• Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical Literature
  • Classical Reception
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Archaeology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Emotions
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Variation
  • Language Families
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Lexicography
  • Linguistic Theories
  • Linguistic Typology
  • Linguistic Anthropology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Modernism)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Culture
  • Music and Religion
  • Music and Media
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Society
  • Law and Politics
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Oncology
  • Medical Toxicology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Medical Ethics
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Games
  • Computer Security
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Neuroscience
  • Cognitive Psychology
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business History
  • Business Strategy
  • Business Ethics
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Methodology
  • Economic Systems
  • Economic History
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Theory
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Thinking and Reasoning

  • < Previous chapter
  • Next chapter >

21 Problem Solving

Miriam Bassok, Department of Psychology, University of Washington, Seattle, WA

Laura R. Novick, Department of Psychology and Human Development, Vanderbilt University, Nashville, TN

  • Published: 21 November 2012
  • Cite Icon Cite
  • Permissions Icon Permissions

This chapter follows the historical development of research on problem solving. It begins with a description of two research traditions that addressed different aspects of the problem-solving process: ( 1 ) research on problem representation (the Gestalt legacy) that examined how people understand the problem at hand, and ( 2 ) research on search in a problem space (the legacy of Newell and Simon) that examined how people generate the problem's solution. It then describes some developments in the field that fueled the integration of these two lines of research: work on problem isomorphs, on expertise in specific knowledge domains (e.g., chess, mathematics), and on insight solutions. Next, it presents examples of recent work on problem solving in science and mathematics that highlight the impact of visual perception and background knowledge on how people represent problems and search for problem solutions. The final section considers possible directions for future research.

People are confronted with problems on a daily basis, be it trying to extract a broken light bulb from a socket, finding a detour when the regular route is blocked, fixing dinner for unexpected guests, dealing with a medical emergency, or deciding what house to buy. Obviously, the problems people encounter differ in many ways, and their solutions require different types of knowledge and skills. Yet we have a sense that all the situations we classify as problems share a common core. Karl Duncker defined this core as follows: “A problem arises when a living creature has a goal but does not know how this goal is to be reached. Whenever one cannot go from the given situation to the desired situation simply by action [i.e., by the performance of obvious operations], then there has to be recourse to thinking” (Duncker, 1945 , p. 1). Consider the broken light bulb. The obvious operation—holding the glass part of the bulb with one's fingers while unscrewing the base from the socket—is prevented by the fact that the glass is broken. Thus, there must be “recourse to thinking” about possible ways to solve the problem. For example, one might try mounting half a potato on the broken bulb (we do not know the source of this creative solution, which is described on many “how to” Web sites).

The above definition and examples make it clear that what constitutes a problem for one person may not be a problem for another person, or for that same person at another point in time. For example, the second time one has to remove a broken light bulb from a socket, the solution likely can be retrieved from memory; there is no problem. Similarly, tying shoes may be considered a problem for 5-year-olds but not for readers of this chapter. And, of course, people may change their goal and either no longer have a problem (e.g., take the guests to a restaurant instead of fixing dinner) or attempt to solve a different problem (e.g., decide what restaurant to go to). Given the highly subjective nature of what constitutes a problem, researchers who study problem solving have often presented people with novel problems that they should be capable of solving and attempted to find regularities in the resulting problem-solving behavior. Despite the variety of possible problem situations, researchers have identified important regularities in the thinking processes by which people (a) represent , or understand, problem situations and (b) search for possible ways to get to their goal.

A problem representation is a model constructed by the solver that summarizes his or her understanding of the problem components—the initial state (e.g., a broken light bulb in a socket), the goal state (the light bulb extracted), and the set of possible operators one may apply to get from the initial state to the goal state (e.g., use pliers). According to Reitman ( 1965 ), problem components differ in the extent to which they are well defined . Some components leave little room for interpretation (e.g., the initial state in the broken light bulb example is relatively well defined), whereas other components may be ill defined and have to be defined by the solver (e.g., the possible actions one may take to extract the broken bulb). The solver's representation of the problem guides the search for a possible solution (e.g., possible attempts at extracting the light bulb). This search may, in turn, change the representation of the problem (e.g., finding that the goal cannot be achieved using pliers) and lead to a new search. Such a recursive process of representation and search continues until the problem is solved or until the solver decides to abort the goal.

Duncker ( 1945 , pp. 28–37) documented the interplay between representation and search based on his careful analysis of one person's solution to the “Radiation Problem” (later to be used extensively in research analogy, see Holyoak, Chapter 13 ). This problem requires using some rays to destroy a patient's stomach tumor without harming the patient. At sufficiently high intensity, the rays will destroy the tumor. However, at that intensity, they will also destroy the healthy tissue surrounding the tumor. At lower intensity, the rays will not harm the healthy tissue, but they also will not destroy the tumor. Duncker's analysis revealed that the solver's solution attempts were guided by three distinct problem representations. He depicted these solution attempts as an inverted search tree in which the three main branches correspond to the three general problem representations (Duncker, 1945 , p. 32). We reproduce this diagram in Figure 21.1 . The desired solution appears on the rightmost branch of the tree, within the general problem representation in which the solver aims to “lower the intensity of the rays on their way through healthy tissue.” The actual solution is to project multiple low-intensity rays at the tumor from several points around the patient “by use of lens.” The low-intensity rays will converge on the tumor, where their individual intensities will sum to a level sufficient to destroy the tumor.

A search-tree representation of one subject's solution to the radiation problem, reproduced from Duncker ( 1945 , p. 32).

Although there are inherent interactions between representation and search, some researchers focus their efforts on understanding the factors that affect how solvers represent problems, whereas others look for regularities in how they search for a solution within a particular representation. Based on their main focus of interest, researchers devise or select problems with solutions that mainly require either constructing a particular representation or finding the appropriate sequence of steps leading from the initial state to the goal state. In most cases, researchers who are interested in problem representation select problems in which one or more of the components are ill defined, whereas those who are interested in search select problems in which the components are well defined. The following examples illustrate, respectively, these two problem types.

The Bird-and-Trains problem (Posner, 1973 , pp. 150–151) is a mathematical word problem that tends to elicit two distinct problem representations (see Fig. 21.2a and b ):

Two train stations are 50 miles apart. At 2 p.m. one Saturday afternoon two trains start toward each other, one from each station. Just as the trains pull out of the stations, a bird springs into the air in front of the first train and flies ahead to the front of the second train. When the bird reaches the second train, it turns back and flies toward the first train. The bird continues to do this until the trains meet. If both trains travel at the rate of 25 miles per hour and the bird flies at 100 miles per hour, how many miles will the bird have flown before the trains meet? Fig. 21.2 Open in new tab Download slide Alternative representations of Posner's ( 1973 ) trains-and-bird problem. Adapted from Novick and Hmelo ( 1994 ).

Some solvers focus on the back-and-forth path of the bird (Fig. 21.2a ). This representation yields a problem that would be difficult for most people to solve (e.g., a series of differential equations). Other solvers focus on the paths of the trains (Fig. 21.2b ), a representation that yields a relatively easy distance-rate-time problem.

The Tower of Hanoi problem falls on the other end of the representation-search continuum. It leaves little room for differences in problem representations, and the primary work is to discover a solution path (or the best solution path) from the initial state to the goal state .

There are three pegs mounted on a base. On the leftmost peg, there are three disks of differing sizes. The disks are arranged in order of size with the largest disk on the bottom and the smallest disk on the top. The disks may be moved one at a time, but only the top disk on a peg may be moved, and at no time may a larger disk be placed on a smaller disk. The goal is to move the three-disk tower from the leftmost peg to the rightmost peg.

Figure 21.3 shows all the possible legal arrangements of disks on pegs. The arrows indicate transitions between states that result from moving a single disk, with the thicker gray arrows indicating the shortest path that connects the initial state to the goal state.

The division of labor between research on representation versus search has distinct historical antecedents and research traditions. In the next two sections, we review the main findings from these two historical traditions. Then, we describe some developments in the field that fueled the integration of these lines of research—work on problem isomorphs, on expertise in specific knowledge domains (e.g., chess, mathematics), and on insight solutions. In the fifth section, we present some examples of recent work on problem solving in science and mathematics. This work highlights the role of visual perception and background knowledge in the way people represent problems and search for problem solutions. In the final section, we consider possible directions for future research.

Our review is by no means an exhaustive one. It follows the historical development of the field and highlights findings that pertain to a wide variety of problems. Research pertaining to specific types of problems (e.g., medical problems), specific processes that are involved in problem solving (e.g., analogical inferences), and developmental changes in problem solving due to learning and maturation may be found elsewhere in this volume (e.g., Holyoak, Chapter 13 ; Smith & Ward, Chapter 23 ; van Steenburgh et al., Chapter 24 ; Simonton, Chapter 25 ; Opfer & Siegler, Chapter 30 ; Hegarty & Stull, Chapter 31 ; Dunbar & Klahr, Chapter 35 ; Patel et al., Chapter 37 ; Lowenstein, Chapter 38 ; Koedinger & Roll, Chapter 40 ).

All possible problem states for the three-disk Tower of Hanoi problem. The thicker gray arrows show the optimum solution path connecting the initial state (State #1) to the goal state (State #27).

Problem Representation: The Gestalt Legacy

Research on problem representation has its origins in Gestalt psychology, an influential approach in European psychology during the first half of the 20th century. (Behaviorism was the dominant perspective in American psychology at this time.) Karl Duncker published a book on the topic in his native German in 1935, which was translated into English and published 10 years later as the monograph On Problem-Solving (Duncker, 1945 ). Max Wertheimer also published a book on the topic in 1945, titled Productive Thinking . An enlarged edition published posthumously includes previously unpublished material (Wertheimer, 1959 ). Interestingly, 1945 seems to have been a watershed year for problem solving, as mathematician George Polya's book, How to Solve It , also appeared then (a second edition was published 12 years later; Polya, 1957 ).

The Gestalt psychologists extended the organizational principles of visual perception to the domain of problem solving. They showed that various visual aspects of the problem, as well the solver's prior knowledge, affect how people understand problems and, therefore, generate problem solutions. The principles of visual perception (e.g., proximity, closure, grouping, good continuation) are directly relevant to problem solving when the physical layout of the problem, or a diagram that accompanies the problem description, elicits inferences that solvers include in their problem representations. Such effects are nicely illustrated by Maier's ( 1930 ) nine-dot problem: Nine dots are arrayed in a 3x3 grid, and the task is to connect all the dots by drawing four straight lines without lifting one's pencil from the paper. People have difficulty solving this problem because their initial representations generally include a constraint, inferred from the configuration of the dots, that the lines should not go outside the boundary of the imaginary square formed by the outer dots. With this constraint, the problem cannot be solved (but see Adams, 1979 ). Without this constraint, the problem may be solved as shown in Figure 21.4 (though the problem is still difficult for many people; see Weisberg & Alba, 1981 ).

The nine-dot problem is a classic insight problem (see van Steenburgh et al., Chapter 24 ). According to the Gestalt view (e.g., Duncker, 1945 ; Kohler, 1925 ; Maier, 1931 ; see Ohlsson, 1984 , for a review), the solution to an insight problem appears suddenly, accompanied by an “aha!” sensation, immediately following the sudden “restructuring” of one's understanding of the problem (i.e., a change in the problem representation): “The decisive points in thought-processes, the moments of sudden comprehension, of the ‘Aha!,’ of the new, are always at the same time moments in which such a sudden restructuring of the thought-material takes place” (Duncker, 1945 , p. 29). For the nine-dot problem, one view of the required restructuring is that the solver relaxes the constraint implied by the perceptual form of the problem and realizes that the lines may, in fact, extend past the boundary of the imaginary square. Later in the chapter, we present more recent accounts of insight.

The entities that appear in a problem also tend to evoke various inferences that people incorporate into their problem representations. A classic demonstration of this is the phenomenon of functional fixedness , introduced by Duncker ( 1945 ): If an object is habitually used for a certain purpose (e.g., a box serves as a container), it is difficult to see

A solution to the nine-dot problem.

that object as having properties that would enable it to be used for a dissimilar purpose. Duncker's basic experimental paradigm involved two conditions that varied in terms of whether the object that was crucial for solution was initially used for a function other than that required for solution.

Consider the candles problem—the best known of the five “practical problems” Duncker ( 1945 ) investigated. Three candles are to be mounted at eye height on a door. On the table, for use in completing this task, are some tacks and three boxes. The solution is to tack the three boxes to the door to serve as platforms for the candles. In the control condition, the three boxes were presented to subjects empty. In the functional-fixedness condition, they were filled with candles, tacks, and matches. Thus, in the latter condition, the boxes initially served the function of container, whereas the solution requires that they serve the function of platform. The results showed that 100% of the subjects who received empty boxes solved the candles problem, compared with only 43% of subjects who received filled boxes. Every one of the five problems in this study showed a difference favoring the control condition over the functional-fixedness condition, with average solution rates across the five problems of 97% and 58%, respectively.

The function of the objects in a problem can be also “fixed” by their most recent use. For example, Birch and Rabinowitz ( 1951 ) had subjects perform two consecutive tasks. In the first task, people had to use either a switch or a relay to form an electric circuit. After completing this task, both groups of subjects were asked to solve Maier's ( 1931 ) two-ropes problem. The solution to this problem requires tying an object to one of the ropes and making the rope swing as a pendulum. Subjects could create the pendulum using either the object from the electric-circuit task or the other object. Birch and Rabinowitz found that subjects avoided using the same object for two unrelated functions. That is, those who used the switch in the first task made the pendulum using the relay, and vice versa. The explanations subjects subsequently gave for their object choices revealed that they were unaware of the functional-fixedness constraint they imposed on themselves.

In addition to investigating people's solutions to such practical problems as irradiating a tumor, mounting candles on the wall, or tying ropes, the Gestalt psychologists examined how people understand and solve mathematical problems that require domain-specific knowledge. For example, Wertheimer ( 1959 ) observed individual differences in students' learning and subsequent application of the formula for finding the area of a parallelogram (see Fig. 21.5a ). Some students understood the logic underlying the learned formula (i.e., the fact that a parallelogram can be transformed into a rectangle by cutting off a triangle from one side and pasting it onto the other side) and exhibited “productive thinking”—using the same logic to find the area of the quadrilateral in Figure 21.5b and the irregularly shaped geometric figure in Figure 21.5c . Other students memorized the formula and exhibited “reproductive thinking”—reproducing the learned solution only to novel parallelograms that were highly similar to the original one.

The psychological study of human problem solving faded into the background after the demise of the Gestalt tradition (during World War II), and problem solving was investigated only sporadically until Allen Newell and Herbert Simon's ( 1972 ) landmark book Human Problem Solving sparked a flurry of research on this topic. Newell and Simon adopted and refined Duncker's ( 1945 ) methodology of collecting and analyzing the think-aloud protocols that accompany problem solutions and extended Duncker's conceptualization of a problem solution as a search tree. However, their initial work did not aim to extend the Gestalt findings

Finding the area of ( a ) a parallelogram, ( b ) a quadrilateral, and ( c ) an irregularly shaped geometric figure. The solid lines indicate the geometric figures whose areas are desired. The dashed lines show how to convert the given figures into rectangles (i.e., they show solutions with understanding).

pertaining to problem representation. Instead, as we explain in the next section, their objective was to identify the general-purpose strategies people use in searching for a problem solution.

Search in a Problem Space: The Legacy of Newell and Simon

Newell and Simon ( 1972 ) wrote a magnum opus detailing their theory of problem solving and the supporting research they conducted with various collaborators. This theory was grounded in the information-processing approach to cognitive psychology and guided by an analogy between human and artificial intelligence (i.e., both people and computers being “Physical Symbol Systems,” Newell & Simon, 1976 ; see Doumas & Hummel, Chapter 5 ). They conceptualized problem solving as a process of search through a problem space for a path that connects the initial state to the goal state—a metaphor that alludes to the visual or spatial nature of problem solving (Simon, 1990 ). The term problem space refers to the solver's representation of the task as presented (Simon, 1978 ). It consists of ( 1 ) a set of knowledge states (the initial state, the goal state, and all possible intermediate states), ( 2 ) a set of operators that allow movement from one knowledge state to another, ( 3 ) a set of constraints, and ( 4 ) local information about the path one is taking through the space (e.g., the current knowledge state and how one got there).

We illustrate the components of a problem space for the three-disk Tower of Hanoi problem, as depicted in Figure 21.3 . The initial state appears at the top (State #1) and the goal state at the bottom right (State #27). The remaining knowledge states in the figure are possible intermediate states. The current knowledge state is the one at which the solver is located at any given point in the solution process. For example, the current state for a solver who has made three moves along the optimum solution path would be State #9. The solver presumably would know that he or she arrived at this state from State #5. This knowledge allows the solver to recognize a move that involves backtracking. The three operators in this problem are moving each of the three disks from one peg to another. These operators are subject to the constraint that a larger disk may not be placed on a smaller disk.

Newell and Simon ( 1972 ), as well as other contemporaneous researchers (e.g., Atwood & Polson, 1976 ; Greeno, 1974 ; Thomas, 1974 ), examined how people traverse the spaces of various well-defined problems (e.g., the Tower of Hanoi, Hobbits and Orcs). They discovered that solvers' search is guided by a number of shortcut strategies, or heuristics , which are likely to get the solver to the goal state without an extensive amount of search. Heuristics are often contrasted with algorithms —methods that are guaranteed to yield the correct solution. For example, one could try every possible move in the three-disk Tower of Hanoi problem and, eventually, find the correct solution. Although such an exhaustive search is a valid algorithm for this problem, for many problems its application is very time consuming and impractical (e.g., consider the game of chess).

In their attempts to identify people's search heuristics, Newell and Simon ( 1972 ) relied on two primary methodologies: think-aloud protocols and computer simulations. Their use of think-aloud protocols brought a high degree of scientific rigor to the methodology used by Duncker ( 1945 ; see Ericsson & Simon, 1980 ). Solvers were required to say out loud everything they were thinking as they solved the problem, that is, everything that went through their verbal working memory. Subjects' verbalizations—their think-aloud protocols—were tape-recorded and then transcribed verbatim for analysis. This method is extremely time consuming (e.g., a transcript of one person's solution to the cryptarithmetic problem DONALD + GERALD = ROBERT, with D = 5, generated a 17-page transcript), but it provides a detailed record of the solver's ongoing solution process.

An important caveat to keep in mind while interpreting a subject's verbalizations is that “a protocol is relatively reliable only for what it positively contains, but not for that which it omits” (Duncker, 1945 , p. 11). Ericsson and Simon ( 1980 ) provided an in-depth discussion of the conditions under which this method is valid (but see Russo, Johnson, & Stephens, 1989 , for an alternative perspective). To test their interpretation of a subject's problem solution, inferred from the subject's verbal protocol, Newell and Simon ( 1972 ) created a computer simulation program and examined whether it solved the problem the same way the subject did. To the extent that the computer simulation provided a close approximation of the solver's step-by-step solution process, it lent credence to the researcher's interpretation of the verbal protocol.

Newell and Simon's ( 1972 ) most famous simulation was the General Problem Solver or GPS (Ernst & Newell, 1969 ). GPS successfully modeled human solutions to problems as different as the Tower of Hanoi and the construction of logic proofs using a single general-purpose heuristic: means-ends analysis . This heuristic captures people's tendency to devise a solution plan by setting subgoals that could help them achieve their final goal. It consists of the following steps: ( 1 ) Identify a difference between the current state and the goal (or subgoal ) state; ( 2 ) Find an operator that will remove (or reduce) the difference; (3a) If the operator can be directly applied, do so, or (3b) If the operator cannot be directly applied, set a subgoal to remove the obstacle that is preventing execution of the desired operator; ( 4 ) Repeat steps 1–3 until the problem is solved. Next, we illustrate the implementation of this heuristic for the Tower of Hanoi problem, using the problem space in Figure 21.3 .

As can be seen in Figure 21.3 , a key difference between the initial state and the goal state is that the large disk is on the wrong peg (step 1). To remove this difference (step 2), one needs to apply the operator “move-large-disk.” However, this operator cannot be applied because of the presence of the medium and small disks on top of the large disk. Therefore, the solver may set a subgoal to move that two-disk tower to the middle peg (step 3b), leaving the rightmost peg free for the large disk. A key difference between the initial state and this new subgoal state is that the medium disk is on the wrong peg. Because application of the move-medium-disk operator is blocked, the solver sets another subgoal to move the small disk to the right peg. This subgoal can be satisfied immediately by applying the move-small-disk operator (step 3a), generating State #3. The solver then returns to the previous subgoal—moving the tower consisting of the small and medium disks to the middle peg. The differences between the current state (#3) and the subgoal state (#9) can be removed by first applying the move-medium-disk operator (yielding State #5) and then the move-small-disk operator (yielding State #9). Finally, the move-large-disk operator is no longer blocked. Hence, the solver moves the large disk to the right peg, yielding State #11.

Notice that the subgoals are stacked up in the order in which they are generated, so that they pop up in the order of last in first out. Given the first subgoal in our example, repeated application of the means-ends analysis heuristic will yield the shortest-path solution, indicated by the large gray arrows. In general, subgoals provide direction to the search and allow solvers to plan several moves ahead. By assessing progress toward a required subgoal rather than the final goal, solvers may be able to make moves that otherwise seem unwise. To take a concrete example, consider the transition from State #1 to State #3 in Figure 21.3 . Comparing the initial state to the goal state, this move seems unwise because it places the small disk on the bottom of the right peg, whereas it ultimately needs to be at the top of the tower on that peg. But comparing the initial state to the solver-generated subgoal state of having the medium disk on the middle peg, this is exactly where the small disk needs to go.

Means-ends analysis and various other heuristics (e.g., the hill-climbing heuristic that exploits the similarity, or distance, between the state generated by the next operator and the goal state; working backward from the goal state to the initial state) are flexible strategies that people often use to successfully solve a large variety of problems. However, the generality of these heuristics comes at a cost: They are relatively weak and fallible (e.g., in the means-ends solution to the problem of fixing a hole in a bucket, “Dear Liza” leads “Dear Henry” in a loop that ends back at the initial state; the lyrics of this famous song can be readily found on the Web). Hence, although people use general-purpose heuristics when they encounter novel problems, they replace them as soon as they acquire experience with and sufficient knowledge about the particular problem space (e.g., Anzai & Simon, 1979 ).

