failing the student [rejects H0] although the student scored the passing marks [H0 was true].

Type II error will be the case where the teacher passes the student [do not reject H0] although the student did not score the passing marks [H1 is true].

Our Data Scientist Master's Program covers core topics such as R, Python, Machine Learning, Tableau, Hadoop, and Spark. Get started on your journey today!

## Limitations of Hypothesis Testing

Hypothesis testing has some limitations that researchers should be aware of:

- It cannot prove or establish the truth: Hypothesis testing provides evidence to support or reject a hypothesis, but it cannot confirm the absolute truth of the research question.
- Results are sample-specific: Hypothesis testing is based on analyzing a sample from a population, and the conclusions drawn are specific to that particular sample.
- Possible errors: During hypothesis testing, there is a chance of committing type I error (rejecting a true null hypothesis) or type II error (failing to reject a false null hypothesis).
- Assumptions and requirements: Different tests have specific assumptions and requirements that must be met to accurately interpret results.

## Learn All The Tricks Of The BI Trade

After reading this tutorial, you would have a much better understanding of hypothesis testing, one of the most important concepts in the field of Data Science . The majority of hypotheses are based on speculation about observed behavior, natural phenomena, or established theories.

If you are interested in statistics of data science and skills needed for such a career, you ought to explore the Post Graduate Program in Data Science.

If you have any questions regarding this ‘Hypothesis Testing In Statistics’ tutorial, do share them in the comment section. Our subject matter expert will respond to your queries. Happy learning!

## 1. What is hypothesis testing in statistics with example?

Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence. An example: testing if a new drug improves patient recovery (Ha) compared to the standard treatment (H0) based on collected patient data.

## 2. What is H0 and H1 in statistics?

In statistics, H0 and H1 represent the null and alternative hypotheses. The null hypothesis, H0, is the default assumption that no effect or difference exists between groups or conditions. The alternative hypothesis, H1, is the competing claim suggesting an effect or a difference. Statistical tests determine whether to reject the null hypothesis in favor of the alternative hypothesis based on the data.

## 3. What is a simple hypothesis with an example?

A simple hypothesis is a specific statement predicting a single relationship between two variables. It posits a direct and uncomplicated outcome. For example, a simple hypothesis might state, "Increased sunlight exposure increases the growth rate of sunflowers." Here, the hypothesis suggests a direct relationship between the amount of sunlight (independent variable) and the growth rate of sunflowers (dependent variable), with no additional variables considered.

## 4. What are the 3 major types of hypothesis?

The three major types of hypotheses are:

- Null Hypothesis (H0): Represents the default assumption, stating that there is no significant effect or relationship in the data.
- Alternative Hypothesis (Ha): Contradicts the null hypothesis and proposes a specific effect or relationship that researchers want to investigate.
- Nondirectional Hypothesis: An alternative hypothesis that doesn't specify the direction of the effect, leaving it open for both positive and negative possibilities.

## Find our PL-300 Microsoft Power BI Certification Training Online Classroom training classes in top cities:

Name | Date | Place | |
---|---|---|---|

7 Sep -22 Sep 2024, Weekend batch | Your City | ||

21 Sep -6 Oct 2024, Weekend batch | Your City | ||

12 Oct -27 Oct 2024, Weekend batch | Your City |

## About the Author

Avijeet is a Senior Research Analyst at Simplilearn. Passionate about Data Analytics, Machine Learning, and Deep Learning, Avijeet is also interested in politics, cricket, and football.

## Recommended Resources

Free eBook: Top Programming Languages For A Data Scientist

Normality Test in Minitab: Minitab with Statistics

Machine Learning Career Guide: A Playbook to Becoming a Machine Learning Engineer

- PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

## IMAGES

## COMMENTS

6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.

This is a normal part of the research process. Revise and refine: review your hypothesis to ensure it is logical, coherent, and aligned with the research question and objectives. Revise as needed to improve clarity and specificity. Seek feedback from peers or mentors to refine your hypothesis further.