Despite the fruitfulness of this research agenda, it soon became evident that a fundamental weakness was that it minimized the importance of people's background knowledge. Of course, Newell and Simon ( 1972 ) were aware that problem solutions require relevant knowledge (e.g., the rules of logical proofs, or rules for stacking disks). Hence, in programming GPS, they supplemented every problem they modeled with the necessary background knowledge. This practice highlighted the generality and flexibility of means-ends analysis but failed to capture how people's background knowledge affects their solutions. As we discussed in the previous section, domain knowledge is likely to affect how people represent problems and, therefore, how they generate problem solutions. Moreover, as people gain experience solving problems in a particular knowledge domain (e.g., math, physics), they change their representations of these problems (e.g., Chi, Feltovich, & Glaser, 1981 ; Haverty, Koedinger, Klahr, & Alibali, 2000 ; Schoenfeld & Herrmann, 1982 ) and learn domain-specific heuristics (e.g., Polya, 1957 ; Schoenfeld, 1979 ) that trump the general-purpose strategies.

It is perhaps inevitable that the two traditions in problem-solving research—one emphasizing representation and the other emphasizing search strategies—would eventually come together. In the next section we review developments that led to this integration.

The Two Legacies Converge

Because Newell and Simon ( 1972 ) aimed to discover the strategies people use in searching for a solution, they investigated problems that minimized the impact of factors that tend to evoke differences in problem representations, of the sort documented by the Gestalt psychologists. In subsequent work, however, Simon and his collaborators showed that such factors are highly relevant to people's solutions of well-defined problems, and Simon ( 1986 ) incorporated these findings into the theoretical framework that views problem solving as search in a problem space.

In this section, we first describe illustrative examples of this work. We then describe research on insight solutions that incorporates ideas from the two legacies described in the previous sections.

Relevance of the Gestalt Ideas to the Solution of Search Problems

In this subsection we describe two lines of research by Simon and his colleagues, and by other researchers, that document the importance of perception and of background knowledge to the way people search for a problem solution. The first line of research used variants of relatively well-defined riddle problems that had the same structure (i.e., “problem isomorphs”) and, therefore, supposedly the same problem space. It documented that people's search depended on various perceptual and conceptual inferences they tended to draw from a specific instantiation of the problem's structure. The second line of research documented that people's search strategies crucially depend on their domain knowledge and on their prior experience with related problems.

Problem Isomorphs

Hayes and Simon ( 1977 ) used two variants of the Tower of Hanoi problem that, instead of disks and pegs, involved monsters and globes that differed in size (small, medium, and large). In both variants, the initial state had the small monster holding the large globe, the medium-sized monster holding the small globe, and the large monster holding the medium-sized globe. Moreover, in both variants the goal was for each monster to hold a globe proportionate to its own size. The only difference between the problems concerned the description of the operators. In one variant (“transfer”), subjects were told that the monsters could transfer the globes from one to another as long as they followed a set of rules, adapted from the rules in the original Tower of Hanoi problem (e.g., only one globe may be transferred at a time). In the other variant (“change”), subjects were told that the monsters could shrink and expand themselves according to a set of rules, which corresponded to the rules in the transfer version of the problem (e.g., only one monster may change its size at a time). Despite the isomorphism of the two variants, subjects conducted their search in two qualitatively different problem spaces, which led to solution times for the change variant being almost twice as long as those for the transfer variant. This difference arose because subjects could more readily envision and track an object that was changing its location with every move than one that was changing its size.

Recent work by Patsenko and Altmann ( 2010 ) found that, even in the standard Tower of Hanoi problem, people's solutions involve object-bound routines that depend on perception and selective attention. The subjects in their study solved various Tower of Hanoi problems on a computer. During the solution of a particular “critical” problem, the computer screen changed at various points without subjects' awareness (e.g., a disk was added, such that a subject who started with a five-disc tower ended with a six-disc tower). Patsenko and Altmann found that subjects' moves were guided by the configurations of the objects on the screen rather than by solution plans they had stored in memory (e.g., the next subgoal).

The Gestalt psychologists highlighted the role of perceptual factors in the formation of problem representations (e.g., Maier's, 1930 , nine-dot problem) but were generally silent about the corresponding implications for how the problem was solved (although they did note effects on solution accuracy). An important contribution of the work on people's solutions of the Tower of Hanoi problem and its variants was to show the relevance of perceptual factors to the application of various operators during search for a problem solution—that is, to the how of problem solving. In the next section, we describe recent work that documents the involvement of perceptual factors in how people understand and use equations and diagrams in the context of solving math and science problems.

Kotovsky, Hayes, and Simon ( 1985 ) further investigated factors that affect people's representation and search in isomorphs of the Tower of Hanoi problem. In one of their isomorphs, three disks were stacked on top of each other to form an inverted pyramid, with the smallest disc on the bottom and the largest on top. Subjects' solutions of the inverted pyramid version were similar to their solutions of the standard version that has the largest disc on the bottom and the smallest on top. However, the two versions were solved very differently when subjects were told that the discs represent acrobats. Subjects readily solved the version in which they had to place a small acrobat on the shoulders of a large one, but they refrained from letting a large acrobat stand on the shoulders of a small one. In other words, object-based inferences that draw on people's semantic knowledge affected the solution of search problems, much as they affect the solution of the ill-defined problems investigated by the Gestalt psychologists (e.g., Duncker's, 1945 , candles problem). In the next section, we describe more recent work that shows similar effects in people's solutions to mathematical word problems.

The work on differences in the representation and solution of problem isomorphs is highly relevant to research on analogical problem solving (or analogical transfer), which examines when and how people realize that two problems that differ in their cover stories have a similar structure (or a similar problem space) and, therefore, can be solved in a similar way. This research shows that minor differences between example problems, such as the use of X-rays versus ultrasound waves to fuse a broken filament of a light bulb, can elicit different problem representations that significantly affect the likelihood of subsequent transfer to novel problem analogs (Holyoak & Koh, 1987 ). Analogical transfer has played a central role in research on human problem solving, in part because it can shed light on people's understanding of a given problem and its solution and in part because it is believed to provide a window onto understanding and investigating creativity (see Smith & Ward, Chapter 23 ). We briefly mention some findings from the analogy literature in the next subsection on expertise, but we do not discuss analogical transfer in detail because this topic is covered elsewhere in this volume (Holyoak, Chapter 13 ).

Expertise and Its Development

In another line of research, Simon and his colleagues examined how people solve ecologically valid problems from various rule-governed and knowledge-rich domains. They found that people's level of expertise in such domains, be it in chess (Chase & Simon, 1973 ; Gobet & Simon, 1996 ), mathematics (Hinsley, Hayes, & Simon, 1977 ; Paige & Simon, 1966 ), or physics (Larkin, McDermott, Simon, & Simon, 1980 ; Simon & Simon, 1978 ), plays a crucial role in how they represent problems and search for solutions. This work, and the work of numerous other researchers, led to the discovery (and rediscovery, see Duncker, 1945 ) of important differences between experts and novices, and between “good” and “poor” students.

One difference between experts and novices pertains to pattern recognition. Experts' attention is quickly captured by familiar configurations within a problem situation (e.g., a familiar configuration of pieces in a chess game). In contrast, novices' attention is focused on isolated components of the problem (e.g., individual chess pieces). This difference, which has been found in numerous domains, indicates that experts have stored in memory many meaningful groups (chunks) of information: for example, chess (Chase & Simon, 1973 ), circuit diagrams (Egan & Schwartz, 1979 ), computer programs (McKeithen, Reitman, Rueter, & Hirtle, 1981 ), medicine (Coughlin & Patel, 1987 ; Myles-Worsley, Johnston, & Simons, 1988 ), basketball and field hockey (Allard & Starkes, 1991 ), and figure skating (Deakin & Allard, 1991 ).

The perceptual configurations that domain experts readily recognize are associated with stored solution plans and/or compiled procedures (Anderson, 1982 ). As a result, experts' solutions are much faster than, and often qualitatively different from, the piecemeal solutions that novice solvers tend to construct (e.g., Larkin et al., 1980 ). In effect, experts often see the solutions that novices have yet to compute (e.g., Chase & Simon, 1973 ; Novick & Sherman, 2003 , 2008 ). These findings have led to the design of various successful instructional interventions (e.g., Catrambone, 1998 ; Kellman et al., 2008 ). For example, Catrambone ( 1998 ) perceptually isolated the subgoals of a statistics problem. This perceptual chunking of meaningful components of the problem prompted novice students to self-explain the meaning of the chunks, leading to a conceptual understanding of the learned solution. In the next section, we describe some recent work that shows the beneficial effects of perceptual pattern recognition on the solution of familiar mathematics problems, as well as the potentially detrimental effects of familiar perceptual chunks to understanding and reasoning with diagrams depicting evolutionary relationships among taxa.

Another difference between experts and novices pertains to their understanding of the solution-relevant problem structure. Experts' knowledge is highly organized around domain principles, and their problem representations tend to reflect this principled understanding. In particular, they can extract the solution-relevant structure of the problems they encounter (e.g., meaningful causal relations among the objects in the problem; see Cheng & Buehner, Chapter 12 ). In contrast, novices' representations tend to be bound to surface features of the problems that may be irrelevant to solution (e.g., the particular objects in a problem). For example, Chi, Feltovich, and Glaser ( 1981 ) examined how students with different levels of physics expertise group mechanics word problems. They found that advanced graduate students grouped the problems based on the physics principles relevant to the problems' solutions (e.g., conservation of energy, Newton's second law). In contrast, undergraduates who had successfully completed an introductory course in mechanics grouped the problems based on the specific objects involved (e.g., pulley problems, inclined plane problems). Other researchers have found similar results in the domains of biology, chemistry, computer programming, and math (Adelson, 1981 ; Kindfield, 1993 / 1994 ; Kozma & Russell, 1997 ; McKeithen et al., 1981 ; Silver, 1979 , 1981 ; Weiser & Shertz, 1983 ).

The level of domain expertise and the corresponding representational differences are, of course, a matter of degree. With increasing expertise, there is a gradual change in people's focus of attention from aspects that are not relevant to solution to those that are (e.g., Deakin & Allard, 1991 ; Hardiman, Dufresne, & Mestre, 1989 ; McKeithen et al., 1981 ; Myles-Worsley et al., 1988 ; Schoenfeld & Herrmann, 1982 ; Silver, 1981 ). Interestingly, Chi, Bassok, Lewis, Reimann, and Glaser ( 1989 ) found similar differences in focus on structural versus surface features among a group of novices who studied worked-out examples of mechanics problems. These differences, which echo Wertheimer's ( 1959 ) observations of individual differences in students' learning about the area of parallelograms, suggest that individual differences in people's interests and natural abilities may affect whether, or how quickly, they acquire domain expertise.

An important benefit of experts' ability to focus their attention on solution-relevant aspects of problems is that they are more likely than novices to recognize analogous problems that involve different objects and cover stories (e.g., Chi et al., 1989 ; Novick, 1988 ; Novick & Holyoak, 1991 ; Wertheimer, 1959 ) or that come from other knowledge domains (e.g., Bassok & Holyoak, 1989 ; Dunbar, 2001 ; Goldstone & Sakamoto, 2003 ). For example, Bassok and Holyoak ( 1989 ) found that, after learning to solve arithmetic-progression problems in algebra, subjects spontaneously applied these algebraic solutions to analogous physics problems that dealt with constantly accelerated motion. Note, however, that experts and good students do not simply ignore the surface features of problems. Rather, as was the case in the problem isomorphs we described earlier (Kotovsky et al., 1985 ), they tend to use such features to infer what the problem's structure could be (e.g., Alibali, Bassok, Solomon, Syc, & Goldin-Meadow, 1999 ; Blessing & Ross, 1996 ). For example, Hinsley et al. ( 1977 ) found that, after reading no more than the first few words of an algebra word problem, expert solvers classified the problem into a likely problem category (e.g., a work problem, a distance problem) and could predict what questions they might be asked and the equations they likely would need to use.

Surface-based problem categorization has a heuristic value (Medin & Ross, 1989 ): It does not ensure a correct categorization (Blessing & Ross, 1996 ), but it does allow solvers to retrieve potentially appropriate solutions from memory and to use them, possibly with some adaptation, to solve a variety of novel problems. Indeed, although experts exploit surface-structure correlations to save cognitive effort, they have the capability to realize that a particular surface cue is misleading (Hegarty, Mayer, & Green, 1992 ; Lewis & Mayer, 1987 ; Martin & Bassok, 2005 ; Novick 1988 , 1995 ; Novick & Holyoak, 1991 ). It is not surprising, therefore, that experts may revert to novice-like heuristic methods when solving problems under pressure (e.g., Beilock, 2008 ) or in subdomains in which they have general but not specific expertise (e.g., Patel, Groen, & Arocha, 1990 ).

Relevance of Search to Insight Solutions

We introduced the notion of insight in our discussion of the nine-dot problem in the section on the Gestalt tradition. The Gestalt view (e.g., Duncker, 1945 ; Maier, 1931 ; see Ohlsson, 1984 , for a review) was that insight problem solving is characterized by an initial work period during which no progress toward solution is made (i.e., an impasse), a sudden restructuring of one's problem representation to a more suitable form, followed immediately by the sudden appearance of the solution. Thus, solving problems by insight was believed to be all about representation, with essentially no role for a step-by-step solution process (i.e., search). Subsequent and contemporary researchers have generally concurred with the Gestalt view that getting the right representation is crucial. However, research has shown that insight solutions do not necessarily arise suddenly or full blown after restructuring (e.g., Weisberg & Alba, 1981 ); and even when they do, the underlying solution process (in this case outside of awareness) may reflect incremental progress toward the goal (Bowden & Jung-Beeman, 2003 ; Durso, Rea, & Dayton, 1994 ; Novick & Sherman, 2003 ).

“Demystifying insight,” to borrow a phrase from Bowden, Jung-Beeman, Fleck, and Kounios ( 2005 ), requires explaining ( 1 ) why solvers initially reach an impasse in solving a problem for which they have the necessary knowledge to generate the solution, ( 2 ) how the restructuring occurred, and ( 3 ) how it led to the solution. A detailed discussion of these topics appears elsewhere in this volume (van Steenburgh et al., Chapter 24 ). Here, we describe briefly three recent theories that have attempted to account for various aspects of these phenomena: Knoblich, Ohlsson, Haider, and Rhenius's ( 1999 ) representational change theory, MacGregor, Ormerod, and Chronicle's ( 2001 ) progress monitoring theory, and Bowden et al.'s ( 2005 ) neurological model. We then propose the need for an integrated approach to demystifying insight that considers both representation and search.

According to Knoblich et al.'s ( 1999 ) representational change theory, problems that are solved with insight are highly likely to evoke initial representations in which solvers place inappropriate constraints on their solution attempts, leading to an impasse. An impasse can be resolved by revising one's representation of the problem. Knoblich and his colleagues tested this theory using Roman numeral matchstick arithmetic problems in which solvers must move one stick to a new location to change a false numerical statement (e.g., I = II + II ) into a statement that is true. According to representational change theory, re-representation may occur through either constraint relaxation or chunk decomposition. (The solution to the example problem is to change II + to III – , which requires both methods of re-representation, yielding I = III – II ). Good support for this theory has been found based on measures of solution rate, solution time, and eye fixation (Knoblich et al., 1999 ; Knoblich, Ohlsson, & Raney, 2001 ; Öllinger, Jones, & Knoblich, 2008 ).

Progress monitoring theory (MacGregor et al., 2001 ) was proposed to account for subjects' difficulty in solving the nine-dot problem, which has traditionally been classified as an insight problem. According to this theory, solvers use the hill-climbing search heuristic to solve this problem, just as they do for traditional search problems (e.g., Hobbits and Orcs). In particular, solvers are hypothesized to monitor their progress toward solution using a criterion generated from the problem's current state. If solvers reach criterion failure, they seek alternative solutions by trying to relax one or more problem constraints. MacGregor et al. found support for this theory using several variants of the nine-dot problem (also see Ormerod, MacGregor, & Chronicle, 2002 ). Jones ( 2003 ) suggested that progress monitoring theory provides an account of the solution process up to the point an impasse is reached and representational change is sought, at which point representational change theory picks up and explains how insight may be achieved. Hence, it appears that a complete account of insight may require an integration of concepts from the Gestalt (representation) and Newell and Simon's (search) legacies.

Bowden et al.'s ( 2005 ) neurological model emphasizes the overlap between problem solving and language comprehension, and it hinges on differential processing in the right and left hemispheres. They proposed that an impasse is reached because initial processing of the problem produces strong activation of information irrelevant to solution in the left hemisphere. At the same time, weak semantic activation of alternative semantic interpretations, critical for solution, occurs in the right hemisphere. Insight arises when the weakly activated concepts reinforce each other, eventually rising above the threshold required for conscious awareness. Several studies of problem solving using compound remote associates problems, involving both behavioral and neuroimaging data, have found support for this model (Bowden & Jung-Beeman, 1998 , 2003 ; Jung-Beeman & Bowden, 2000 ; Jung-Beeman et al., 2004 ; also see Moss, Kotovsky, & Cagan, 2011 ).

Note that these three views of insight have received support using three quite distinct types of problems (Roman numeral matchstick arithmetic problems, the nine-dot problem, and compound remote associates problems, respectively). It remains to be established, therefore, whether these accounts can be generalized across problems. Kershaw and Ohlsson ( 2004 ) argued that insight problems are difficult because the key behavior required for solution may be hindered by perceptual factors (the Gestalt view), background knowledge (so expertise may be important; e.g., see Novick & Sherman, 2003 , 2008 ), and/or process factors (e.g., those affecting search). From this perspective, solving visual problems (e.g., the nine-dot problem) with insight may call upon more general visual processes, whereas solving verbal problems (e.g., anagrams, compound remote associates) with insight may call upon general verbal/semantic processes.

The work we reviewed in this section shows the relevance of problem representation (the Gestalt legacy) to the way people search the problem space (the legacy of Newell and Simon), and the relevance of search to the solution of insight problems that require a representational change. In addition to this inevitable integration of the two legacies, the work we described here underscores the fact that problem solving crucially depends on perceptual factors and on the solvers' background knowledge. In the next section, we describe some recent work that shows the involvement of these factors in the solution of problems in math and science.

Effects of Perception and Knowledge in Problem Solving in Academic Disciplines

Although the use of puzzle problems continues in research on problem solving, especially in investigations of insight, many contemporary researchers tackle problem solving in knowledge-rich domains, often in academic disciplines (e.g., mathematics, biology, physics, chemistry, meteorology). In this section, we provide a sampling of this research that highlights the importance of visual perception and background knowledge for successful problem solving.

The Role of Visual Perception

We stated at the outset that a problem representation (e.g., the problem space) is a model of the problem constructed by solvers to summarize their understanding of the problem's essential nature. This informal definition refers to the internal representations people construct and hold in working memory. Of course, people may also construct various external representations (Markman, 1999 ) and even manipulate those representations to aid in solution (see Hegarty & Stull, Chapter 31 ). For example, solvers often use paper and pencil to write notes or draw diagrams, especially when solving problems from formal domains (e.g., Cox, 1999 ; Kindfield, 1993 / 1994 ; S. Schwartz, 1971 ). In problems that provide solvers with external representation, such as the Tower of Hanoi problem, people's planning and memory of the current state is guided by the actual configurations of disks on pegs (Garber & Goldin-Meadow, 2002 ) or by the displays they see on a computer screen (Chen & Holyoak, 2010 ; Patsenko & Altmann, 2010 ).

In STEM (science, technology, engineering, and mathematics) disciplines, it is common for problems to be accompanied by diagrams or other external representations (e.g., equations) to be used in determining the solution. Larkin and Simon ( 1987 ) examined whether isomorphic sentential and diagrammatic representations are interchangeable in terms of facilitating solution. They argued that although the two formats may be equivalent in the sense that all of the information in each format can be inferred from the other format (informational equivalence), the ease or speed of making inferences from the two formats might differ (lack of computational equivalence). Based on their analysis of several problems in physics and math, Larkin and Simon further argued for the general superiority of diagrammatic representations (but see Mayer & Gallini, 1990 , for constraints on this general conclusion).

Novick and Hurley ( 2001 , p. 221) succinctly summarized the reasons for the general superiority of diagrams (especially abstract or schematic diagrams) over verbal representations: They “(a) simplify complex situations by discarding unnecessary details (e.g., Lynch, 1990 ; Winn, 1989 ), (b) make abstract concepts more concrete by mapping them onto spatial layouts with familiar interpretational conventions (e.g., Winn, 1989 ), and (c) substitute easier perceptual inferences for more computationally intensive search processes and sentential deductive inferences (Barwise & Etchemendy, 1991 ; Larkin & Simon, 1987 ).” Despite these benefits of diagrammatic representations, there is an important caveat, noted by Larkin and Simon ( 1987 , p. 99) at the very end of their paper: “Although every diagram supports some easy perceptual inferences, nothing ensures that these inferences must be useful in the problem-solving process.” We will see evidence of this in several of the studies reviewed in this section.

Next we describe recent work on perceptual factors that are involved in people's use of two types of external representations that are provided as part of the problem in two STEM disciplines: equations in algebra and diagrams in evolutionary biology. Although we focus here on effects of perceptual factors per se, it is important to note that such factors only influence performance when subjects have background knowledge that supports differential interpretation of the alternative diagrammatic depictions presented (Hegarty, Canham, & Fabricant, 2010 ).

In the previous section, we described the work of Patsenko and Altmann ( 2010 ) that shows direct involvement of visual attention and perception in the sequential application of move operators during the solution of the Tower of Hanoi problem. A related body of work documents similar effects in tasks that require the interpretation and use of mathematical equations (Goldstone, Landy, & Son, 2010 ; Landy & Goldstone, 2007a , b). For example, Landy and Goldstone ( 2007b ) varied the spatial proximity of arguments to the addition (+) and multiplication (*) operators in algebraic equations, such that the spatial layout of the equation was either consistent or inconsistent with the order-of-operations rule that multiplication precedes addition. In consistent equations , the space was narrower around multiplication than around addition (e.g., g*m + r*w = m*g + w*r ), whereas in inconsistent equations this relative spacing was reversed (e.g., s * n+e * c = n * s+c * e ). Subjects' judgments of the validity of such equations (i.e., whether the expressions on the two sides of the equal sign are equivalent) were significantly faster and more accurate for consistent than inconsistent equations.

In discussing these findings and related work with other external representations, Goldstone et al. ( 2010 ) proposed that experience with solving domain-specific problems leads people to “rig up” their perceptual system such that it allows them to look at the problem in a way that is consistent with the correct rules. Similar logic guides the Perceptual Learning Modules developed by Kellman and his collaborators to help students interpret and use algebraic equations and graphs (Kellman et al., 2008 ; Kellman, Massey, & Son, 2009 ). These authors argued and showed that, consistent with the previously reviewed work on expertise, perceptual training with particular external representations supports the development of perceptual fluency. This fluency, in turn, supports students' subsequent use of these external representations for problem solving.

This research suggests that extensive experience with particular equations or graphs may lead to perceptual fluency that could replace the more mindful application of domain-specific rules. Fisher, Borchert, and Bassok ( 2011 ) reported results from algebraic-modeling tasks that are consistent with this hypothesis. For example, college students were asked to represent verbal statements with algebraic equations, a task that typically elicits systematic errors (e.g., Clement, Lochhead, & Monk, 1981 ). Fisher et al. found that such errors were very common when subjects were asked to construct “standard form” equations ( y = ax ), which support fluent left-to-right translation of words to equations, but were relatively rare when subjects were asked to construct nonstandard division-format equations (x = y/a) that do not afford such translation fluency.

In part because of the left-to-right order in which people process equations, which mirrors the linear order in which they process text, equations have traditionally been viewed as sentential representations. However, Landy and Goldstone ( 2007a ) have proposed that equations also share some properties with diagrammatic displays and that, in fact, in some ways they are processed like diagrams. That is, spatial information is used to represent and to support inferences about syntactic structure. This hypothesis received support from Landy and Goldstone's ( 2007b ) results, described earlier, in which subjects' judgments of the validity of equations were affected by the Gestalt principle of grouping: Subjects did better when the grouping was consistent rather than inconsistent with the underlying structure of the problem (order of operations). Moreover, Landy and Goldstone ( 2007a ) found that when subjects wrote their own equations they grouped numbers and operators (+, *, =) in a way that reflected the hierarchical structure imposed by the order-of-operations rule.

In a recent line of research, Novick and Catley ( 2007 ; Novick, Catley, & Funk, 2010 ; Novick, Shade, & Catley, 2011 ) have examined effects of the spatial layout of diagrams depicting the evolutionary history of a set of taxa on people's ability to reason about patterns of relationship among those taxa. We consider here their work that investigates the role of another Gestalt perceptual principle—good continuation—in guiding students' reasoning. According to this principle, a continuous line is perceived as a single entity (Kellman, 2000 ). Consider the diagrams shown in Figure 21.6 . Each is a cladogram, a diagram that depicts nested sets of taxa that are related in terms of levels of most recent common ancestry. For example, chimpanzees and starfish are more closely related to each other than either is to spiders. The supporting evidence for their close relationship is their most recent common ancestor, which evolved the novel character of having radial cleavage. Spiders do not share this ancestor and thus do not have this character.

Cladograms are typically drawn in two isomorphic formats, which Novick and Catley ( 2007 ) referred to as trees and ladders. Although these formats are informationally equivalent (Larkin & Simon, 1987 ), Novick and Catley's ( 2007 ) research shows that they are not computationally equivalent (Larkin & Simon, 1987 ). Imagine that you are given evolutionary relationships in the ladder format, such as in Figure 21.6a (but without the four characters—hydrostatic skeleton, bilateral symmetry, radial cleavage, and trocophore larvae—and associated short lines indicating their locations on the cladogram), and your task is to translate that diagram to the tree format. A correct translation is shown in Figure 21.6b . Novick and Catley ( 2007 ) found that college students were much more likely to get such problems correct when the presented cladogram was in the nested circles (e.g., Figure 21.6d ) rather than the ladder format. Because the Gestalt principle of good continuation makes the long slanted line at the base of the ladder appear to represent a single hierarchical level, a common translation error for the ladder to tree problems was to draw a diagram such as that shown in Figure 21.6c .

The difficulty that good continuation presents for interpreting relationships depicted in the ladder format extends to answering reasoning questions as well. Novick and Catley (unpublished data) asked comparable questions about relationships depicted in the ladder and tree formats. For example, using the cladograms depicted in Figures 21.6a and 21.6b , consider the following questions: (a) Which taxon—jellyfish or earthworm—is the closest evolutionary relation to starfish, and what evidence supports your answer? (b) Do the bracketed taxa comprise a clade (a set of taxa consisting of the most recent common ancestor and all of its descendants), and what evidence supports your answer? For both such questions, students had higher accuracy and evidence quality composite scores when the relationships were depicted in the tree than the ladder format.

Four cladograms depicting evolutionary relationships among six animal taxa. Cladogram ( a ) is in the ladder format, cladograms ( b ) and ( c ) are in the tree format, and cladogram ( d ) is in the nested circles format. Cladograms ( a ), ( b ), and ( d ) are isomorphic.

If the difficulty in extracting the hierarchical structure of the ladder format is due to good continuation (which leads problem solvers to interpret continuous lines that depict multiple hierarchical levels as depicting only a single level), then a manipulation that breaks good continuation at the points where a new hierarchical level occurs should improve understanding. Novick et al. ( 2010 ) tested this hypothesis using a translation task by manipulating whether characters that are the markers for the most recent common ancestor of each nested set of taxa were included on the ladders. Figure 21.6a shows a ladder with such characters. As predicted, translation accuracy increased dramatically simply by adding these characters to the ladders, despite the additional information subjects had to account for in their translations.

The Role of Background Knowledge

As we mentioned earlier, the specific entities in the problems people encounter evoke inferences that affect how people represent these problems (e.g., the candle problem; Duncker, 1945 ) and how they apply the operators in searching for the solution (e.g., the disks vs. acrobats versions of the Tower of Hanoi problem; Kotovsky et al., 1985 ). Such object-based inferences draw on people's knowledge about the properties of the objects (e.g., a box is a container, an acrobat is a person who can be hurt). Here, we describe the work of Bassok and her colleagues, who found that similar inferences affect how people select mathematical procedures to solve problems in various formal domains. This work shows that the objects in the texts of mathematical word problems affect how people represent the problem situation (i.e., the situation model they construct; Kintsch & Greeno, 1985 ) and, in turn, lead them to select mathematical models that have a corresponding structure. To illustrate, a word problem that describes constant change in the rate at which ice is melting off a glacier evokes a model of continuous change, whereas a word problem that describes constant change in the rate at which ice is delivered to a restaurant evokes a model of discrete change. These distinct situation models lead subjects to select corresponding visual representations (e.g., Bassok & Olseth, 1995 ) and solutions methods, such as calculating the average change over time versus adding the consecutive changes (e.g., Alibali et al., 1999 ).

In a similar manner, people draw on their general knowledge to infer how the objects in a given problem are related to each other and construct mathematical solutions that correspond to these inferred object relations. For example, a word problem that involves doctors from two hospitals elicits a situation model in which the two sets of doctors play symmetric roles (e.g., work with each other), whereas a mathematically isomorphic problem that involves mechanics and cars elicits a situation model in which the sets play asymmetric roles (e.g., mechanics fix cars). The mathematical solutions people construct to such problems reflect this difference in symmetry (Bassok, Wu, & Olseth, 1995 ). In general, people tend to add objects that belong to the same taxonomic category (e.g., doctors + doctors) but divide functionally related objects (e.g., cars ÷ mechanics). People establish this correspondence by a process of analogical alignment between semantic and arithmetic relations, which Bassok and her colleagues refer to as “semantic alignment” (Bassok, Chase, & Martin, 1998 ; Doumas, Bassok, Guthormsen, & Hummel, 2006 ; Fisher, Bassok, & Osterhout, 2010 ).

Semantic alignment occurs very early in the solution process and can prime arithmetic facts that are potentially relevant to the problem solution (Bassok, Pedigo, & Oskarsson, 2008 ). Although such alignments can lead to erroneous solutions, they have a high heuristic value because, in most textbook problems, object relations indeed correspond to analogous mathematical relations (Bassok et al., 1998 ). Interestingly, unlike in the case of reliance on specific surface-structure correlations (e.g., the keyword “more” typically appears in word problems that require addition; Lewis & Mayer, 1987 ), people are more likely to exploit semantic alignment when they have more, rather than less modeling experience. For example, Martin and Bassok ( 2005 ) found very strong semantic-alignment effects when subjects solved simple division word problems, but not when they constructed algebraic equations to represent the relational statements that appeared in the problems. Of course, these subjects had significantly more experience with solving numerical word problems than with constructing algebraic models of relational statements. In a subsequent study, Fisher and Bassok ( 2009 ) found semantic-alignment effects for subjects who constructed correct algebraic models, but not for those who committed modeling errors.

Conclusions and Future Directions

In this chapter, we examined two broad components of the problem-solving process: representation (the Gestalt legacy) and search (the legacy of Newell and Simon). Although many researchers choose to focus their investigation on one or the other of these components, both Duncker ( 1945 ) and Simon ( 1986 ) underscored the necessity to investigate their interaction, as the representation one constructs for a problem determines (or at least constrains) how one goes about trying to generate a solution, and searching the problem space may lead to a change in problem representation. Indeed, Duncker's ( 1945 ) initial account of one subject's solution to the radiation problem was followed up by extensive and experimentally sophisticated work by Simon and his colleagues and by other researchers, documenting the involvement of visual perception and background knowledge in how people represent problems and search for problem solutions.

The relevance of perception and background knowledge to problem solving illustrates the fact that, when people attempt to find or devise ways to reach their goals, they draw on a variety of cognitive resources and engage in a host of cognitive activities. According to Duncker ( 1945 ), such goal-directed activities may include (a) placing objects into categories and making inferences based on category membership, (b) making inductive inferences from multiple instances, (c) reasoning by analogy, (d) identifying the causes of events, (e) deducing logical implications of given information, (f) making legal judgments, and (g) diagnosing medical conditions from historical and laboratory data. As this list suggests, many of the chapters in the present volume describe research that is highly relevant to the understanding of problem-solving behavior. We believe that important advancements in problem-solving research would emerge by integrating it with research in other areas of thinking and reasoning, and that research in these other areas could be similarly advanced by incorporating the insights gained from research on what has more traditionally been identified as problem solving.

As we have described in this chapter, many of the important findings in the field have been established by a careful investigation of various riddle problems. Although there are good methodological reasons for using such problems, many researchers choose to investigate problem solving using ecologically valid educational materials. This choice, which is increasingly common in contemporary research, provides researchers with the opportunity to apply their basic understanding of problem solving to benefit the design of instruction and, at the same time, allows them to gain a better understanding of the processes by which domain knowledge and educational conventions affect the solution process. We believe that the trend of conducting educationally relevant research is likely to continue, and we expect a significant expansion of research on people's understanding and use of dynamic and technologically rich external representations (e.g., Kellman et al., 2008 ; Mayer, Griffith, Jurkowitz, & Rothman, 2008 ; Richland & McDonough, 2010 ; Son & Goldstone, 2009 ). Such investigations are likely to yield both practical and theoretical payoffs.

Adams, J. L. ( 1979 ). Conceptual blockbusting: A guide to better ideas (2nd ed.). New York: Norton.

Google Scholar

Google Preview

Adelson, B. ( 1981 ). Problem solving and the development of abstract categories in programming languages.   Memory and Cognition , 9 , 422–433.

Alibali, M. W., Bassok, M., Solomon, K. O., Syc, S. E., & Goldin-Meadow, S. ( 1999 ). Illuminating mental representations through speech and gesture.   Psychological Science , 10 , 327–333.

Allard, F., & Starkes, J. L. ( 1991 ). Motor-skill experts in sports, dance, and other domains. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 126–152). New York: Cambridge University Press.

Anderson, J. R. ( 1982 ). Acquisition of cognitive skill.   Psychological Review , 89 , 369–406.

Anzai, Y., & Simon, H. A. ( 1979 ). The theory of learning by doing.   Psychological Review , 86 , 124–140.

Atwood, M. E, & Polson, P.G. ( 1976 ). A process model for water jug problems.   Cognitive Psychology , 8 , 191–216.

Barwise, J., & Etchemendy, J. ( 1991 ). Visual information and valid reasoning. In W. Zimmermann & S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 9–24). Washington, DC: Mathematical Association of America.

Bassok, M., Chase, V. M., & Martin, S. A. ( 1998 ). Adding apples and oranges: Alignment of semantic and formal knowledge.   Cognitive Psychology , 35 , 99–134.

Bassok, M., & Holyoak, K. J. ( 1989 ). Interdomain transfer between isomorphic topics in algebra and physics.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 15 , 153–166.

Bassok, M., & Olseth, K. L. ( 1995 ). Object-based representations: Transfer between cases of continuous and discrete models of change.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 21 , 1522–1538.

Bassok, M., Pedigo, S. F., & Oskarsson, A. T. ( 2008 ). Priming addition facts with semantic relations.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 34 , 343–352.

Bassok, M., Wu, L., & Olseth, L. K. ( 1995 ). Judging a book by its cover: Interpretative effects of content on problem solving transfer.   Memory and Cognition , 23 , 354–367.

Beilock, S. L. ( 2008 ). Math performance in stressful situations.   Current Directions in Psychological Science , 17 , 339–343.

Birch, H. G. & Rabinowitz, H. S. ( 1951 ). The negative effect of previous experience on productive thinking.   Journal of Experimental Psychology , 41 , 122–126.

Blessing, S. B., & Ross, B. H. ( 1996 ). Content effects in problem categorization and problem solving.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 22 , 792–810.

Bowden, E. M., & Jung-Beeman, M. ( 1998 ). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems.   Psychological Science , 6 , 435–440.

Bowden, E. M., & Jung-Beeman, M. ( 2003 ). Aha! Insight experience correlates with solution activation in the right hemisphere.   Psychonomic Bulletin and Review , 10 , 730–737.

Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. ( 2005 ). New approaches to demystifying insight.   Trends in Cognitive Sciences , 9 , 322–328.

Catrambone, R. ( 1998 ). The subgoal-learning model: Creating better examples so that students can solve novel problems.   Journal of Experimental Psychology: General , 127 , 355–376.

Chase, W. G., & Simon, H. A. ( 1973 ). Perception in chess.   Cognitive Psychology , 4 , 55–81.

Chen, D., & Holyoak, K. J. ( 2010 ). Enhancing acquisition of intuition versus planning in problem solving. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 1875–1880). Austin, TX: Cognitive Science Society.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. ( 1989 ). Self-explanations: How students study and use examples in learning to solve problems.   Cognitive Science , 13 , 145–182.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. ( 1981 ). Categorization and representation of physics problems by experts and novices.   Cognitive Science , 5 , 121–152.

Clement, J., Lochhead, J., & Monk, G. S. ( 1981 ). Translation difficulties in learning mathematics.   The American Mathematical Monthly , 88 , 286–290.

Coughlin, L. D., & Patel, V. L. ( 1987 ). Processing of critical information by physicians and medical students.   Journal of Medical Education , 62 , 818–828.

Cox, R. ( 1999 ). Representation construction, externalised cognition and individual differences.   Learning and Instruction , 9 , 343–363.

Deakin, J. M., & Allard, F. ( 1991 ). Skilled memory in expert figure skaters.   Memory and Cognition , 19 , 79–86.

Doumas, L. A. A., Bassok, M., Guthormsen, A., & Hummel, J. E. ( 2006 ). Theory of reflexive relational generalization. In R. Sun & N. Miyake (Eds.), Proceedings of the 28th Annual Conference of the Cognitive Science Society (pp. 1246–1250). Mahwah, NJ: Erlbaum.

Dunbar, K. ( 2001 ). The analogical paradox: Why analogy is so easy in naturalistic settings, yet so difficult in the psychological laboratory. In D. Gentner, K. J. Holyoak, & B. Kokinov (Eds.), Analogy: Perspectives from cognitive science (pp. 313–362). Cambridge, MA: MIT Press.

Duncker, K. ( 1945 ). On problem-solving (L. S. Lees, Trans.). Psychological Monographs , 58 (Whole No. 270). (Original work published 1935).

Durso, F. T., Rea, C. B., & Dayton, T. ( 1994 ). Graph-theoretic confirmation of restructuring during insight.   Psychological Science , 5 , 94–98.

Egan, D. E., & Schwartz, B. J. ( 1979 ). Chunking in the recall of symbolic drawings.   Memory and Cognition , 7 , 149–158.

Ericsson, K. A., & Simon, H. A. ( 1980 ). Verbal reports as data.   Psychological Review , 87 , 215–251.

Ernst, G. W., & Newell, A. ( 1969 ). GPS: A case study in generality and problem solving . New York: Academic Press.

Fisher, K. J., & Bassok, M. ( 2009 ). Analogical alignments in algebraic modeling. In B. Kokinov, D. Gentner, & K. J. Holyoak (Eds.), Proceedings of the 2nd International Analogy Conference (pp. 137–144). Sofia, Bulgaria: New Bulgarian University Press.

Fisher, K. J., Bassok, M., & Osterhout, L. ( 2010 ). When two plus two does not equal four: Event-related potential responses to semantically incongruous arithmetic word problems. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 1571–1576). Austin, TX: Cognitive Science Society.

Fisher, K. J., Borchert, K., & Bassok, M. ( 2011 ). Following the standard form: Effects of equation format on algebraic modeling.   Memory and Cognition , 39 , 502–515.

Garber, P., & Goldin-Meadow, S. ( 2002 ). Gesture offers insight into problem solving in adults and children.   Cognitive Science , 26 , 817–831.

Gobet, F., & Simon, H. ( 1996 ). Recall of rapidly presented random chess positions is a function of skill.   Psychonomic Bulletin and Review , 3 , 159–163.

Goldstone, R. L., Landy, D. H., & Son, J. Y. ( 2010 ). The education of perception.   Topics in Cognitive Science , 2 , 265–284.

Goldstone, R. L., & Sakamoto, J. Y. ( 2003 ). The transfer of abstract principles governing complex adaptive systems.   Cognitive Psychology , 46 , 414–466.

Greeno, J. G. ( 1974 ). Hobbits and orcs: Acquisition of a sequential concept.   Cognitive Psychology , 6 , 270–292.

Hardiman, P. T., Dufresne, R., & Mestre, J. P. ( 1989 ). The relation between problem categorization and problem solving among experts and novices.   Memory and Cognition , 17 , 627–638.

Haverty, L. A., Koedinger, K. R., Klahr, D., & Alibali, M. W. ( 2000 ). Solving induction problems in mathematics: Not-so-trivial Pursuit.   Cognitive Science , 24 , 249–298.

Hayes, J. R., & Simon, H. A. ( 1977 ). Psychological differences among problem isomorphs. In N. J. Castellan, D. B. Pisoni, & G. R. Potts (Eds.), Cognitive theory (Vol. 2, pp. 21–44). Hillsdale, NJ: Erlbaum.

Hegarty, M., Canham, M. S., & Fabricant, S. I. ( 2010 ). Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 36 , 37–53.

Hegarty, M., Mayer, R. E., & Green, C. E. ( 1992 ). Comprehension of arithmetic word problems: Evidence from students' eye fixations.   Journal of Educational Psychology , 84 , 76–84.

Hinsley, D. A., Hayes, J. R., & Simon, H. A. ( 1977 ). From words to equations: Meaning and representation in algebra word problems. In D. Hinsley, M. Just., & P. Carpenter (Eds.), Cognitive processes in comprehension (pp. 89–106). Hillsdale, NJ: Erlbaum.

Holyoak, K. J., & Koh, K. ( 1987 ). Surface and structural similarity in analogical transfer.   Memory and Cognition , 15 , 332–340.

Jones, G. ( 2003 ). Testing two cognitive theories of insight.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 29 , 1017–1027.

Jung-Beeman, M., & Bowden, E. M. ( 2000 ). The right hemisphere maintains solution-related activation for yet-to-be solved insight problems.   Memory and Cognition , 28 , 1231–1241.

Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. ( 2004 ). Neural activity when people solve verbal problems with insight.   PLOS Biology , 2 , 500–510.

Kellman, P. J. ( 2000 ). An update on Gestalt psychology. In B. Landau, J. Sabini, J. Jonides, & E. Newport (Eds.), Perception, cognition, and language: Essays in honor of Henry and Lila Gleitman (pp. 157–190). Cambridge, MA: MIT Press.

Kellman, P. J., Massey, C. M., & Son, J. Y ( 2009 ). Perceptual learning modules in mathematics: Enhancing students' pattern recognition, structure extraction, and fluency.   Topics in Cognitive Science , 1 , 1–21.

Kellman, P. J., Massey, C., Roth, Z., Burke, T., Zucker, J., Saw, A., … Wise, J. A. ( 2008 ). Perceptual learning and the technology of expertise.   Pragmatics and Cognition , 16 , 356–405.

Kershaw, T. C., & Ohlsson, S. ( 2004 ). Multiple causes of difficulty in insight: The case of the nine-dot problem.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 30 , 3–13.

Kindfield, A. C. H. ( 1993 /1994). Biology diagrams: Tools to think with.   Journal of the Learning Sciences , 3 , 1–36.

Kintsch, W., & Greeno, J. G. ( 1985 ). Understanding and solving word arithmetic problems.   Psychological Review , 92 , 109–129.

Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. ( 1999 ). Constraint relaxation and chunk decomposition in insight problem solving.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 25 , 1534–1555.

Knoblich, G., Ohlsson, S., & Raney, G. E. ( 2001 ). An eye movement study of insight problem solving.   Memory and Cognition , 29 , 1000–1009.

Kohler, W. ( 1925 ). The mentality of apes . New York: Harcourt Brace.

Kotovsky, K., Hayes, J. R., & Simon, H. A. ( 1985 ). Why are some problems hard? Evidence from Tower of Hanoi.   Cognitive Psychology , 17 , 248–294.

Kozma, R. B., & Russell, J. ( 1997 ). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena.   Journal of Research in Science Teaching , 34 , 949–968.

Landy, D., & Goldstone, R. L. ( 2007 a). Formal notations are diagrams: Evidence from a production task.   Memory and Cognition , 35, 2033–2040.

Landy, D., & Goldstone, R. L. ( 2007 b). How abstract is symbolic thought?   Journal of Experimental Psychology: Learning, Memory, and Cognition , 33, 720–733.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. ( 1980 ). Models of competence in solving physics problems.   Cognitive Science , 4 , 317–345.

Larkin, J. H., & Simon, H. A. ( 1987 ). Why a diagram is (sometimes) worth ten thousand words.   Cognitive Science , 11 , 65–99.

Lewis, A. B., & Mayer, R. E. ( 1987 ). students' miscomprehension of relational statements in arithmetic word problems.   Journal of Educational Psychology , 79 , 363–371.

Lynch, M. ( 1990 ). The externalized retina: Selection and mathematization in the visual documentation of objects in the life sciences. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice (pp. 153–186). Cambridge, MA: MIT Press.

MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. ( 2001 ). Information processing and insight: A process model of performance on the nine-dot and related problems.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 27 , 176–201.

Maier, N. ( 1930 ). Reasoning in humans. I. On direction.   Journal of Comparative Psychology , 10 , 15–43.