5 Logical hypothesis. A logical hypothesis suggests a relationship between variables without actual evidence. Claims are instead based on reasoning or deduction, but lack actual data. Examples: An alien raised on Venus would have trouble breathing in Earth's atmosphere. Dinosaurs with sharp, pointed teeth were probably carnivores. 6 Empirical ...

Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

Simple Hypothesis Examples. Increasing the amount of natural light in a classroom will improve students' test scores. Drinking at least eight glasses of water a day reduces the frequency of headaches in adults. Plant growth is faster when the plant is exposed to music for at least one hour per day.

A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence. Write the Null Hypothesis. The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing.

3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

The first step in formulating a hypothesis is to identify your research question. This involves observing the subject matter and recognizing patterns or relationships between variables. Crafting a clear, testable, and grounded hypothesis is essential for research success. By pinpointing the exact question you aim to answer, you lay the ...

Make the hypothesis comprehensible to non-experts in the field. Examples: "Organic fertilizer will reduce plant growth." "High schoolers will feel less anxious after a social media detox." "Targeted ads will increase customer engagement." Tip 7: Formulate a Null Hypothesis. A null hypothesis assumes no relationship between variables.

Use simple language: While your hypothesis should be conceptually sound, it doesn't have to be complicated. Aim for clarity and simplicity in your wording. State direction, if applicable: If your hypothesis involves a directional outcome (e.g., "increase" or "decrease"), make sure to specify this.

Another example for a directional one-tailed alternative hypothesis would be that. H1: Attending private classes before important exams has a positive effect on performance. Your null hypothesis would then be that. H0: Attending private classes before important exams has no/a negative effect on performance.

It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

Step 8: Test your Hypothesis. Design an experiment or conduct observations to test your hypothesis. Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure.

Formulate the Hypotheses: Write your research hypotheses as a null hypothesis (H 0) and an alternative hypothesis (H A).; Data Collection: Gather data specifically aimed at testing the hypothesis.; Conduct A Test: Use a suitable statistical test to analyze your data.; Make a Decision: Based on the statistical test results, decide whether to reject the null hypothesis or fail to reject it.

Hypothesis testing example. You want to test whether there is a relationship between gender and height. Based on your knowledge of human physiology, you formulate a hypothesis that men are, on average, taller than women. To test this hypothesis, you restate it as: H 0: Men are, on average, not taller than women. H a: Men are, on average, taller ...

Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

A hypothesis is a statement that introduces your research question and suggests the results you might find. It is an educated guess. You start by posing an economic question and formulate a hypothesis about this question. Then you test it with your data and empirical analysis and either accept or reject the hypothesis.

Steps for Formulating a Hypothesis for an Experiment. Step 1: State the question your experiment is looking to answer. Step 2: Identify your independent and dependant variables. Step 3: Write an ...

3. Directional Hypothesis. This kind of a hypothesis gives a researcher or student the direction he or she should follow to determine the relationship between a dependent and an independent variable. Examples: Boys perform better than girls in school; The prediction that health decreases as stress decreases; 4. Non-directional Hypothesis

To formulate a hypothesis, a researcher must consider the requirements of a strong hypothesis: Make a prediction based on previous observations or research. Define objective independent and ...

Here's a breakdown of the typical steps involved in hypothesis testing: Formulate Hypotheses. Null Hypothesis (H0): This hypothesis states that there is no effect or difference, and it is the hypothesis you attempt to reject with your test. Alternative Hypothesis (H1 or Ha): This hypothesis is what you might believe to be true or hope to ...

Part 1 - Write a Hypothesis Template Instructions: Select one problem statement and create three versions of hypotheses statements for this problem. Document the problem statement above the chart and complete each row and column as directed in the assignment. Then, write a 250-word summary based on the prompt at the bottom of this document.