Maier, N. ( 1931 ). Reasoning in humans. II. The solution of a problem and its appearance in consciousness.   Journal of Comparative Psychology , 12 , 181–194.

Markman, A. B. ( 1999 ). Knowledge representation . Mahwah, NJ: Erlbaum.

Martin, S. A., & Bassok, M. ( 2005 ). Effects of semantic cues on mathematical modeling: Evidence from word-problem solving and equation construction tasks.   Memory and Cognition , 33 , 471–478.

Mayer, R. E., & Gallini, J. K. ( 1990 ). When is an illustration worth ten thousand words?   Journal of Educational Psychology , 82 , 715–726.

Mayer, R. E., Griffith, E., Jurkowitz, I. T. N., & Rothman, D. ( 2008 ). Increased interestingness of extraneous details in a multimedia science presentation leads to decreased learning.   Journal of Experimental Psychology: Applied , 14 , 329–339.

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. ( 1981 ). Knowledge organization and skill differences in computer programmers.   Cognitive Psychology , 13 , 307–325.

Medin, D. L., & Ross, B. H. ( 1989 ). The specific character of abstract thought: Categorization, problem solving, and induction. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 5, pp. 189–223). Hillsdale, NJ: Erlbaum.

Moss, J., Kotovsky, K., & Cagan, J. ( 2011 ). The effect of incidental hints when problems are suspended before, during, and after an impasse.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 37 , 140–148.

Myles-Worsley, M., Johnston, W. A., & Simons, M. A ( 1988 ). The influence of expertise on X-ray image processing.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 14 , 553–557.

Newell, A., & Simon, H. A. ( 1972 ). Human problem solving . Englewood Cliffs, NJ: Prentice-Hall.

Newell, A., & Simon, H. A. ( 1976 ). Computer science as empirical enquiry: Symbols and search.   Communications of the ACM , 19 , 113–126.

Novick, L. R. ( 1988 ). Analogical transfer, problem similarity, and expertise.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 14 , 510–520.

Novick, L. R. ( 1995 ). Some determinants of successful analogical transfer in the solution of algebra word problems.   Thinking and Reasoning , 1 , 5–30.

Novick, L. R., & Catley, K. M. ( 2007 ). Understanding phylogenies in biology: The influence of a Gestalt perceptual principle.   Journal of Experimental Psychology: Applied , 13 , 197–223.

Novick, L. R., Catley, K. M., & Funk, D. J. ( 2010 ). Characters are key: The effect of synapomorphies on cladogram comprehension.   Evolution: Education and Outreach , 3 , 539–547.

Novick, L. R., & Hmelo, C. E. ( 1994 ). Transferring symbolic representations across non-isomorphic problems.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 20 , 1296–1321.

Novick, L. R., & Holyoak, K. J. ( 1991 ). Mathematical problem solving by analogy.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 17 , 398–415.

Novick, L. R., & Hurley, S. M. ( 2001 ). To matrix, network, or hierarchy: That is the question.   Cognitive Psychology , 42 , 158–216.

Novick, L. R., Shade, C. K., & Catley, K. M. ( 2011 ). Linear versus branching depictions of evolutionary history: Implications for diagram design.   Topics in Cognitive Science , 3 (3), 536–559.

Novick, L. R., & Sherman, S. J. ( 2003 ). On the nature of insight solutions: Evidence from skill differences in anagram solution.   The Quarterly Journal of Experimental Psychology , 56A , 351–382.

Novick, L. R., & Sherman, S. J. ( 2008 ). The effects of superficial and structural information on on-line problem solving for good versus poor anagram solvers.   The Quarterly Journal of Experimental Psychology , 61 , 1098–1120.

Ohlsson, S. ( 1984 ). Restructuring revisited I. Summary and critique of the Gestalt theory of problem solving.   Scandinavian Journal of Psychology , 25 , 65–78.

Öllinger, M., Jones, G., & Knoblich, G. ( 2008 ). Investigating the effect of mental set on insight problem solving.   Experimental Psychology , 55 , 269–282.

Ormerod, T. C., MacGregor, J. N., & Chronicle, E. P. ( 2002 ). Dynamics and constraints in insight problem solving.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 28 , 791–799.

Paige, J. M., & Simon, H. A. ( 1966 ). Cognitive processes in solving algebra word problems. In B. Kleinmuntz (Ed.), Problem solving: Research, method, and theory (pp. 51–119). New York: Wiley

Patel, V. L., Groen, G. J., & Arocha, J. F. ( 1990 ). Medical expertise as a function of task difficulty.   Memory and Cognition , 18 , 394–406.

Patsenko, E. G., & Altmann, E. M. ( 2010 ). How planful is routine behavior? A selective attention model of performance in the Tower of Hanoi.   Journal of Experimental Psychology: General , 139 , 95–116.

Polya, G. ( 1957 ). How to solve it (2nd ed.). Princeton, NJ: Princeton University Press.

Posner, M. I. ( 1973 ). Cognition: An introduction . Glenview, IL: Scott, Foresman and Company.

Reitman, W. R. ( 1965 ). Cognition and thought . New York: Wiley.

Richland, L. E., & McDonough, I. M. ( 2010 ), Learning by analogy: Discriminating between potential analogs.   Contemporary Educational Psychology , 35 , 28–43.

Russo, J. E., Johnson, E. J., & Stephens, D. L. ( 1989 ). The validity of verbal protocols.   Memory and Cognition , 17 , 759–769.

Schoenfeld, A. H. ( 1979 ). Explicit heuristic training as a variable in problem-solving performance.   Journal for Research in Mathematics Education , 10 , 173–187.

Schoenfeld, A. H., & Herrmann, D. J. ( 1982 ). Problem perception and knowledge structure in expert and novice mathematical problem solvers.   Journal of Experimental Psychology: Learning, Memory, and Cognition , 8 , 484–494.

Schwartz, S. H. ( 1971 ). Modes of representation and problem solving: Well evolved is half solved.   Journal of Experimental Psychology , 91 , 347–350.

Silver, E. A. ( 1979 ). Student perceptions of relatedness among mathematical verbal problems.   Journal for Research in Mathematics Education , 10 , 195–210.

Silver, E. A. ( 1981 ). Recall of mathematical problem information: Solving related problems.   Journal for Research in Mathematics Education , 12 , 54–64.

Simon, D. P., & Simon, H. A. ( 1978 ). Individual differences in solving physics problems. In R. Siegler (Ed.), Children's thinking: What develops? (pp. 325–348). Hillsdale, NJ: Erlbaum.

Simon, H. A. ( 1978 ). Information-processing theory of human problem solving. In W. K. Estes (Ed.), Handbook of learning and cognitive processes (Vol. 5, pp. 271–295). Hillsdale, NJ: Erlbaum.

Simon, H. A. ( 1986 ). The information processing explanation of Gestalt Phenomena.   Computers in Human Behavior , 2 , 241–255.

Simon, H. A. ( 1990 ). Invariants of human behavior.   Annual Review of Psychology , 41 , 1–19.

Son, J. Y., & Goldstone, R. L. ( 2009 ). Fostering general transfer with specific simulations.   Pragmatics and Cognition , 17 , 1–42.

Thomas, J. C., Jr., ( 1974 ). An analysis of behavior in the hobbits-orcs problem.   Cognitive Psychology , 6 , 257–269.

Weisberg, R. W., & Alba, J. W. ( 1981 ). An examination of the alleged role of “fixation” in the solution of several “insight” problems.   Journal of Experimental Psychology: General , 110 , 169–192.

Weiser, M., & Shertz, J. ( 1983 ). Programming problem representation in novice and expert programmers.   International Journal of Man-Machine Studies , 19 , 391–398.

Wertheimer, M. ( 1959 ). Productive thinking (Rev. ed.). Chicago, IL: University of Chicago Press.

Winn, W. ( 1989 ). The design and use of instructional graphics. In H. Mandl & J. R. Levin (Eds.), Knowledge acquisition from text and pictures (pp. 125–144). Amsterdam, Netherlands: Elsevier

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Problem Solving and Decision Making

Introduction.

  • General Approaches to Problem Solving
  • Representational Accounts
  • Problem Space and Search
  • Working Memory and Problem Solving
  • Domain-Specific Problem Solving
  • The Rational Approach
  • Prospect Theory
  • Dual-Process Theory
  • Cognitive Heuristics and Biases

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Artificial Intelligence, Machine Learning, and Psychology
  • Counterfactual Reasoning
  • Critical Thinking
  • Heuristics and Biases
  • Protocol Analysis
  • Psychology and Law

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Data Visualization
  • Remote Work
  • Workforce Training Evaluation
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Problem Solving and Decision Making by Emily G. Nielsen , John Paul Minda LAST REVIEWED: 26 June 2019 LAST MODIFIED: 26 June 2019 DOI: 10.1093/obo/9780199828340-0246

Problem solving and decision making are both examples of complex, higher-order thinking. Both involve the assessment of the environment, the involvement of working memory or short-term memory, reliance on long term memory, effects of knowledge, and the application of heuristics to complete a behavior. A problem can be defined as an impasse or gap between a current state and a desired goal state. Problem solving is the set of cognitive operations that a person engages in to change the current state, to go beyond the impasse, and achieve a desired outcome. Problem solving involves the mental representation of the problem state and the manipulation of this representation in order to move closer to the goal. Problems can vary in complexity, abstraction, and how well defined (or not) the initial state and the goal state are. Research has generally approached problem solving by examining the behaviors and cognitive processes involved, and some work has examined problem solving using computational processes as well. Decision making is the process of selecting and choosing one action or behavior out of several alternatives. Like problem solving, decision making involves the coordination of memories and executive resources. Research on decision making has paid particular attention to the cognitive biases that account for suboptimal decisions and decisions that deviate from rationality. The current bibliography first outlines some general resources on the psychology of problem solving and decision making before examining each of these topics in detail. Specifically, this review covers cognitive, neuroscientific, and computational approaches to problem solving, as well as decision making models and cognitive heuristics and biases.

General Overviews

Current research in the area of problem solving and decision making is published in both general and specialized scientific journals. Theoretical and scholarly work is often summarized and developed in full-length books and chapter. These may focus on the subfields of problem solving and decision making or the larger field of thinking and higher-order cognition.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Psychology »
  • Meet the Editorial Board »
  • Abnormal Psychology
  • Academic Assessment
  • Acculturation and Health
  • Action Regulation Theory
  • Action Research
  • Addictive Behavior
  • Adolescence
  • Adoption, Social, Psychological, and Evolutionary Perspect...
  • Advanced Theory of Mind
  • Affective Forecasting
  • Affirmative Action
  • Ageism at Work
  • Allport, Gordon
  • Alzheimer’s Disease
  • Ambulatory Assessment in Behavioral Science
  • Analysis of Covariance (ANCOVA)
  • Animal Behavior
  • Animal Learning
  • Anxiety Disorders
  • Art and Aesthetics, Psychology of
  • Assessment and Clinical Applications of Individual Differe...
  • Attachment in Social and Emotional Development across the ...
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Adults
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Childre...
  • Attitudinal Ambivalence
  • Attraction in Close Relationships
  • Attribution Theory
  • Authoritarian Personality
  • Bayesian Statistical Methods in Psychology
  • Behavior Therapy, Rational Emotive
  • Behavioral Economics
  • Behavioral Genetics
  • Belief Perseverance
  • Bereavement and Grief
  • Biological Psychology
  • Birth Order
  • Body Image in Men and Women
  • Bystander Effect
  • Categorical Data Analysis in Psychology
  • Childhood and Adolescence, Peer Victimization and Bullying...
  • Clark, Mamie Phipps
  • Clinical Neuropsychology
  • Clinical Psychology
  • Cognitive Consistency Theories
  • Cognitive Dissonance Theory
  • Cognitive Neuroscience
  • Communication, Nonverbal Cues and
  • Comparative Psychology
  • Competence to Stand Trial: Restoration Services
  • Competency to Stand Trial
  • Computational Psychology
  • Conflict Management in the Workplace
  • Conformity, Compliance, and Obedience
  • Consciousness
  • Coping Processes
  • Correspondence Analysis in Psychology
  • Counseling Psychology
  • Creativity at Work
  • Cross-Cultural Psychology
  • Cultural Psychology
  • Daily Life, Research Methods for Studying
  • Data Science Methods for Psychology
  • Data Sharing in Psychology
  • Death and Dying
  • Deceiving and Detecting Deceit
  • Defensive Processes
  • Depressive Disorders
  • Development, Prenatal
  • Developmental Psychology (Cognitive)
  • Developmental Psychology (Social)
  • Diagnostic and Statistical Manual of Mental Disorders (DSM...
  • Discrimination
  • Dissociative Disorders
  • Drugs and Behavior
  • Eating Disorders
  • Ecological Psychology
  • Educational Settings, Assessment of Thinking in
  • Effect Size
  • Embodiment and Embodied Cognition
  • Emerging Adulthood
  • Emotional Intelligence
  • Empathy and Altruism
  • Employee Stress and Well-Being
  • Environmental Neuroscience and Environmental Psychology
  • Ethics in Psychological Practice
  • Event Perception
  • Evolutionary Psychology
  • Expansive Posture
  • Experimental Existential Psychology
  • Exploratory Data Analysis
  • Eyewitness Testimony
  • Eysenck, Hans
  • Factor Analysis
  • Festinger, Leon
  • Five-Factor Model of Personality
  • Flynn Effect, The
  • Forensic Psychology
  • Forgiveness
  • Friendships, Children's
  • Fundamental Attribution Error/Correspondence Bias
  • Gambler's Fallacy
  • Game Theory and Psychology
  • Geropsychology, Clinical
  • Global Mental Health
  • Habit Formation and Behavior Change
  • Health Psychology
  • Health Psychology Research and Practice, Measurement in
  • Heider, Fritz
  • History of Psychology
  • Human Factors
  • Humanistic Psychology
  • Implicit Association Test (IAT)
  • Industrial and Organizational Psychology
  • Inferential Statistics in Psychology
  • Insanity Defense, The
  • Intelligence
  • Intelligence, Crystallized and Fluid
  • Intercultural Psychology
  • Intergroup Conflict
  • International Classification of Diseases and Related Healt...
  • International Psychology
  • Interviewing in Forensic Settings
  • Intimate Partner Violence, Psychological Perspectives on
  • Introversion–Extraversion
  • Item Response Theory
  • Law, Psychology and
  • Lazarus, Richard
  • Learned Helplessness
  • Learning Theory
  • Learning versus Performance
  • LGBTQ+ Romantic Relationships
  • Lie Detection in a Forensic Context
  • Life-Span Development
  • Locus of Control
  • Loneliness and Health
  • Mathematical Psychology
  • Meaning in Life
  • Mechanisms and Processes of Peer Contagion
  • Media Violence, Psychological Perspectives on
  • Mediation Analysis
  • Memories, Autobiographical
  • Memories, Flashbulb
  • Memories, Repressed and Recovered
  • Memory, False
  • Memory, Human
  • Memory, Implicit versus Explicit
  • Memory in Educational Settings
  • Memory, Semantic
  • Meta-Analysis
  • Metacognition
  • Metaphor, Psychological Perspectives on
  • Microaggressions
  • Military Psychology
  • Mindfulness
  • Mindfulness and Education
  • Minnesota Multiphasic Personality Inventory (MMPI)
  • Money, Psychology of
  • Moral Conviction
  • Moral Development
  • Moral Psychology
  • Moral Reasoning
  • Nature versus Nurture Debate in Psychology
  • Neuroscience of Associative Learning
  • Nonergodicity in Psychology and Neuroscience
  • Nonparametric Statistical Analysis in Psychology
  • Observational (Non-Randomized) Studies
  • Obsessive-Complusive Disorder (OCD)
  • Occupational Health Psychology
  • Olfaction, Human
  • Operant Conditioning
  • Optimism and Pessimism
  • Organizational Justice
  • Parenting Stress
  • Parenting Styles
  • Parents' Beliefs about Children
  • Path Models
  • Peace Psychology
  • Perception, Person
  • Performance Appraisal
  • Personality and Health
  • Personality Disorders
  • Personality Psychology
  • Person-Centered and Experiential Psychotherapies: From Car...
  • Phenomenological Psychology
  • Placebo Effects in Psychology
  • Play Behavior
  • Positive Psychological Capital (PsyCap)
  • Positive Psychology
  • Posttraumatic Stress Disorder (PTSD)
  • Prejudice and Stereotyping
  • Pretrial Publicity
  • Prisoner's Dilemma
  • Problem Solving and Decision Making
  • Procrastination
  • Prosocial Behavior
  • Prosocial Spending and Well-Being
  • Psycholinguistics
  • Psychological Literacy
  • Psychological Perspectives on Food and Eating
  • Psychology, Political
  • Psychoneuroimmunology
  • Psychophysics, Visual
  • Psychotherapy
  • Psychotic Disorders
  • Publication Bias in Psychology
  • Reasoning, Counterfactual
  • Rehabilitation Psychology
  • Relationships
  • Reliability–Contemporary Psychometric Conceptions
  • Religion, Psychology and
  • Replication Initiatives in Psychology
  • Research Methods
  • Risk Taking
  • Role of the Expert Witness in Forensic Psychology, The
  • Sample Size Planning for Statistical Power and Accurate Es...
  • Schizophrenic Disorders
  • School Psychology
  • School Psychology, Counseling Services in
  • Self, Gender and
  • Self, Psychology of the
  • Self-Construal
  • Self-Control
  • Self-Deception
  • Self-Determination Theory
  • Self-Efficacy
  • Self-Esteem
  • Self-Monitoring
  • Self-Regulation in Educational Settings
  • Self-Report Tests, Measures, and Inventories in Clinical P...
  • Sensation Seeking
  • Sex and Gender
  • Sexual Minority Parenting
  • Sexual Orientation
  • Signal Detection Theory and its Applications
  • Simpson's Paradox in Psychology
  • Single People
  • Single-Case Experimental Designs
  • Skinner, B.F.
  • Sleep and Dreaming
  • Small Groups
  • Social Class and Social Status
  • Social Cognition
  • Social Neuroscience
  • Social Support
  • Social Touch and Massage Therapy Research
  • Somatoform Disorders
  • Spatial Attention
  • Sports Psychology
  • Stanford Prison Experiment (SPE): Icon and Controversy
  • Stereotype Threat
  • Stereotypes
  • Stress and Coping, Psychology of
  • Student Success in College
  • Subjective Wellbeing Homeostasis
  • Taste, Psychological Perspectives on
  • Teaching of Psychology
  • Terror Management Theory
  • Testing and Assessment
  • The Concept of Validity in Psychological Assessment
  • The Neuroscience of Emotion Regulation
  • The Reasoned Action Approach and the Theories of Reasoned ...
  • The Weapon Focus Effect in Eyewitness Memory
  • Theory of Mind
  • Therapy, Cognitive-Behavioral
  • Thinking Skills in Educational Settings
  • Time Perception
  • Trait Perspective
  • Trauma Psychology
  • Twin Studies
  • Type A Behavior Pattern (Coronary Prone Personality)
  • Unconscious Processes
  • Video Games and Violent Content
  • Virtues and Character Strengths
  • Women and Science, Technology, Engineering, and Math (STEM...
  • Women, Psychology of
  • Work Well-Being
  • Wundt, Wilhelm
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|185.80.150.64]
  • 185.80.150.64

How to master the seven-step problem-solving process

In this episode of the McKinsey Podcast , Simon London speaks with Charles Conn, CEO of venture-capital firm Oxford Sciences Innovation, and McKinsey senior partner Hugo Sarrazin about the complexities of different problem-solving strategies.

Podcast transcript

Simon London: Hello, and welcome to this episode of the McKinsey Podcast , with me, Simon London. What’s the number-one skill you need to succeed professionally? Salesmanship, perhaps? Or a facility with statistics? Or maybe the ability to communicate crisply and clearly? Many would argue that at the very top of the list comes problem solving: that is, the ability to think through and come up with an optimal course of action to address any complex challenge—in business, in public policy, or indeed in life.

Looked at this way, it’s no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

Charles and Hugo, welcome to the podcast. Thank you for being here.

Hugo Sarrazin: Our pleasure.

Charles Conn: It’s terrific to be here.

Simon London: Problem solving is a really interesting piece of terminology. It could mean so many different things. I have a son who’s a teenage climber. They talk about solving problems. Climbing is problem solving. Charles, when you talk about problem solving, what are you talking about?

Charles Conn: For me, problem solving is the answer to the question “What should I do?” It’s interesting when there’s uncertainty and complexity, and when it’s meaningful because there are consequences. Your son’s climbing is a perfect example. There are consequences, and it’s complicated, and there’s uncertainty—can he make that grab? I think we can apply that same frame almost at any level. You can think about questions like “What town would I like to live in?” or “Should I put solar panels on my roof?”

You might think that’s a funny thing to apply problem solving to, but in my mind it’s not fundamentally different from business problem solving, which answers the question “What should my strategy be?” Or problem solving at the policy level: “How do we combat climate change?” “Should I support the local school bond?” I think these are all part and parcel of the same type of question, “What should I do?”

I’m a big fan of structured problem solving. By following steps, we can more clearly understand what problem it is we’re solving, what are the components of the problem that we’re solving, which components are the most important ones for us to pay attention to, which analytic techniques we should apply to those, and how we can synthesize what we’ve learned back into a compelling story. That’s all it is, at its heart.

I think sometimes when people think about seven steps, they assume that there’s a rigidity to this. That’s not it at all. It’s actually to give you the scope for creativity, which often doesn’t exist when your problem solving is muddled.

Simon London: You were just talking about the seven-step process. That’s what’s written down in the book, but it’s a very McKinsey process as well. Without getting too deep into the weeds, let’s go through the steps, one by one. You were just talking about problem definition as being a particularly important thing to get right first. That’s the first step. Hugo, tell us about that.

Hugo Sarrazin: It is surprising how often people jump past this step and make a bunch of assumptions. The most powerful thing is to step back and ask the basic questions—“What are we trying to solve? What are the constraints that exist? What are the dependencies?” Let’s make those explicit and really push the thinking and defining. At McKinsey, we spend an enormous amount of time in writing that little statement, and the statement, if you’re a logic purist, is great. You debate. “Is it an ‘or’? Is it an ‘and’? What’s the action verb?” Because all these specific words help you get to the heart of what matters.

Want to subscribe to The McKinsey Podcast ?

Simon London: So this is a concise problem statement.

Hugo Sarrazin: Yeah. It’s not like “Can we grow in Japan?” That’s interesting, but it is “What, specifically, are we trying to uncover in the growth of a product in Japan? Or a segment in Japan? Or a channel in Japan?” When you spend an enormous amount of time, in the first meeting of the different stakeholders, debating this and having different people put forward what they think the problem definition is, you realize that people have completely different views of why they’re here. That, to me, is the most important step.

Charles Conn: I would agree with that. For me, the problem context is critical. When we understand “What are the forces acting upon your decision maker? How quickly is the answer needed? With what precision is the answer needed? Are there areas that are off limits or areas where we would particularly like to find our solution? Is the decision maker open to exploring other areas?” then you not only become more efficient, and move toward what we call the critical path in problem solving, but you also make it so much more likely that you’re not going to waste your time or your decision maker’s time.

How often do especially bright young people run off with half of the idea about what the problem is and start collecting data and start building models—only to discover that they’ve really gone off half-cocked.

Hugo Sarrazin: Yeah.

Charles Conn: And in the wrong direction.

Simon London: OK. So step one—and there is a real art and a structure to it—is define the problem. Step two, Charles?

Charles Conn: My favorite step is step two, which is to use logic trees to disaggregate the problem. Every problem we’re solving has some complexity and some uncertainty in it. The only way that we can really get our team working on the problem is to take the problem apart into logical pieces.

What we find, of course, is that the way to disaggregate the problem often gives you an insight into the answer to the problem quite quickly. I love to do two or three different cuts at it, each one giving a bit of a different insight into what might be going wrong. By doing sensible disaggregations, using logic trees, we can figure out which parts of the problem we should be looking at, and we can assign those different parts to team members.

Simon London: What’s a good example of a logic tree on a sort of ratable problem?

Charles Conn: Maybe the easiest one is the classic profit tree. Almost in every business that I would take a look at, I would start with a profit or return-on-assets tree. In its simplest form, you have the components of revenue, which are price and quantity, and the components of cost, which are cost and quantity. Each of those can be broken out. Cost can be broken into variable cost and fixed cost. The components of price can be broken into what your pricing scheme is. That simple tree often provides insight into what’s going on in a business or what the difference is between that business and the competitors.

If we add the leg, which is “What’s the asset base or investment element?”—so profit divided by assets—then we can ask the question “Is the business using its investments sensibly?” whether that’s in stores or in manufacturing or in transportation assets. I hope we can see just how simple this is, even though we’re describing it in words.

When I went to work with Gordon Moore at the Moore Foundation, the problem that he asked us to look at was “How can we save Pacific salmon?” Now, that sounds like an impossible question, but it was amenable to precisely the same type of disaggregation and allowed us to organize what became a 15-year effort to improve the likelihood of good outcomes for Pacific salmon.

Simon London: Now, is there a danger that your logic tree can be impossibly large? This, I think, brings us onto the third step in the process, which is that you have to prioritize.

Charles Conn: Absolutely. The third step, which we also emphasize, along with good problem definition, is rigorous prioritization—we ask the questions “How important is this lever or this branch of the tree in the overall outcome that we seek to achieve? How much can I move that lever?” Obviously, we try and focus our efforts on ones that have a big impact on the problem and the ones that we have the ability to change. With salmon, ocean conditions turned out to be a big lever, but not one that we could adjust. We focused our attention on fish habitats and fish-harvesting practices, which were big levers that we could affect.

People spend a lot of time arguing about branches that are either not important or that none of us can change. We see it in the public square. When we deal with questions at the policy level—“Should you support the death penalty?” “How do we affect climate change?” “How can we uncover the causes and address homelessness?”—it’s even more important that we’re focusing on levers that are big and movable.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

Simon London: Let’s move swiftly on to step four. You’ve defined your problem, you disaggregate it, you prioritize where you want to analyze—what you want to really look at hard. Then you got to the work plan. Now, what does that mean in practice?

Hugo Sarrazin: Depending on what you’ve prioritized, there are many things you could do. It could be breaking the work among the team members so that people have a clear piece of the work to do. It could be defining the specific analyses that need to get done and executed, and being clear on time lines. There’s always a level-one answer, there’s a level-two answer, there’s a level-three answer. Without being too flippant, I can solve any problem during a good dinner with wine. It won’t have a whole lot of backing.

Simon London: Not going to have a lot of depth to it.

Hugo Sarrazin: No, but it may be useful as a starting point. If the stakes are not that high, that could be OK. If it’s really high stakes, you may need level three and have the whole model validated in three different ways. You need to find a work plan that reflects the level of precision, the time frame you have, and the stakeholders you need to bring along in the exercise.

Charles Conn: I love the way you’ve described that, because, again, some people think of problem solving as a linear thing, but of course what’s critical is that it’s iterative. As you say, you can solve the problem in one day or even one hour.

Charles Conn: We encourage our teams everywhere to do that. We call it the one-day answer or the one-hour answer. In work planning, we’re always iterating. Every time you see a 50-page work plan that stretches out to three months, you know it’s wrong. It will be outmoded very quickly by that learning process that you described. Iterative problem solving is a critical part of this. Sometimes, people think work planning sounds dull, but it isn’t. It’s how we know what’s expected of us and when we need to deliver it and how we’re progressing toward the answer. It’s also the place where we can deal with biases. Bias is a feature of every human decision-making process. If we design our team interactions intelligently, we can avoid the worst sort of biases.

Simon London: Here we’re talking about cognitive biases primarily, right? It’s not that I’m biased against you because of your accent or something. These are the cognitive biases that behavioral sciences have shown we all carry around, things like anchoring, overoptimism—these kinds of things.

Both: Yeah.

Charles Conn: Availability bias is the one that I’m always alert to. You think you’ve seen the problem before, and therefore what’s available is your previous conception of it—and we have to be most careful about that. In any human setting, we also have to be careful about biases that are based on hierarchies, sometimes called sunflower bias. I’m sure, Hugo, with your teams, you make sure that the youngest team members speak first. Not the oldest team members, because it’s easy for people to look at who’s senior and alter their own creative approaches.

Hugo Sarrazin: It’s helpful, at that moment—if someone is asserting a point of view—to ask the question “This was true in what context?” You’re trying to apply something that worked in one context to a different one. That can be deadly if the context has changed, and that’s why organizations struggle to change. You promote all these people because they did something that worked well in the past, and then there’s a disruption in the industry, and they keep doing what got them promoted even though the context has changed.

Simon London: Right. Right.

Hugo Sarrazin: So it’s the same thing in problem solving.

Charles Conn: And it’s why diversity in our teams is so important. It’s one of the best things about the world that we’re in now. We’re likely to have people from different socioeconomic, ethnic, and national backgrounds, each of whom sees problems from a slightly different perspective. It is therefore much more likely that the team will uncover a truly creative and clever approach to problem solving.

Simon London: Let’s move on to step five. You’ve done your work plan. Now you’ve actually got to do the analysis. The thing that strikes me here is that the range of tools that we have at our disposal now, of course, is just huge, particularly with advances in computation, advanced analytics. There’s so many things that you can apply here. Just talk about the analysis stage. How do you pick the right tools?

Charles Conn: For me, the most important thing is that we start with simple heuristics and explanatory statistics before we go off and use the big-gun tools. We need to understand the shape and scope of our problem before we start applying these massive and complex analytical approaches.

Simon London: Would you agree with that?

Hugo Sarrazin: I agree. I think there are so many wonderful heuristics. You need to start there before you go deep into the modeling exercise. There’s an interesting dynamic that’s happening, though. In some cases, for some types of problems, it is even better to set yourself up to maximize your learning. Your problem-solving methodology is test and learn, test and learn, test and learn, and iterate. That is a heuristic in itself, the A/B testing that is used in many parts of the world. So that’s a problem-solving methodology. It’s nothing different. It just uses technology and feedback loops in a fast way. The other one is exploratory data analysis. When you’re dealing with a large-scale problem, and there’s so much data, I can get to the heuristics that Charles was talking about through very clever visualization of data.

You test with your data. You need to set up an environment to do so, but don’t get caught up in neural-network modeling immediately. You’re testing, you’re checking—“Is the data right? Is it sound? Does it make sense?”—before you launch too far.

Simon London: You do hear these ideas—that if you have a big enough data set and enough algorithms, they’re going to find things that you just wouldn’t have spotted, find solutions that maybe you wouldn’t have thought of. Does machine learning sort of revolutionize the problem-solving process? Or are these actually just other tools in the toolbox for structured problem solving?

Charles Conn: It can be revolutionary. There are some areas in which the pattern recognition of large data sets and good algorithms can help us see things that we otherwise couldn’t see. But I do think it’s terribly important we don’t think that this particular technique is a substitute for superb problem solving, starting with good problem definition. Many people use machine learning without understanding algorithms that themselves can have biases built into them. Just as 20 years ago, when we were doing statistical analysis, we knew that we needed good model definition, we still need a good understanding of our algorithms and really good problem definition before we launch off into big data sets and unknown algorithms.

Simon London: Step six. You’ve done your analysis.

Charles Conn: I take six and seven together, and this is the place where young problem solvers often make a mistake. They’ve got their analysis, and they assume that’s the answer, and of course it isn’t the answer. The ability to synthesize the pieces that came out of the analysis and begin to weave those into a story that helps people answer the question “What should I do?” This is back to where we started. If we can’t synthesize, and we can’t tell a story, then our decision maker can’t find the answer to “What should I do?”

Simon London: But, again, these final steps are about motivating people to action, right?

Charles Conn: Yeah.

Simon London: I am slightly torn about the nomenclature of problem solving because it’s on paper, right? Until you motivate people to action, you actually haven’t solved anything.

Charles Conn: I love this question because I think decision-making theory, without a bias to action, is a waste of time. Everything in how I approach this is to help people take action that makes the world better.

Simon London: Hence, these are absolutely critical steps. If you don’t do this well, you’ve just got a bunch of analysis.

Charles Conn: We end up in exactly the same place where we started, which is people speaking across each other, past each other in the public square, rather than actually working together, shoulder to shoulder, to crack these important problems.

Simon London: In the real world, we have a lot of uncertainty—arguably, increasing uncertainty. How do good problem solvers deal with that?

Hugo Sarrazin: At every step of the process. In the problem definition, when you’re defining the context, you need to understand those sources of uncertainty and whether they’re important or not important. It becomes important in the definition of the tree.

You need to think carefully about the branches of the tree that are more certain and less certain as you define them. They don’t have equal weight just because they’ve got equal space on the page. Then, when you’re prioritizing, your prioritization approach may put more emphasis on things that have low probability but huge impact—or, vice versa, may put a lot of priority on things that are very likely and, hopefully, have a reasonable impact. You can introduce that along the way. When you come back to the synthesis, you just need to be nuanced about what you’re understanding, the likelihood.

Often, people lack humility in the way they make their recommendations: “This is the answer.” They’re very precise, and I think we would all be well-served to say, “This is a likely answer under the following sets of conditions” and then make the level of uncertainty clearer, if that is appropriate. It doesn’t mean you’re always in the gray zone; it doesn’t mean you don’t have a point of view. It just means that you can be explicit about the certainty of your answer when you make that recommendation.

Simon London: So it sounds like there is an underlying principle: “Acknowledge and embrace the uncertainty. Don’t pretend that it isn’t there. Be very clear about what the uncertainties are up front, and then build that into every step of the process.”

Hugo Sarrazin: Every step of the process.

Simon London: Yeah. We have just walked through a particular structured methodology for problem solving. But, of course, this is not the only structured methodology for problem solving. One that is also very well-known is design thinking, which comes at things very differently. So, Hugo, I know you have worked with a lot of designers. Just give us a very quick summary. Design thinking—what is it, and how does it relate?

Hugo Sarrazin: It starts with an incredible amount of empathy for the user and uses that to define the problem. It does pause and go out in the wild and spend an enormous amount of time seeing how people interact with objects, seeing the experience they’re getting, seeing the pain points or joy—and uses that to infer and define the problem.

Simon London: Problem definition, but out in the world.

Hugo Sarrazin: With an enormous amount of empathy. There’s a huge emphasis on empathy. Traditional, more classic problem solving is you define the problem based on an understanding of the situation. This one almost presupposes that we don’t know the problem until we go see it. The second thing is you need to come up with multiple scenarios or answers or ideas or concepts, and there’s a lot of divergent thinking initially. That’s slightly different, versus the prioritization, but not for long. Eventually, you need to kind of say, “OK, I’m going to converge again.” Then you go and you bring things back to the customer and get feedback and iterate. Then you rinse and repeat, rinse and repeat. There’s a lot of tactile building, along the way, of prototypes and things like that. It’s very iterative.

Simon London: So, Charles, are these complements or are these alternatives?

Charles Conn: I think they’re entirely complementary, and I think Hugo’s description is perfect. When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that’s very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use contrasting teams, so that we do have divergent thinking. The best teams allow divergent thinking to bump them off whatever their initial biases in problem solving are. For me, design thinking gives us a constant reminder of creativity, empathy, and the tactile nature of problem solving, but it’s absolutely complementary, not alternative.

Simon London: I think, in a world of cross-functional teams, an interesting question is do people with design-thinking backgrounds really work well together with classical problem solvers? How do you make that chemistry happen?

Hugo Sarrazin: Yeah, it is not easy when people have spent an enormous amount of time seeped in design thinking or user-centric design, whichever word you want to use. If the person who’s applying classic problem-solving methodology is very rigid and mechanical in the way they’re doing it, there could be an enormous amount of tension. If there’s not clarity in the role and not clarity in the process, I think having the two together can be, sometimes, problematic.

The second thing that happens often is that the artifacts the two methodologies try to gravitate toward can be different. Classic problem solving often gravitates toward a model; design thinking migrates toward a prototype. Rather than writing a big deck with all my supporting evidence, they’ll bring an example, a thing, and that feels different. Then you spend your time differently to achieve those two end products, so that’s another source of friction.

Now, I still think it can be an incredibly powerful thing to have the two—if there are the right people with the right mind-set, if there is a team that is explicit about the roles, if we’re clear about the kind of outcomes we are attempting to bring forward. There’s an enormous amount of collaborativeness and respect.

Simon London: But they have to respect each other’s methodology and be prepared to flex, maybe, a little bit, in how this process is going to work.

Hugo Sarrazin: Absolutely.

Simon London: The other area where, it strikes me, there could be a little bit of a different sort of friction is this whole concept of the day-one answer, which is what we were just talking about in classical problem solving. Now, you know that this is probably not going to be your final answer, but that’s how you begin to structure the problem. Whereas I would imagine your design thinkers—no, they’re going off to do their ethnographic research and get out into the field, potentially for a long time, before they come back with at least an initial hypothesis.

Want better strategies? Become a bulletproof problem solver

Want better strategies? Become a bulletproof problem solver

Hugo Sarrazin: That is a great callout, and that’s another difference. Designers typically will like to soak into the situation and avoid converging too quickly. There’s optionality and exploring different options. There’s a strong belief that keeps the solution space wide enough that you can come up with more radical ideas. If there’s a large design team or many designers on the team, and you come on Friday and say, “What’s our week-one answer?” they’re going to struggle. They’re not going to be comfortable, naturally, to give that answer. It doesn’t mean they don’t have an answer; it’s just not where they are in their thinking process.

Simon London: I think we are, sadly, out of time for today. But Charles and Hugo, thank you so much.

Charles Conn: It was a pleasure to be here, Simon.

Hugo Sarrazin: It was a pleasure. Thank you.

Simon London: And thanks, as always, to you, our listeners, for tuning into this episode of the McKinsey Podcast . If you want to learn more about problem solving, you can find the book, Bulletproof Problem Solving: The One Skill That Changes Everything , online or order it through your local bookstore. To learn more about McKinsey, you can of course find us at McKinsey.com.

Charles Conn is CEO of Oxford Sciences Innovation and an alumnus of McKinsey’s Sydney office. Hugo Sarrazin is a senior partner in the Silicon Valley office, where Simon London, a member of McKinsey Publishing, is also based.

Explore a career with us

Related articles.

Want better strategies? Become a bulletproof problem solver

Strategy to beat the odds

firo13_frth

Five routes to more innovative problem solving

Problem Solving

  • Reference work entry
  • pp 2680–2683
  • Cite this reference work entry

problem solving studies definition

  • David H. Jonassen 2 &
  • Woei Hung 3  

1856 Accesses

11 Citations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bransford, J., & Stein, B. S. (1984). The IDEAL problem solver: A guide for improving thinking, learning, and creativity . New York: WH Freeman.

Google Scholar  

Frensch, P. A., & Funke, J. (Eds.). (1995). Complex problem solving: The European perspective . Hillsdale: Erlbaum.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15 , 1–38.

Article   Google Scholar  

Jonassen, D. H. (2010). Learning to solve problems: A handbook . New York: Routledge.

Jonassen, D. H., & Hung, W. (2008). All problems are not equal: Implications for PBL. Interdisciplinary Journal of Problem-Based Learning, 2 (2), 6–28.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology: Research & Development, 48 (4), 63–85.

Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments . New York: Routledge.

Klein, G. A. (1998). Sources of power: How people make decisions . Cambridge, MA: MIT Press.

Lehman, D., Lempert, R., & Nisbett, R. E. (1988). The effects of graduate training on reasoning: Formal discipline and thinking about everyday-life events. Educational Psychologist, 43 , 431–442.

Newell, A., & Simon, H. (1972). Human problem solving . Englewood Cliffs: Prentice Hall.

Rumelhart, D. E., & Norman, D. A. (1988). Representation in memory. In R. C. Atkinson, R. J. Herrnstein, G. Lindzey, & R. D. Luce (Eds.), Steven’s handbook of experimental psychology (Learning and cognition 2nd ed., Vol. 2, pp. 511–587). New York: Wiley.

Sinnott, J. D. (1989). Everyday problem solving: Theory and applications (pp. 72–99). New York: Praeger.

Wood, P. K. (1983). Inquiring systems and problem structures: Implications for cognitive development. Human Development, 26 , 249–265.

Download references

Author information

Authors and affiliations.

School of Information Science and Learning Technologies, University of Missouri, 221C Townsend Hall, 65211, Columbia, MO, USA

Dr. David H. Jonassen

College of Education and Human Development, University of North Dakota, 231 Centennial Drive, Stop 7189, 58202, Grand Forks, ND, USA

Dr. Woei Hung

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to David H. Jonassen .

Editor information

Editors and affiliations.

Faculty of Economics and Behavioral Sciences, Department of Education, University of Freiburg, 79085, Freiburg, Germany

Norbert M. Seel

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry.

Jonassen, D.H., Hung, W. (2012). Problem Solving. In: Seel, N.M. (eds) Encyclopedia of the Sciences of Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1428-6_208

Download citation

DOI : https://doi.org/10.1007/978-1-4419-1428-6_208

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4419-1427-9

Online ISBN : 978-1-4419-1428-6

eBook Packages : Humanities, Social Sciences and Law

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

problem solving studies definition

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

problem solving studies definition

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

problem solving definition

Problem Solving Skills for the Digital Age

Lucid Content

Reading time: about 6 min

Let’s face it: Things don’t always go according to plan. Systems fail, wires get crossed, projects fall apart.

Problems are an inevitable part of life and work. They’re also an opportunity to think critically and find solutions. But knowing how to get to the root of unexpected situations or challenges can mean the difference between moving forward and spinning your wheels.

Here, we’ll break down the key elements of problem solving, some effective problem solving approaches, and a few effective tools to help you arrive at solutions more quickly.

So, what is problem solving?

Broadly defined, problem solving is the process of finding solutions to difficult or complex issues. But you already knew that. Understanding problem solving frameworks, however, requires a deeper dive.

Think about a recent problem you faced. Maybe it was an interpersonal issue. Or it could have been a major creative challenge you needed to solve for a client at work. How did you feel as you approached the issue? Stressed? Confused? Optimistic? Most importantly, which problem solving techniques did you use to tackle the situation head-on? How did you organize thoughts to arrive at the best possible solution?

Solve your problem-solving problem  

Here’s the good news: Good problem solving skills can be learned. By its nature, problem solving doesn’t adhere to a clear set of do’s and don’ts—it requires flexibility, communication, and adaptation. However, most problems you face, at work or in life, can be tackled using four basic steps.

First, you must define the problem . This step sounds obvious, but often, you can notice that something is amiss in a project or process without really knowing where the core problem lies. The most challenging part of the problem solving process is uncovering where the problem originated.

Second, you work to generate alternatives to address the problem directly. This should be a collaborative process to ensure you’re considering every angle of the issue.

Third, you evaluate and test potential solutions to your problem. This step helps you fully understand the complexity of the issue and arrive at the best possible solution.

Finally, fourth, you select and implement the solution that best addresses the problem.

Following this basic four-step process will help you approach every problem you encounter with the same rigorous critical and strategic thinking process, recognize commonalities in new problems, and avoid repeating past mistakes.

In addition to these basic problem solving skills, there are several best practices that you should incorporate. These problem solving approaches can help you think more critically and creatively about any problem:

You may not feel like you have the right expertise to resolve a specific problem. Don’t let that stop you from tackling it. The best problem solvers become students of the problem at hand. Even if you don’t have particular expertise on a topic, your unique experience and perspective can lend itself to creative solutions.

Challenge the status quo

Standard problem solving methodologies and problem solving frameworks are a good starting point. But don’t be afraid to challenge assumptions and push boundaries. Good problem solvers find ways to apply existing best practices into innovative problem solving approaches.

Think broadly about and visualize the issue

Sometimes it’s hard to see a problem, even if it’s right in front of you. Clear answers could be buried in rows of spreadsheet data or lost in miscommunication. Use visualization as a problem solving tool to break down problems to their core elements. Visuals can help you see bottlenecks in the context of the whole process and more clearly organize your thoughts as you define the problem.  

Hypothesize, test, and try again

It might be cliche, but there’s truth in the old adage that 99% of inspiration is perspiration. The best problem solvers ask why, test, fail, and ask why again. Whether it takes one or 1,000 iterations to solve a problem, the important part—and the part that everyone remembers—is the solution.

Consider other viewpoints

Today’s problems are more complex, more difficult to solve, and they often involve multiple disciplines. They require group expertise and knowledge. Being open to others’ expertise increases your ability to be a great problem solver. Great solutions come from integrating your ideas with those of others to find a better solution. Excellent problem solvers build networks and know how to collaborate with other people and teams. They are skilled in bringing people together and sharing knowledge and information.

4 effective problem solving tools

As you work through the problem solving steps, try these tools to better define the issue and find the appropriate solution.

Root cause analysis

Similar to pulling weeds from your garden, if you don’t get to the root of the problem, it’s bound to come back. A root cause analysis helps you figure out the root cause behind any disruption or problem, so you can take steps to correct the problem from recurring. The root cause analysis process involves defining the problem, collecting data, and identifying causal factors to pinpoint root causes and arrive at a solution.

root cause analysis example table

Less structured than other more traditional problem solving methods, the 5 Whys is simply what it sounds like: asking why over and over to get to the root of an obstacle or setback. This technique encourages an open dialogue that can trigger new ideas about a problem, whether done individually or with a group. Each why piggybacks off the answer to the previous why. Get started with the template below—both flowcharts and fishbone diagrams can also help you track your answers to the 5 Whys.

5 Whys analysis

Brainstorming

A meeting of the minds, a brain dump, a mind meld, a jam session. Whatever you call it, collaborative brainstorming can help surface previously unseen issues, root causes, and alternative solutions. Create and share a mind map with your team members to fuel your brainstorming session.

Gap analysis

Sometimes you don’t know where the problem is until you determine where it isn’t. Gap filling helps you analyze inadequacies that are preventing you from reaching an optimized state or end goal. For example, a content gap analysis can help a content marketer determine where holes exist in messaging or the customer experience. Gap analysis is especially helpful when it comes to problem solving because it requires you to find workable solutions. A SWOT analysis chart that looks at a problem through the lens of strengths, opportunities, opportunities, and threats can be a helpful problem solving framework as you start your analysis.

SWOT analysis

A better way to problem solve

Beyond these practical tips and tools, there are myriad methodical and creative approaches to move a project forward or resolve a conflict. The right approach will depend on the scope of the issue and your desired outcome.

Depending on the problem, Lucidchart offers several templates and diagrams that could help you identify the cause of the issue and map out a plan to resolve it.  Learn more about how Lucidchart can help you take control of your problem solving process .

Lucidchart, a cloud-based intelligent diagramming application, is a core component of Lucid Software's Visual Collaboration Suite. This intuitive, cloud-based solution empowers teams to collaborate in real-time to build flowcharts, mockups, UML diagrams, customer journey maps, and more. Lucidchart propels teams forward to build the future faster. Lucid is proud to serve top businesses around the world, including customers such as Google, GE, and NBC Universal, and 99% of the Fortune 500. Lucid partners with industry leaders, including Google, Atlassian, and Microsoft. Since its founding, Lucid has received numerous awards for its products, business, and workplace culture. For more information, visit lucidchart.com.

Related articles

problem solving studies definition

Sometimes you're faced with challenges that traditional problem solving can't fix. Creative problem solving encourages you to find new, creative ways of thinking that can help you overcome the issue at hand more quickly.

problem solving studies definition

Root cause analysis refers to any problem-solving method used to trace an issue back to its origin. Learn how to complete a root cause analysis—we've even included templates to get you started.

Bring your bright ideas to life.

or continue with

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection

Logo of pheelsevier

Problem solving through values: A challenge for thinking and capability development

  • • This paper introduces the 4W framework of consistent problem solving through values.
  • • The 4W suggests when, how and why the explication of values helps to solve a problem.
  • • The 4W is significant to teach students to cope with problems having crucial consequences.
  • • The paper considers challenges using such framework of thinking in different fields of education.

The paper aims to introduce the conceptual framework of problem solving through values. The framework consists of problem analysis, selection of value(s) as a background for the solution, the search for alternative ways of the solution, and the rationale for the solution. This framework reveals when, how, and why is important to think about values when solving problems. A consistent process fosters cohesive and creative value-based thinking during problem solving rather than teaching specific values. Therefore, the framework discloses the possibility for enabling the development of value-grounded problem solving capability.The application of this framework highlights the importance of responsibility for the chosen values that are the basis for the alternatives which determine actions. The 4W framework is meaningful for the people’s lives and their professional work. It is particularly important in the process of future professionals’ education. Critical issues concerning the development of problem solving through values are discussed when considering and examining options for the implementation of the 4W framework in educational institutions.

1. Introduction

The core competencies necessary for future professionals include problem solving based on complexity and collaborative approaches ( OECD, 2018 ). Currently, the emphasis is put on the development of technical, technological skills as well as system thinking and other cognitive abilities (e.g., Barber, 2018 ; Blanco, Schirmbeck, & Costa, 2018 ). Hence, education prepares learners with high qualifications yet lacking in moral values ( Nadda, 2017 ). Educational researchers (e.g., Barnett, 2007 ; Harland & Pickering, 2010 ) stress that such skills and abilities ( the how? ), as well as knowledge ( the what? ), are insufficient to educate a person for society and the world. The philosophy of education underlines both the epistemological and ontological dimensions of learning. Barnett (2007) points out that the ontological dimension has to be above the epistemological one. The ontological dimension encompasses the issues related to values that education should foster ( Harland & Pickering, 2010 ). In addition, values are closely related to the enablement of learners in educational environments ( Jucevičienė et al., 2010 ). For these reasons, ‘ the why ?’ based on values is required in the learning process. The question arises as to what values and how it makes sense to educate them. Value-based education seeks to address these issues and concentrates on values transfer due to their integration into the curriculum. Yazdani and Akbarilakeh (2017) discussed that value-based education could only convey factual knowledge of values and ethics. However, such education does not guarantee the internalization of values. Nevertheless, value-based education indicates problem solving as one of the possibilities to develop values.

Values guide and affect personal behavior encompassing the ethical aspects of solutions ( Roccas, Sagiv, & Navon, 2017 ; Schwartz, 1992 , 2012 ; Verplanken & Holland, 2002 ). Therefore, they represent the essential foundation for solving a problem. Growing evidence indicates the creative potential of values ( Dollinger, Burke, & Gump, 2007 ; Kasof, Chen, Himsel, & Greenberger, 2007 ; Lebedeva et al., 2019) and emphasizes their significance for problem solving. Meanwhile, research in problem solving pays little attention to values. Most of the problem solving models (e.g., Newell & Simon, 1972 ; Jonassen, 1997 ) utilize a rational economic approach. Principally, the research on the mechanisms of problem solving have been conducted under laboratory conditions performing simple tasks ( Csapó & Funke, 2017 ). Moreover, some of the decision-making models share the same steps as problem solving (c.f., Donovan, Guss, & Naslund, 2015 ). This explains why these terms are sometimes used interchangeably ( Huitt, 1992 ). Indeed, decision-making is a part of problem solving, which emerges while choosing between alternatives. Yet, values, moral, and ethical issues are more common in decision-making research (e.g., Keeney, 1994 ; Verplanken & Holland, 2002 ; Hall & Davis, 2007 ; Sheehan & Schmidt, 2015 ). Though, research by Shepherd, Patzelt, and Baron (2013) , Baron, Zhao, and Miao (2015) has affirmed that contemporary business decision makers rather often leave aside ethical issues and moral values. Thus, ‘ethical disengagement fallacy’ ( Sternberg, 2017, p.7 ) occurs as people think that ethics is more relevant to others. In the face of such disengagement, ethical issues lose their prominence.

The analysis of the literature revealed a wide field of problem solving research presenting a range of more theoretical insights rather empirical evidence. Despite this, to date, a comprehensive model that reveals how to solve problems emphasizing thinking about values is lacking. This underlines the relevance of the chosen topic, i.e. a challenge for thinking and for the development of capabilities addressing problems through values. To address this gap, the following issues need to be investigated: When, how, and why a problem solver should take into account values during problem solving? What challenges may occur for using such framework of thinking in different fields of education? Aiming this, the authors of the paper substantiated the conceptual framework of problem solving grounded in consistent thinking about values. The substantiation consists of several parts. First, different approaches to solving problems were examined. Second, searching to reveal the possibilities of values integration into problem solving, value-based approaches significant for problem solving were critically analyzed. Third, drawing on the effect of values when solving a problem and their creative potential, the authors of this paper claim that the identification of values and their choice for a solution need to be specified in the process of problem solving. As a synthesis of conclusions coming from the literature review and conceptual extensions regarding values, the authors of the paper created the coherent framework of problem solving through values (so called 4W).

The novelty of the 4W framework is exposed by several contributions. First, the clear design of overall problem solving process with attention on integrated thinking about values is used. Unlike in most models of problem solving, the first stage encompass the identification of a problem, an analysis of a context and the perspectives that influence the whole process, i.e. ‘What?’. The stage ‘What is the basis for a solution?’ focus on values identification and their choice. The stage ‘Ways how?’ encourages to create alternatives considering values. The stage ‘Why?’ represent justification of a chosen alternative according particular issues. Above-mentioned stages including specific steps are not found in any other model of problem solving. Second, even two key stages nurture thinking about values. The specificity of the 4W framework allows expecting its successful practical application. It may help to solve a problem more informed revealing when and how the explication of values helps to reach the desired value-based solution. The particular significance is that the 4W framework can be used to develop capabilities to solve problems through values. The challenges to use the 4W framework in education are discussed.

2. Methodology

To create the 4W framework, the integrative literature review was chosen. According to Snyder (2019) , this review is ‘useful when the purpose of the review is not to cover all articles ever published on the topic but rather to combine perspectives to create new theoretical models’ (p.334). The scope of this review focused on research disclosing problem solving process that paid attention on values. The following databases were used for relevant information search: EBSCO/Hostdatabases (ERIC, Education Source), Emerald, Google Scholar. The first step of this search was conducted using integrated keywords problem solving model , problem solving process, problem solving steps . These keywords were combined with the Boolean operator AND with the second keywords values approach, value-based . The inclusion criteria were used to identify research that: presents theoretical backgrounds and/or empirical evidences; performed within the last 5 years; within an educational context; availability of full text. The sources appropriate for this review was very limited in scope (N = 2).

We implemented the second search only with the same set of the integrated keywords. The inclusion criteria were the same except the date; this criterion was extended up to 10 years. This search presented 85 different sources. After reading the summaries, introductions and conclusions of the sources found, the sources that do not explicitly provide the process/models/steps of problem solving for teaching/learning purposes and eliminates values were excluded. Aiming to see a more accurate picture of the chosen topic, we selected secondary sources from these initial sources.

Several important issues were determined as well. First, most researchers ground their studies on existing problem solving models, however, not based on values. Second, some of them conducted empirical research in order to identify the process of studies participants’ problem solving. Therefore, we included sources without date restrictions trying to identify the principal sources that reveal the process/models/steps of problem solving. Third, decision-making is a part of problem solving process. Accordingly, we performed a search with the additional keywords decision-making AND values approach, value-based decision-making . We used such inclusion criteria: presents theoretical background and/or empirical evidence; no date restriction; within an educational context; availability of full text. These all searches resulted in a total of 16 (9 theoretical and 7 empirical) sources for inclusion. They were the main sources that contributed most fruitfully for the background. We used other sources for the justification the wholeness of the 4W framework. We present the principal results of the conducted literature review in the part ‘The background of the conceptual framework’.

3. The background of the conceptual framework

3.1. different approaches of how to solve a problem.

Researchers from different fields focus on problem solving. As a result, there still seems to be a lack of a conventional definition of problem solving. Regardless of some differences, there is an agreement that problem solving is a cognitive process and one of the meaningful and significant ways of learning ( Funke, 2014 ; Jonassen, 1997 ; Mayer & Wittrock, 2006 ). Differing in approaches to solving a problem, researchers ( Collins, Sibthorp, & Gookin, 2016 ; Jonassen, 1997 ; Litzinger et al., 2010 ; Mayer & Wittrock, 2006 ; O’Loughlin & McFadzean, 1999 ; ect.) present a variety of models that differ in the number of distinct steps. What is similar in these models is that they stress the procedural process of problem solving with the focus on the development of specific skills and competences.

For the sake of this paper, we have focused on those models of problem solving that clarify the process and draw attention to values, specifically, on Huitt (1992) , Basadur, Ellspermann, and Evans (1994) , and Morton (1997) . Integrating the creative approach to problem solving, Newell and Simon (1972) presents six phases: phase 1 - identifying the problem, phase 2 - understanding the problem, phase 3 - posing solutions, phase 4 - choosing solutions, phase 5 - implementing solutions, and phase 6 - final analysis. The weakness of this model is that these phases do not necessarily follow one another, and several can coincide. However, coping with simultaneously occurring phases could be a challenge, especially if these are, for instance, phases five and six. Certainly, it may be necessary to return to the previous phases for further analysis. According to Basadur et al. (1994) , problem solving consists of problem generation, problem formulation, problem solving, and solution implementation stages. Huitt (1992) distinguishes four stages in problem solving: input, processing, output, and review. Both Huitt (1992) and Basadur et al. (1994) four-stage models emphasize a sequential process of problem solving. Thus, problem solving includes four stages that are used in education. For example, problem-based learning employs such stages as introduction of the problem, problem analysis and learning issues, discovery and reporting, solution presentation and evaluation ( Chua, Tan, & Liu, 2016 ). Even PISA 2012 framework for problem solving composes four stages: exploring and understanding, representing and formulating, planning and executing, monitoring and reflecting ( OECD, 2013 ).

Drawing on various approaches to problem solving, it is possible to notice that although each stage is named differently, it is possible to reveal some general steps. These steps reflect the essential idea of problem solving: a search for the solution from the initial state to the desirable state. The identification of a problem and its contextual elements, the generation of alternatives to a problem solution, the evaluation of these alternatives according to specific criteria, the choice of an alternative for a solution, the implementation, and monitoring of the solution are the main proceeding steps in problem solving.

3.2. Value-based approaches relevant for problem solving

Huitt (1992) suggests that important values are among the criteria for the evaluation of alternatives and the effectiveness of a chosen solution. Basadur et al. (1994) point out to visible values in the problem formulation. Morton (1997) underlines that interests, investigation, prevention, and values of all types, which may influence the process, inspire every phase of problem solving. However, the aforementioned authors do not go deeper and do not seek to disclose the significance of values for problem solving.

Decision-making research shows more possibilities for problem solving and values integration. Sheehan and Schmidt (2015) model of ethical decision-making includes moral sensitivity, moral judgment, moral motivation, and moral action where values are presented in the component of moral motivation. Another useful approach concerned with values comes from decision-making in management. It is the concept of Value-Focused Thinking (VFT) proposed by Keeney (1994) . The author argues that the goals often are merely means of achieving results in traditional models of problem solving. Such models frequently do not help to identify logical links between the problem solving goals, values, and alternatives. Thus, according to Keeney (1994) , the decision-making starts with values as they are stated in the goals and objectives of decision-makers. VFT emphasizes the core values of decision-makers that are in a specific context as well as how to find a way to achieve them by using means-ends analysis. The weakness of VFT is its restriction to this means-ends analysis. According to Shin, Jonassen, and McGee (2003) , in searching for a solution, such analysis is weak as the problem solver focuses simply on removing inadequacies between the current state and the goal state. The strengths of this approach underline that values are included in the decision before alternatives are created. Besides, values help to find creative and meaningful alternatives and to assess them. Further, they include the forthcoming consequences of the decision. As VFT emphasizes the significant function of values and clarifies the possibilities of their integration into problem solving, we adapt this approach in the current paper.

3.3. The effect of values when solving a problem

In a broader sense, values provide a direction to a person’s life. Whereas the importance of values is relatively stable over time and across situations, Roccas et al. (2017) argue that values differ in their importance to a person. Verplanken and Holland (2002) investigated the relationship between values and choices or behavior. The research revealed that the activation of a value and the centrality of a value to the self, are the essential elements for value-guided behavior. The activation of values could happen in such cases: when values are the primary focus of attention; if the situation or the information a person is confronted with implies values; when the self is activated. The centrality of a particular value is ‘the degree to which an individual has incorporated this value as part of the self’ ( Verplanken & Holland, 2002, p.436 ). Thus, the perceived importance of values and attention to them determine value-guided behavior.

According to Argandoña (2003) , values can change due to external (changing values in the people around, in society, changes in situations, etc.) and internal (internalization by learning) factors affecting the person. The research by Hall and Davis (2007) indicates that the decision-makers’ applied value profile temporarily changed as they analyzed the issue from multiple perspectives and revealed the existence of a broader set of values. The study by Kirkman (2017) reveal that participants noticed the relevance of moral values to situations they encountered in various contexts.

Values are tightly related to personal integrity and identity and guide an individual’s perception, judgment, and behavior ( Halstead, 1996 ; Schwartz, 1992 ). Sheehan and Schmidt (2015) found that values influenced ethical decision-making of accounting study programme students when they uncovered their own values and grounded in them their individual codes of conduct for future jobs. Hence, the effect of values discloses by observing the problem solver’s decision-making. The latter observations could explain the abundance of ethics-laden research in decision-making rather than in problem solving.

Contemporary researchers emphasize the creative potential of values. Dollinger et al. (2007) , Kasof et al. (2007) , Lebedeva, Schwartz, Plucker, & Van De Vijver, 2019 present to some extent similar findings as they all used Schwartz Value Survey (respectively: Schwartz, 1992 ; ( Schwartz, 1994 ), Schwartz, 2012 ). These studies disclosed that such values as self-direction, stimulation and universalism foster creativity. Kasof et al. (2007) focused their research on identified motivation. Stressing that identified motivation is the only fully autonomous type of external motivation, authors define it as ‘the desire to commence an activity as a means to some end that one greatly values’ (p.106). While identified motivation toward specific values (italic in original) fosters the search for outcomes that express those specific values, this research demonstrated that it could also inhibit creative behavior. Thus, inhibition is necessary, especially in the case where reckless creativity could have painful consequences, for example, when an architect creates a beautiful staircase without a handrail. Consequently, creativity needs to be balanced.

Ultimately, values affect human beings’ lives as they express the motivational goals ( Schwartz, 1992 ). These motivational goals are the comprehensive criteria for a person’s choices when solving problems. Whereas some problem solving models only mention values as possible evaluation criteria, but they do not give any significant suggestions when and how the problem solver could think about the values coming to the understanding that his/her values direct the decision how to solve the problem. The authors of this paper claim that the identification of personal values and their choice for a solution need to be specified in the process of problem solving. This position is clearly reflected in humanistic philosophy and psychology ( Maslow, 2011 ; Rogers, 1995 ) that emphasize personal responsibility for discovering personal values through critical questioning, honest self-esteem, self-discovery, and open-mindedness in the constant pursuit of the truth in the path of individual life. However, fundamental (of humankind) and societal values should be taken into account. McLaughlin (1997) argues that a clear boundary between societal and personal values is difficult to set as they are intertwined due to their existence in complex cultural, social, and political contexts at a particular time. A person is related to time and context when choosing values. As a result, a person assumes existing values as implicit knowledge without as much as a consideration. This is particularly evident in the current consumer society.

Moreover, McLaughlin (1997) stresses that if a particular action should be tolerated and legitimated by society, it does not mean that this action is ultimately morally acceptable in all respects. Education has possibilities to reveal this. One such possibility is to turn to the capability approach ( Sen, 1990 ), which emphasizes what people are effectively able to do and to be. Capability, according to Sen (1990) , reflects a person’s freedom to choose between various ways of living, i.e., the focus is on the development of a person’s capability to choose the life he/she has a reason to value. According to Webster (2017) , ‘in order for people to value certain aspects of life, they need to appreciate the reasons and purposes – the whys – for certain valuing’ (italic in original; p.75). As values reflect and foster these whys, education should supplement the development of capability with attention to values ( Saito, 2003 ). In order to attain this possibility, a person has to be aware of and be able to understand two facets of values. Argandoña (2003) defines them as rationality and virtuality . Rationality refers to values as the ideal of conduct and involves the development of a person’s understanding of what values and why he/she should choose them when solving a problem. Virtuality approaches values as virtues and includes learning to enable a person to live according to his/her values. However, according to McLaughlin (1997) , some people may have specific values that are deep or self-evidently essential. These values are based on fundamental beliefs about the nature and purpose of the human being. Other values can be more or less superficial as they are based on giving priority to one or the other. Thus, virtuality highlights the depth of life harmonized to fundamentally rather than superficially laden values. These approaches inform the rationale for the framework of problem solving through values.

4. The 4W framework of problem solving through values

Similar to the above-presented stages of the problem solving processes, the introduced framework by the authors of this paper revisits them (see Fig. 1 ). The framework is titled 4W as its four stages respond to such questions: Analyzing the Problem: W hat ? → Choice of the value(s): W hat is the background for the solution? → Search for the alternative w ays of the solution: How ? → The rationale for problem solution: W hy is this alternative significant ? The stages of this framework cover seven steps that reveal the logical sequence of problem solving through values.

Fig. 1

The 4 W framework: problem solving through values.

Though systematic problem solving models are criticized for being linear and inflexible (e.g., Treffinger & Isaksen, 2005 ), the authors of this paper assume a structural view of the problem solving process due to several reasons. First, the framework enables problem solvers to understand the thorough process of problem solving through values. Second, this framework reveals the depth of each stage and step. Third, problem solving through values encourages tackling problems that have crucial consequences. Only by understanding and mastering the coherence of how problems those require a value-based approach need to be addressed, a problem solver will be able to cope with them in the future. Finally, this framework aims at helping to recognize, to underline personal values, to solve problems through thinking about values, and to take responsibility for choices, even value-based. The feedback supports a direct interrelation between stages. It shapes a dynamic process of problem solving through values.

The first stage of problem solving through values - ‘ The analysis of the problem: What? ’- consists of three steps (see Fig. 1 ). The first step is ‘ Recognizing the problematic situation and naming the problem ’. This step is performed in the following sequence. First, the problem solver should perceive the problematic situation he/she faces in order to understand it. Dostál (2015) argues that the problematic situation has the potential to become the problem necessary to be addressed. Although each problem is limited by its context, not every problematic situation turns into a problem. This is related to the problem solver’s capability and the perception of reality: a person may not ‘see’ the problem if his/her capability to perceive it is not developed ( Dorst, 2006 ; Dostál, 2015 ). Second, after the problem solver recognizes the existence of the problematic situation, the problem solver has to identify the presence or absence of the problem itself, i.e. to name the problem. This is especially important in the case of the ill-structured problems since they cannot be directly visible to the problem solver ( Jonassen, 1997 ). Consequently, this step allows to determine whether the problem solver developed or has acquired the capability to perceive the problematic situation and the problem (naming the problem).

The second step is ‘ Analysing the context of the problem as a reason for its rise ’. At this step, the problem solver aims to analyse the context of the problem. The latter is one of the external issues, and it determines the solution ( Jonassen, 2011 ). However, if more attention is paid to the solution of the problem, it diverts attention from the context ( Fields, 2006 ). The problem solver has to take into account both the conveyed and implied contextual elements in the problematic situation ( Dostál, 2015 ). In other words, the problem solver has to examine it through his/her ‘contextual lenses’ ( Hester & MacG, 2017 , p.208). Thus, during this step the problem solver needs to identify the elements that shape the problem - reasons and circumstances that cause the problem, the factors that can be changed, and stakeholders that are involved in the problematic situation. Whereas the elements of the context mentioned above are within the problematic situation, the problem solver can control many of them. Such control can provide unique ways for a solution.

Although the problem solver tries to predict the undesirable results, some criteria remain underestimated. For that reason, it is necessary to highlight values underlying the various possible goals during the analysis ( Fields, 2006 ). According to Hester and MacG (2017) , values express one of the main features of the context and direct the attention of the problem solver to a given problematic situation. Hence, the problem solver should explore the value-based positions that emerge in the context of the problem.

The analysis of these contextual elements focus not only on a specific problematic situation but also on the problem that has emerged. This requires setting boundaries of attention for an in-depth understanding ( Fields, 2006 ; Hester & MacG, 2017 ). Such understanding influences several actions: (a) the recognition of inappropriate aspects of the problematic situation; (b) the emergence of paths in which identified aspects are expected to change. These actions ensure consistency and safeguard against distractions. Thus, the problem solver can now recognize and identify the factors that influence the problem although they are outside of the problematic situation. However, the problem solver possesses no control over them. With the help of such context analysis, the problem solver constructs a thorough understanding of the problem. Moreover, the problem solver becomes ready to look at the problem from different perspectives.

The third step is ‘ Perspectives emerging in the problem ’. Ims and Zsolnai (2009) argue that problem solving usually contains a ‘problematic search’. Such a search is a pragmatic activity as the problem itself induces it. Thus, the problem solver searches for a superficial solution. As a result, the focus is on control over the problem rather than a deeper understanding of the problem itself. The analysis of the problem, especially including value-based approaches, reveals the necessity to consider the problem from a variety of perspectives. Mitroff (2000) builds on Linstone (1989) ideas and claims that a sound foundation of both naming and solving any problem lays in such perspectives: the technical/scientific, the interpersonal/social, the existential, and the systemic (see Table 1 ).

The main characteristics of four perspectives for problem solving

Whereas all problems have significant aspects of each perspective, disregarding one or another may lead to the wrong way of solving the problem. While analysing all four perspectives is essential, this does not mean that they all are equally important. Therefore, it is necessary to justify why one or another perspective is more relevant and significant in a particular case. Such analysis, according to Linstone (1989) , ‘forces us to distinguish how we are looking from what we are looking at’ (p.312; italic in original). Hence, the problem solver broadens the understanding of various perspectives and develops the capability to see the bigger picture ( Hall & Davis, 2007 ).

The problem solver aims to identify and describe four perspectives that have emerged in the problem during this step. In order to identify perspectives, the problem solver search answers to the following questions. First, regarding the technical/scientific perspective: What technical/scientific reasons are brought out in the problem? How and to what extent do they influence a problem and its context? Second, regarding the interpersonal/social perspective: What is the impact of the problem on stakeholders? How does it influence their attitudes, living conditions, interests, needs? Third, regarding the existential perspective: How does the problem affect human feelings, experiences, perception, and/or discovery of meaning? Fourth, regarding the systemic perspective: What is the effect of the problem on the person → community → society → the world? Based on the analysis of this step, the problem solver obtains a comprehensive picture of the problem. The next stage is to choose the value(s) that will address the problem.

The second stage - ‘ The choice of value(s): What is the background for the solution?’ - includes the fourth and the fifth steps. The fourth step is ‘ The identification of value(s) as a base for the solution ’. During this step, the problem solver should activate his/her value(s) making it (them) explicit. In order to do this, the problem solver proceeds several sub-steps. First, the problem solver reflects taking into account the analysis done in previous steps. He/she raises up questions revealing values that lay in the background of this analysis: What values does this analyzed context allow me to notice? What values do different perspectives of the problem ‘offer’? Such questioning is important as values are deeply hidden ( Verplanken & Holland, 2002 ) and they form a bias, which restricts the development of the capability to see from various points of view ( Hall & Paradice, 2007 ). In the 4W framework, this bias is relatively eliminated due to the analysis of the context and exploration of the perspectives of a problem. As a result, the problem solver discovers distinct value-based positions and gets an opportunity to identify the ‘value uncaptured’ ( Yang, Evans, Vladimirova, & Rana, 2017, p.1796 ) within the problem analyzed. The problem solver observes that some values exist in the context (the second step) and the disclosed perspectives (the third step). Some of the identified values do not affect the current situation as they are not required, or their potential is not exploited. Thus, looking through various value-based lenses, the problem solver can identify and discover a congruence between the opportunities offered by the values in the problem’s context, disclosed perspectives and his/her value(s). Consequently, the problem solver decides what values he/she chooses as a basis for the desired solution. Since problems usually call for a list of values, it is important to find out their order of priority. Thus, the last sub-step requires the problem solver to choose between fundamentally and superficially laden values.

In some cases, the problem solver identifies that a set of values (more than one value) can lead to the desired solution. If a person chooses this multiple value-based position, two options emerge. The first option is concerned with the analysis of each value-based position separately (from the fifth to the seventh step). In the second option, a person has to uncover which of his/her chosen values are fundamentally laden and which are superficially chosen, considering the desired outcome in the current situation. Such clarification could act as a strategy where the path for the desired solution is possible going from superficially chosen value(s) to fundamentally laden one. When a basis for the solution is established, the problem solver formulates the goal for the desired solution.

The fifth step is ‘ The formulation of the goal for the solution ’. Problem solving highlights essential points that reveal the structure of a person’s goals; thus, a goal is the core element of problem solving ( Funke, 2014 ). Meantime, values reflect the motivational content of the goals ( Schwartz, 1992 ). The attention on the chosen value not only activates it, but also motivates the problem solver. The motivation directs the formulation of the goal. In such a way, values explicitly become a basis of the goal for the solution. Thus, this step involves the problem solver in formulating the goal for the solution as the desired outcome.

The way how to take into account value(s) when formulating the goal is the integration of value(s) chosen by the problem solver in the formulation of the goal ( Keeney, 1994 ). For this purpose the conjunction of a context for a solution (it is analyzed during the second step) and a direction of preference (the chosen value reveals it) serves for the formulation of the goal (that represents the desired solution). In other words, a value should be directly included into the formulation of the goal. The goal could lose value, if value is not included into the goal formulation and remains only in the context of the goal. Let’s take the actual example concerning COVID-19 situation. Naturally, many countries governments’ preference represents such value as human life (‘it is important of every individual’s life’). Thus, most likely the particular country government’s goal of solving the COVID situation could be to save the lifes of the country people. The named problem is a complex where the goal of its solution is also complex, although it sounds simple. However, if the goal as desired outcome is formulated without the chosen value, this value remains in the context and its meaning becomes tacit. In the case of above presented example - the goal could be formulated ‘to provide hospitals with the necessary equipment and facilities’. Such goal has the value ‘human’s life’ in the context, but eliminates the complexity of the problem that leads to a partial solution of the problem. Thus, this step from the problem solver requires caution when formulating the goal as the desired outcome. For this reason, maintaining value is very important when formulating the goal’s text. To avoid the loss of values and maintain their proposed direction, is necessary to take into account values again when creating alternatives.

The third stage - ‘ Search for the alternative ways for a solution: How? ’ - encompasses the sixth step, which is called ‘ Creation of value-based alternatives ’. Frequently problem solver invokes a traditional view of problem identification, generation of alternatives, and selection of criteria for evaluating findings. Keeney (1994) ; Ims and Zsolnai (2009) criticize this rational approach as it supports a search for a partial solution where an active search for alternatives is neglected. Moreover, a problematic situation, according to Perkins (2009) , can create the illusion of a fully framed problem with some apparent weighting and some variations of choices. In this case, essential and distinct alternatives to the solution frequently become unnoticeable. Therefore, Perkins (2009) suggest to replace the focus on the attempts to comprehend the problem itself. Thinking through the ‘value lenses’ offers such opportunities. The deep understanding of the problem leads to the search for the alternative ways of a solution.

Thus, the aim of this step is for the problem solver to reveal the possible alternative ways for searching a desired solution. Most people think they know how to create alternatives, but often without delving into the situation. First of all, the problem solver based on the reflection of (but not limited to) the analysis of the context and the perspectives of the problem generates a range of alternatives. Some of these alternatives represent anchored thinking as he/she accepts the assumptions implicit in generated alternatives and with too little focus on values.

The chosen value with the formulated goal indicates direction and encourages a broader and more creative search for a solution. Hence, the problem solver should consider some of the initial alternatives that could best support the achievement of the desired solution. Values are the principles for evaluating the desirability of any alternative or outcome ( Keeney, 1994 ). Thus, planned actions should reveal the desirable mode of conduct. After such consideration, he/she should draw up a plan setting out the actions required to implement each of considered alternatives.

Lastly, after a thorough examination of each considered alternative and a plan of its implementation, the problem solver chooses one of them. If the problem solver does not see an appropriate alternative, he/she develops new alternatives. However, the problem solver may notice (and usually does) that more than one alternative can help him/her to achieve the desired solution. In this case, he/she indicates which alternative is the main one and has to be implemented in the first place, and what other alternatives and in what sequence will contribute in searching for the desired solution.

The fourth stage - ‘ The rationale for the solution: Why ’ - leads to the seventh step: ‘ The justification of the chosen alternative ’. Keeney (1994) emphasizes the compatibility of alternatives in question with the values that guide the action. This underlines the importance of justifying the choices a person makes where the focus is on taking responsibility. According to Zsolnai (2008) , responsibility means a choice, i.e., the perceived responsibility essentially determines its choice. Responsible justification allows for discovering optimal balance when choosing between distinct value-based alternatives. It also refers to the alternative solution that best reflects responsibility in a particular value context, choice, and implementation.

At this stage, the problem solver revisits the chosen solution and revises it. The problem solver justifies his/her choice based on the following questions: Why did you choose this? Why is this alternative significant looking from the technical/scientific, the interpersonal/social, the existential, and the systemic perspectives? Could you take full responsibility for the implementation of this alternative? Why? How clearly do envisaged actions reflect the goal of the desired solution? Whatever interests and for what reasons do this alternative satisfies in principle? What else do you see in the chosen alternative?

As mentioned above, each person gives priority to one aspect or another. The problem solver has to provide solid arguments for the justification of the chosen alternative. The quality of arguments, according to Jonassen (2011) , should be judged based on the quality of the evidence supporting the chosen alternative and opposing arguments that can reject solutions. Besides, the pursuit of value-based goals reflects the interests of the individual or collective interests. Therefore, it becomes critical for the problem solver to justify the level of responsibility he/she takes in assessing the chosen alternative. Such a complex evaluation of the chosen alternative ensures the acceptance of an integral rather than unilateral solution, as ‘recognizing that, in the end, people benefit most when they act for the common good’ ( Sternberg, 2012, p.46 ).

5. Discussion

The constant emphasis on thinking about values as explicit reasoning in the 4W framework (especially from the choice of the value(s) to the rationale for problem solution) reflects the pursuit of virtues. Virtues form the features of the character that are related to the choice ( Argandoña, 2003 ; McLaughlin, 2005 ). Hence, the problem solver develops value-grounded problem solving capability as the virtuality instead of employing rationality for problem solving.

Argandoña (2003) suggests that, in order to make a sound valuation process of any action, extrinsic, transcendent, and intrinsic types of motives need to be considered. They cover the respective types of values. The 4W framework meets these requirements. An extrinsic motive as ‘attaining the anticipated or expected satisfaction’ ( Argandoña, 2003, p.17 ) is reflected in the formulation of the goal of the solution, the creation of alternatives and especially in the justification of the chosen alternative way when the problem solver revisits the external effect of his/her possible action. Transcendent motive as ‘generating certain effects in others’ ( Argandoña, 2003, p.17 ) is revealed within the analysis of the context, perspectives, and creating alternatives. When the learner considers the creation of alternatives and revisits the chosen alternative, he/she pays more attention to these motives. Two types of motives mentioned so far are closely related to an intrinsic motive that emphasizes learning development within the problem solver. These motives confirm that problem solving is, in fact, lifelong learning. In light of these findings, the 4W framework is concerned with some features of value internalization as it is ‘a psychological outcome of conscious mind reasoning about values’ ( Yazdani & Akbarilakeh, 2017, p.1 ).

The 4W framework is complicated enough in terms of learning. One issue is concerned with the educational environments ( Jucevičienė, 2008 ) required to enable the 4W framework. First, the learning paradigm, rather than direct instruction, lies at the foundation of such environments. Second, such educational environments include the following dimensions: (1) educational goal; (2) learning capacity of the learners; (3) educational content relevant to the educational goal: ways and means of communicating educational content as information presented in advance (they may be real, people among them, as well as virtual); (5) methods and means of developing educational content in the process of learners’ performance; (6) physical environment relevant to the educational goal and conditions of its implementation as well as different items in the environment; (7) individuals involved in the implementation of the educational goal.

Another issue is related to exercising this framework in practice. Despite being aware of the 4W framework, a person may still not want to practice problem solving through values, since most of the solutions are going to be complicated, or may even be painful. One idea worth looking into is to reveal the extent to which problem solving through values can become a habit of mind. Profound focus on personal values, context analysis, and highlighting various perspectives can involve changes in the problem solver’s habit of mind. The constant practice of problem solving through values could first become ‘the epistemic habit of mind’ ( Mezirow, 2009, p.93 ), which means a personal way of knowing things and how to use that knowledge. This echoes Kirkman (2017) findings. The developed capability to notice moral values in situations that students encountered changed some students’ habit of mind as ‘for having “ruined” things by making it impossible not to attend to values in such situations!’ (the feedback from one student; Kirkman, 2017, p.12 ). However, this is not enough, as only those problems that require a value-based approach are addressed. Inevitably, the problem solver eventually encounters the challenges of nurturing ‘the moral-ethical habit of mind’ ( Mezirow, 2009, p.93 ). In pursuance to develop such habits of mind, the curriculum should include the necessity of the practising of the 4W framework.

Thinking based on values when solving problems enables the problem solver to engage in thoughtful reflection in contrast to pragmatic and superficial thinking supported by the consumer society. Reflection begins from the first stage of the 4W framework. As personal values are the basis for the desired solution, the problem solver is also involved in self-reflection. The conscious and continuous reflection on himself/herself and the problematic situation reinforce each step of the 4W framework. Moreover, the fourth stage (‘The rationale for the solution: Why’) involves the problem solver in critical reflection as it concerned with justification of ‘the why , the reasons for and the consequences of what we do’ (italic, bold in original; Mezirow, 1990, p.8 ). Exercising the 4W framework in practice could foster reflective practice. Empirical evidence shows that reflective practice directly impacts knowledge, skills and may lead to changes in personal belief systems and world views ( Slade, Burnham, Catalana, & Waters, 2019 ). Thus, with the help of reflective practice it is possible to identify in more detail how and to what extent the 4W framework has been mastered, what knowledge gained, capabilities developed, how point of views changed, and what influence the change process.

Critical issues related to the development of problem solving through values need to be distinguished when considering and examining options for the implementation of the 4W framework at educational institutions. First, the question to what extent can the 4W framework be incorporated into various subjects needs to be answered. Researchers could focus on applying the 4W framework to specific subjects in the humanities and social sciences. The case is with STEM subjects. Though value issues of sustainable development and ecology are of great importance, in reality STEM teaching is often restricted to the development of knowledge and skills, leaving aside the thinking about values. The special task of the researchers is to help practitioners to apply the 4W framework in STEM subjects. Considering this, researchers could employ the concept of ‘dialogic space’ ( Wegerif, 2011, p.3 ) which places particular importance of dialogue in the process of education emphasizing both the voices of teachers and students, and materials. In addition, the dimensions of educational environments could be useful aligning the 4W framework with STEM subjects. As STEM teaching is more based on solving various special tasks and/or integrating problem-based learning, the 4W framework could be a meaningful tool through which content is mastered, skills are developed, knowledge is acquired by solving pre-prepared specific tasks. In this case, the 4W framework could act as a mean addressing values in STEM teaching.

Second is the question of how to enable the process of problem solving through values. In the current paper, the concept of enabling is understood as an integral component of the empowerment. Juceviciene et al. (2010) specify that at least two perspectives can be employed to explain empowerment : a) through the power of legitimacy (according to Freire, 1996 ); and b) through the perspective of conditions for the acquisition of the required knowledge, capabilities, and competence, i.e., enabling. In this paper the 4W framework does not entail the issue of legitimacy. This issue may occur, for example, when a teacher in economics is expected to provide students with subject knowledge only, rather than adding tasks that involve problem solving through values. Yet, the issue of legitimacy is often implicit. A widespread phenomenon exists that teaching is limited to certain periods that do not have enough time for problem solving through values. The issue of legitimacy as an organizational task that supports/or not the implementation of the 4W framework in any curriculum is a question that calls for further discussion.

Third (if not the first), the issue of an educator’s competence to apply such a framework needs to be addressed. In order for a teacher to be a successful enabler, he/she should have the necessary competence. This is related to the specific pedagogical knowledge and skills, which are highly dependent on the peculiarities of the subject being taught. Nowadays actualities are encouraging to pay attention to STEM subjects and their teacher training. For researchers and teacher training institutions, who will be interested in implementing the 4W framework in STEM subjects, it would be useful to draw attention to ‘a material-dialogic approach to pedagogy’ ( Hetherington & Wegerif, 2018, p.27 ). This approach creates the conditions for a deep learning of STEM subjects revealing additional opportunities for problem solving through values in teaching. Highlighting these opportunities is a task for further research.

In contrast to traditional problem solving models, the 4W framework is more concerned with educational purposes. The prescriptive approach to teaching ( Thorne, 1994 ) is applied to the 4W framework. This approach focuses on providing guidelines that enable students to make sound decisions by making explicit value judgements. The limitation is that the 4W framework is focused on thinking but not executing. It does not include the fifth stage, which would focus on the execution of the decision how to solve the problem. This stage may contain some deviation from the predefined process of the solution of the problem.

6. Conclusions

The current paper focuses on revealing the essence of the 4W framework, which is based on enabling the problem solver to draw attention to when, how, and why it is essential to think about values during the problem solving process from the perspective of it’s design. Accordingly, the 4W framework advocates the coherent approach when solving a problem by using a creative potential of values.

The 4W framework allows the problem solver to look through the lens of his/her values twice. The first time, while formulating the problem solving goal as the desired outcome. The second time is when the problem solver looks deeper into his/her values while exploring alternative ways to solve problems. The problem solver is encouraged to reason about, find, accept, reject, compare values, and become responsible for the consequences of the choices grounded on his/her values. Thus, the problem solver could benefit from the 4W framework especially when dealing with issues having crucial consequences.

An educational approach reveals that the 4W framework could enable the development of value-grounded problem solving capability. As problem solving encourages the development of higher-order thinking skills, the consistent inclusion of values enriches them.

The 4W framework requires the educational environments for its enablement. The enablement process of problem solving through values could be based on the perspective of conditions for the acquisition of the required knowledge and capability. Continuous practice of this framework not only encourages reflection, but can also contribute to the creation of the epistemic habit of mind. Applying the 4W framework to specific subjects in the humanities and social sciences might face less challenge than STEM ones. The issue of an educator’s competence to apply such a framework is highly important. The discussed issues present significant challenges for researchers and educators. Caring that the curriculum of different courses should foresee problem solving through values, both practicing and empirical research are necessary.

Declaration of interests

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Both authors have approved the final article.

  • Argandoña A. Fostering values in organizations. Journal of Business Ethics. 2003; 45 (1–2):15–28. https://link.springer.com/content/pdf/10.1023/A:1024164210743.pdf [ Google Scholar ]
  • Barber S. A truly “Transformative” MBA: Executive education for the fourth industrial revolution. Journal of Pedagogic Development. 2018; 8 (2):44–55. [ Google Scholar ]
  • Barnett R. McGraw-Hill Education; UK): 2007. Will to learn: Being a student in an age of uncertainty. [ Google Scholar ]
  • Baron R.A., Zhao H., Miao Q. Personal motives, moral disengagement, and unethical decisions by entrepreneurs: Cognitive mechanisms on the “slippery slope” Journal of Business Ethics. 2015; 128 (1):107–118. doi: 10.1007/s10551-014-2078-y. [ CrossRef ] [ Google Scholar ]
  • Basadur M., Ellspermann S.J., Evans G.W. A new methodology for formulating ill-structured problems. Omega. 1994; 22 (6):627–645. doi: 10.1016/0305-0483(94)90053-1. [ CrossRef ] [ Google Scholar ]
  • Blanco E., Schirmbeck F., Costa C. International Conference on Remote Engineering and Virtual Instrumentation . Springer; Cham: 2018. Vocational Education for the Industrial Revolution; pp. 649–658. [ Google Scholar ]
  • Chua B.L., Tan O.S., Liu W.C. Journey into the problem-solving process: Cognitive functions in a PBL environment. Innovations in Education and Teaching International. 2016; 53 (2):191–202. doi: 10.1080/14703297.2014.961502. [ CrossRef ] [ Google Scholar ]
  • Collins R.H., Sibthorp J., Gookin J. Developing ill-structured problem-solving skills through wilderness education. Journal of Experiential Education. 2016; 39 (2):179–195. doi: 10.1177/1053825916639611. [ CrossRef ] [ Google Scholar ]
  • Csapó B., Funke J., editors. The nature of problem solving: Using research to inspire 21st century learning. OECD Publishing; 2017. The development and assessment of problem solving in 21st-century schools. (Chapter 1). [ CrossRef ] [ Google Scholar ]
  • Dollinger S.J., Burke P.A., Gump N.W. Creativity and values. Creativity Research Journal. 2007; 19 (2-3):91–103. doi: 10.1080/10400410701395028. [ CrossRef ] [ Google Scholar ]
  • Donovan S.J., Guss C.D., Naslund D. Improving dynamic decision making through training and self-reflection. Judgment and Decision Making. 2015; 10 (4):284–295. http://digitalcommons.unf.edu/apsy_facpub/2 [ Google Scholar ]
  • Dorst K. Design problems and design paradoxes. Design Issues. 2006; 22 (3):4–17. doi: 10.1162/desi.2006.22.3.4. [ CrossRef ] [ Google Scholar ]
  • Dostál J. Theory of problem solving. Procedia-Social and Behavioral Sciences. 2015; 174 :2798–2805. doi: 10.1016/j.sbspro.2015.01.970. [ CrossRef ] [ Google Scholar ]
  • Fields A.M. Ill-structured problems and the reference consultation: The librarian’s role in developing student expertise. Reference Services Review. 2006; 34 (3):405–420. doi: 10.1108/00907320610701554. [ CrossRef ] [ Google Scholar ]
  • Freire P. Continuum; New York: 1996. Pedagogy of the oppressed (revised) [ Google Scholar ]
  • Funke J. Problem solving: What are the important questions?. Proceedings of the 36th Annual Conference of the Cognitive Science Society; Austin, TX: Cognitive Science Society; 2014. pp. 493–498. [ Google Scholar ]
  • Hall D.J., Davis R.A. Engaging multiple perspectives: A value-based decision-making model. Decision Support Systems. 2007; 43 (4):1588–1604. doi: 10.1016/j.dss.2006.03.004. [ CrossRef ] [ Google Scholar ]
  • Hall D.J., Paradice D. Investigating value-based decision bias and mediation: do you do as you think? Communications of the ACM. 2007; 50 (4):81–85. [ Google Scholar ]
  • Halstead J.M. Values and values education in schools. In: Halstead J.M., Taylor M.J., editors. Values in education and education in values. The Falmer Press; London: 1996. pp. 3–14. [ Google Scholar ]
  • Harland T., Pickering N. Routledge; 2010. Values in higher education teaching. [ Google Scholar ]
  • Hester P.T., MacG K. Springer; New York: 2017. Systemic decision making: Fundamentals for addressing problems and messes. [ Google Scholar ]
  • Hetherington L., Wegerif R. Developing a material-dialogic approach to pedagogy to guide science teacher education. Journal of Education for Teaching. 2018; 44 (1):27–43. doi: 10.1080/02607476.2018.1422611. [ CrossRef ] [ Google Scholar ]
  • Huitt W. Problem solving and decision making: Consideration of individual differences using the Myers-Briggs type indicator. Journal of Psychological Type. 1992; 24 (1):33–44. [ Google Scholar ]
  • Ims K.J., Zsolnai L. The future international manager. Palgrave Macmillan; London: 2009. Holistic problem solving; pp. 116–129. [ Google Scholar ]
  • Jonassen D. Supporting problem solving in PBL. Interdisciplinary Journal of Problem-based Learning. 2011; 5 (2):95–119. doi: 10.7771/1541-5015.1256. [ CrossRef ] [ Google Scholar ]
  • Jonassen D.H. Instructional design models for well-structured and III-structured problem-solving learning outcomes. Educational Technology Research and Development. 1997; 45 (1):65–94. doi: 10.1007/BF02299613. [ CrossRef ] [ Google Scholar ]
  • Jucevičienė P. Educational and learning environments as a factor for socioeducational empowering of innovation. Socialiniai mokslai. 2008; 1 :58–70. [ Google Scholar ]
  • Jucevičienė P., Gudaitytė D., Karenauskaitė V., Lipinskienė D., Stanikūnienė B., Tautkevičienė G. Technologija; Kaunas: 2010. Universiteto edukacinė galia: Atsakas XXI amžiaus iššūkiams [The educational power of university: the response to the challenges of the 21st century] [ Google Scholar ]
  • Kasof J., Chen C., Himsel A., Greenberger E. Values and creativity. Creativity Research Journal. 2007; 19 (2–3):105–122. doi: 10.1080/10400410701397164. [ CrossRef ] [ Google Scholar ]
  • Keeney R.L. Creativity in decision making with value-focused thinking. MIT Sloan Management Review. 1994; 35 (4):33–41. [ Google Scholar ]
  • Kirkman R. Problem-based learning in engineering ethics courses. Interdisciplinary Journal of Problem-based Learning. 2017; 11 (1) doi: 10.7771/1541-5015.1610. [ CrossRef ] [ Google Scholar ]
  • Lebedeva N., Schwartz S., Plucker J., Van De Vijver F. Domains of everyday creativity and personal values. Frontiers in Psychology. 2019; 9 :1–16. doi: 10.3389/fpsyg.2018.02681. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Linstone H.A. Multiple perspectives: Concept, applications, and user guidelines. Systems Practice. 1989; 2 (3):307–331. [ Google Scholar ]
  • Litzinger T.A., Meter P.V., Firetto C.M., Passmore L.J., Masters C.B., Turns S.R.…Zappe S.E. A cognitive study of problem solving in statics. Journal of Engineering Education. 2010; 99 (4):337–353. [ Google Scholar ]
  • Maslow A.H. Vaga; Vilnius: 2011. Būties psichologija. [Psychology of Being] [ Google Scholar ]
  • Mayer R., Wittrock M. Problem solving. In: Alexander P., Winne P., editors. Handbook of educational psychology. Psychology Press; New York, NY: 2006. pp. 287–303. [ Google Scholar ]
  • McLaughlin T. The educative importance of ethos. British Journal of Educational Studies. 2005; 53 (3):306–325. doi: 10.1111/j.1467-8527.2005.00297.x. [ CrossRef ] [ Google Scholar ]
  • McLaughlin T.H. Technologija; Kaunas: 1997. Šiuolaikinė ugdymo filosofija: demokratiškumas, vertybės, įvairovė [Contemporary philosophy of education: democracy, values, diversity] [ Google Scholar ]
  • Mezirow J. Jossey-Bass Publishers; San Francisco: 1990. Fostering critical reflection in adulthood; pp. 1–12. https://my.liberatedleaders.com.au/wp-content/uploads/2017/02/How-Critical-Reflection-triggers-Transformative-Learning-Mezirow.pdf [ Google Scholar ]
  • Mezirow J. Contemporary theories of learning. Routledge; 2009. An overview on transformative learning; pp. 90–105. (Chapter 6) [ Google Scholar ]
  • Mitroff I. Šviesa; Kaunas: 2000. Kaip neklysti šiais beprotiškais laikais: ar mokame spręsti esmines problemas. [How not to get lost in these crazy times: do we know how to solve essential problems] [ Google Scholar ]
  • Morton L. Teaching creative problem solving: A paradigmatic approach. Cal. WL Rev. 1997; 34 :375. [ Google Scholar ]
  • Nadda P. Need for value based education. International Education and Research Journal. 2017; 3 (2) http://ierj.in/journal/index.php/ierj/article/view/690/659 [ Google Scholar ]
  • Newell A., Simon H.A. Prentice-Hall; Englewood Cliffs, NJ: 1972. Human problem solving. [ Google Scholar ]
  • OECD . PISA, OECD Publishing; Paris: 2013. PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy . https://www.oecd.org/pisa/pisaproducts/PISA%202012%20framework%20e-book_final.pdf [ Google Scholar ]
  • OECD . PISA, OECD Publishing; 2018. PISA 2015 results in focus . https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf [ Google Scholar ]
  • O’Loughlin A., McFadzean E. Toward a holistic theory of strategic problem solving. Team Performance Management: An International Journal. 1999; 5 (3):103–120. [ Google Scholar ]
  • Perkins D.N. Decision making and its development. In: Callan E., Grotzer T., Kagan J., Nisbett R.E., Perkins D.N., Shulman L.S., editors. Education and a civil society: Teaching evidence-based decision making. American Academy of Arts and Sciences; Cambridge, MA: 2009. pp. 1–28. (Chapter 1) [ Google Scholar ]
  • Roccas S., Sagiv L., Navon M. Values and behavior. Cham: Springer; 2017. Methodological issues in studying personal values; pp. 15–50. [ Google Scholar ]
  • Rogers C.R. Houghton Mifflin Harcourt; Boston: 1995. On becoming a person: A therapist’s view of psychotherapy. [ Google Scholar ]
  • Saito M. Amartya Sen’s capability approach to education: A critical exploration. Journal of Philosophy of Education. 2003; 37 (1):17–33. doi: 10.1111/1467-9752.3701002. [ CrossRef ] [ Google Scholar ]
  • Schwartz S.H. Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. In: Zanna M.P., editor. Vol. 25. Academic Press; 1992. pp. 1–65. (Advances in experimental social psychology). [ Google Scholar ]
  • Schwartz S.H. Are there universal aspects in the structure and contents of human values? Journal of social issues. 1994; 50 (4):19–45. [ Google Scholar ]
  • Schwartz S.H. An overview of the Schwartz theory of basic values. Online Readings in Psychology and Culture. 2012; 2 (1):1–20. doi: 10.9707/2307-0919.1116. [ CrossRef ] [ Google Scholar ]
  • Sen A. Development as capability expansion. The community development reader. 1990:41–58. http://www.masterhdfs.org/masterHDFS/wp-content/uploads/2014/05/Sen-development.pdf [ Google Scholar ]
  • Sheehan N.T., Schmidt J.A. Preparing accounting students for ethical decision making: Developing individual codes of conduct based on personal values. Journal of Accounting Education. 2015; 33 (3):183–197. doi: 10.1016/j.jaccedu.2015.06.001. [ CrossRef ] [ Google Scholar ]
  • Shepherd D.A., Patzelt H., Baron R.A. “I care about nature, but…”: Disengaging values in assessing opportunities that cause harm. The Academy of Management Journal. 2013; 56 (5):1251–1273. doi: 10.5465/amj.2011.0776. [ CrossRef ] [ Google Scholar ]
  • Shin N., Jonassen D.H., McGee S. Predictors of well‐structured and ill‐structured problem solving in an astronomy simulation. Journal of Research in Science Teaching. 2003; 40 (1):6–33. doi: 10.1002/tea.10058. [ CrossRef ] [ Google Scholar ]
  • Slade M.L., Burnham T.J., Catalana S.M., Waters T. The impact of reflective practice on teacher candidates’ learning. International Journal for the Scholarship of Teaching and Learning. 2019; 13 (2):15. doi: 10.20429/ijsotl.2019.130215. [ CrossRef ] [ Google Scholar ]
  • Snyder H. Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 2019; 104 :333–339. doi: 10.1016/j.jbusres.2019.07.039. [ CrossRef ] [ Google Scholar ]
  • Sternberg R. Teaching for ethical reasoning. International Journal of Educational Psychology. 2012; 1 (1):35–50. doi: 10.4471/ijep.2012.03. [ CrossRef ] [ Google Scholar ]
  • Sternberg R. Speculations on the role of successful intelligence in solving contemporary world problems. Journal of Intelligence. 2017; 6 (1):4. doi: 10.3390/jintelligence6010004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Thorne D.M. Environmental ethics in international business education: Descriptive and prescriptive dimensions. Journal of Teaching in International Business. 1994; 5 (1–2):109–122. doi: 10.1300/J066v05n01_08. [ CrossRef ] [ Google Scholar ]
  • Treffinger D.J., Isaksen S.G. Creative problem solving: The history, development, and implications for gifted education and talent development. The Gifted Child Quarterly. 2005; 49 (4):342–353. doi: 10.1177/001698620504900407. [ CrossRef ] [ Google Scholar ]
  • Verplanken B., Holland R.W. Motivated decision making: Effects of activation and self-centrality of values on choices and behavior. Journal of Personality and Social Psychology. 2002; 82 (3):434–447. doi: 10.1037/0022-3514.82.3.434. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Webster R.S. Re-enchanting education and spiritual wellbeing. Routledge; 2017. Being spiritually educated; pp. 73–85. [ Google Scholar ]
  • Wegerif R. Towards a dialogic theory of how children learn to think. Thinking Skills and Creativity. 2011; 6 (3):179–190. doi: 10.1016/j.tsc.2011.08.002. [ CrossRef ] [ Google Scholar ]
  • Yang M., Evans S., Vladimirova D., Rana P. Value uncaptured perspective for sustainable business model innovation. Journal of Cleaner Production. 2017; 140 :1794–1804. doi: 10.1016/j.jclepro.2016.07.102. [ CrossRef ] [ Google Scholar ]
  • Yazdani S., Akbarilakeh M. The model of value-based curriculum for medicine and surgery education in Iran. Journal of Minimally Invasive Surgical Sciences. 2017; 6 (3) doi: 10.5812/minsurgery.14053. [ CrossRef ] [ Google Scholar ]
  • Zsolnai L. Transaction Publishers; New Brunswick and London: 2008. Responsible decision making. [ Google Scholar ]
  • To save this word, you'll need to log in. Log In

problem-solving

Definition of problem-solving

Examples of problem-solving in a sentence.

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'problem-solving.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Dictionary Entries Near problem-solving

Cite this entry.

“Problem-solving.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/problem-solving. Accessed 24 Apr. 2024.

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

More commonly misspelled words, commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, how to use accents and diacritical marks, popular in wordplay, the words of the week - apr. 19, 10 words from taylor swift songs (merriam's version), 9 superb owl words, 10 words for lesser-known games and sports, your favorite band is in the dictionary, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

  • Community and Engagement
  • Honors and Awards
  • Give Now 

This is How Students Can Learn Problem-Solving Skills in Social Studies

Student on a laptop.

A new  study  led by a researcher from North Carolina State University offers lessons on how social studies teachers could use computational thinking and computer-based resources to analyze primary source data, such as economic information, maps or historical documents. The findings suggest that these approaches advance not only computational thinking, but also student understanding of social studies concepts.

In the journal  Theory & Research in Social Education , researchers reported findings from a case study of a high school social studies class called “Measuring the Past” that was offered in a private school. In the project-centered class, students used statistical software to analyze historical and economic data and identify trends. Researchers found students were able to learn problem-solving skills through the series of structured computer analysis projects.

“The purpose of social studies is to enhance student’s ability to participate in a democratic society,” said  Meghan Manfra , associate professor of education at NC State. “Our research indicates computational thinking is a fruitful way to engage students in interdisciplinary investigation and develop the skills and habits they need to be successful.”

There is a growing effort to incorporate computational thinking across subjects in K-12 education, Manfra said, to help prepare students for a technology-driven world. Computers have made new techniques possible for historians and social scientists to analyze and interpret digital data, maps and images. Teachers face a potential “firehose” of primary source data they could bring into the classroom, such as the National Archives’ collection of historical letters, speeches, and maps  important to American history .

“There are more efforts to integrate computer science across grade levels and subject areas,” Manfra said. “We take the definition of ‘computational thinking’ to be less computer science specific, and much more about a habit of mind. We see it as a structured problem-solving approach.”

In the high school class under study, researchers offered a phrase for the class to use as a guide for how to think about and structure the class projects: analyze the data, look for patterns, and then develop rules or models based on their analysis to solve a problem. They shortened that phrase to “data-patterns-rules.” The projects were also structured as a series, with each students gaining more independence with each project.

“The teacher had a lot of autonomy to develop a curriculum, and the projects were unique,” Manfra said. “Another important aspect of the structure was the students did three rounds of analyzing data, presenting their findings, and developing a model based on what they found. Each time, the teacher got more general in what he was giving the students so they had to flex more of their own thinking.”

In the first project, students analyzed  Dollar Street , a website by GapMinder that has a database of photographs of items in homes around the world. Students posed and answered their own questions about the data. For example, one group analyzed whether the number of books in a home related to a family’s income.

In the second project, students tracked prices of labor or products like wool, grain and livestock in England to understand the bubonic plague’s impact on the economy during the Middle Ages.

In the last project, students found their own data to compare social or economic trends during two American wars, such as the War of 1812 and World War I. For example, one group of students compared numbers of draftees and volunteers in two conflicts and related that to the outcome of the war.

From the students’ work, the researchers saw that students were able to learn problem-solving and apply data analysis skills while looking at differences across cultures, the economic effects of historical events and to how political trends can help shape conflicts.

“Based on what we found, this approach not only enhances students’ computational thinking for STEM fields, but it also improves their social studies understanding and knowledge,” Manfra said. “It’s a fruitful approach to teaching and learning.”

From student essays about computational thinking, the researchers saw many students came away with a stronger understanding of the concept. Some students defined it as thinking “based on computer-generated statistics,” while others defined it as analyzing data so a computer can display it, and others said it meant analyzing information in a “computer-like” logical way. In addition, they also saw that students learned skills important in an age of misinformation – they were able to think deeply about potential limitations of the data and the source it came from.

“We found that students were developing data literacy,” Manfra said “They understood databases as a construction, designed to tell a story. We thought that was pretty sophisticated, and that thinking emerged because of what they were experiencing through this project.”

This story originally appeared on the NC State News site.

  • Research and Impact
  • faculty publications
  • Meghan Manfra
  • social studies education

More From College of Education News

problem solving studies definition

Caitlyn Frazier '24: 'I Chose Elementary Education Because I Have Always Had a Passion to Teach Kids' 

problem solving studies definition

Jacqueline Verkuilen '23, '24MED: 'Learning Design and Technology Has Perfectly Allowed Me to Thrive at My Talents and Hit on My Interests' 

problem solving studies definition

Brianna Soto ’24: ‘I Have Learned So Many Real-life Skills from the College of Education’ 

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Are You Solving the Right Problem?

  • Dwayne Spradlin

Most firms aren’t, and that undermines their innovation efforts.

Reprint: R1209F

The rigor with which a problem is defined is the most important factor in finding a good solution. Many organizations, however, are not proficient at articulating their problems and identifying which ones are crucial to their strategies.

They may even be trying to solve the wrong problems—missing opportunities and wasting resources in the process. The key is to ask the right questions.

The author describes a process that his firm, InnoCentive, has used to help clients define and articulate business, technical, social, and policy challenges and then present them to an online community of more than 250,000 solvers. The four-step process consists of asking a series of questions and using the answers to create a problem statement that will elicit novel ideas from an array of experts.

  • Establish the need for a solution. What is the basic need? Who will benefit from a solution?
  • Justify the need. Why should your organization attempt to solve this problem? Is it aligned with your strategy? If a solution is found, who will implement it?
  • Contextualize the problem. What have you and others already tried? Are there internal and external constraints to implementing a solution?
  • Write the problem statement. What requirements must a solution meet? What language should you use to describe the problem? How will you evaluate solutions and measure success?

EnterpriseWorks/VITA, a nonprofit organization, used this process to find a low-cost, lightweight, and convenient product that expands access to clean drinking water in the developing world.

“If I were given one hour to save the planet, I would spend 59 minutes defining the problem and one minute resolving it,” Albert Einstein said.

problem solving studies definition

  • DS Dwayne Spradlin is the president and CEO of InnoCentive , an online marketplace that connects organizations with freelance problem solvers in a multitude of fields. He is a coauthor, with Alpheus Bingham, of The Open Innovation Marketplace: Creating Value in the Challenge Driven Enterprise (FT Press, 2011).

Partner Center

problem solving studies definition

What Is Problem Solving?

You will often see beach clean-up drives being publicized in coastal cities. There are already dustbins available on the beaches,…

What Is Problem Solving?

You will often see beach clean-up drives being publicized in coastal cities. There are already dustbins available on the beaches, so why do people need to organize these drives? It’s evident that despite advertising and posting anti-littering messages, some of us don’t follow the rules.

Temporary food stalls and shops make it even more difficult to keep the beaches clean. Since people can’t ask the shopkeepers to relocate or prevent every single person from littering, the clean-up drive is needed.  This is an ideal example of problem-solving psychology in humans. ( 230-fifth.com ) So, what is problem-solving? Let’s find out.

What Is Problem-Solving?

At its simplest, the meaning of problem-solving is the process of defining a problem, determining its cause, and implementing a solution. The definition of problem-solving is rooted in the fact that as humans, we exert control over our environment through solutions. We move forward in life when we solve problems and make decisions. 

We can better define the problem-solving process through a series of important steps.

Identify The Problem: 

This step isn’t as simple as it sounds. Most times, we mistakenly identify the consequences of a problem rather than the problem itself. It’s important that we’re careful to identify the actual problem and not just its symptoms. 

Define The Problem: 

Once the problem has been identified correctly, you should define it. This step can help clarify what needs to be addressed and for what purpose.

Form A Strategy: 

Develop a strategy to solve your problem. Defining an approach will provide direction and clarity on the next steps. 

Organize The Information:  

Organizing information systematically will help you determine whether something is missing. The more information you have, the easier it’ll become for you to arrive at a solution.  

Allocate Resources:  

We may not always be armed with the necessary resources to solve a problem. Before you commit to implementing a solution for a problem, you should determine the availability of different resources—money, time and other costs.

Track Progress: 

The true meaning of problem-solving is to work towards an objective. If you measure your progress, you can evaluate whether you’re on track. You could revise your strategies if you don’t notice the desired level of progress. 

Evaluate The Results:  

After you spot a solution, evaluate the results to determine whether it’s the best possible solution. For example, you can evaluate the success of a fitness routine after several weeks of exercise.

Meaning Of Problem-Solving Skill

Now that we’ve established the definition of problem-solving psychology in humans, let’s look at how we utilize our problem-solving skills.  These skills help you determine the source of a problem and how to effectively determine the solution. Problem-solving skills aren’t innate and can be mastered over time. Here are some important skills that are beneficial for finding solutions.

Communication

Communication is a critical skill when you have to work in teams.  If you and your colleagues have to work on a project together, you’ll have to collaborate with each other. In case of differences of opinion, you should be able to listen attentively and respond respectfully in order to successfully arrive at a solution.

As a problem-solver, you need to be able to research and identify underlying causes. You should never treat a problem lightly. In-depth study is imperative because often people identify only the symptoms and not the actual problem.

Once you have researched and identified the factors causing a problem, start working towards developing solutions. Your analytical skills can help you differentiate between effective and ineffective solutions.

Decision-Making

You’ll have to make a decision after you’ve identified the source and methods of solving a problem. If you’ve done your research and applied your analytical skills effectively, it’ll become easier for you to take a call or a decision.

Organizations really value decisive problem-solvers. Harappa Education’s   Defining Problems course will guide you on the path to developing a problem-solving mindset. Learn how to identify the different types of problems using the Types of Problems framework. Additionally, the SMART framework, which is a five-point tool, will teach you to create specific and actionable objectives to address problem statements and arrive at solutions. 

Explore topics & skills such as Problem Solving Skills , PICK Chart , How to Solve Problems & Barriers to Problem Solving from our Harappa Diaries blog section and develop your skills.

Thriversitybannersidenav

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

problem solving studies definition

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

problem solving studies definition

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

problem solving studies definition

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

problem solving studies definition

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    problem solving studies definition

  2. Introduction to Problem Solving Skills

    problem solving studies definition

  3. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    problem solving studies definition

  4. seven steps problem solving

    problem solving studies definition

  5. How psychology does define problem solving?

    problem solving studies definition

  6. what is problem solving steps process & techniques asq

    problem solving studies definition

VIDEO

  1. Lesson 1. Problem Solving: Definition and Process

  2. Solving Studies as Part of Grandmaster Routine to Improve Calculation

  3. Stability studies definition, importance & types in GMP "video 1" تعريف دراسات الثبات و انواعها

  4. Problem solving

  5. environment definition importance and scope|most important topic for BCA and Agriculture students

  6. problem solving lesson 1#

COMMENTS

  1. Problem Solving

    The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing.

  2. What is Problem Solving? Steps, Process & Techniques

    Quality Glossary Definition: Problem solving. Problem solving is the act of defining a problem; determining the cause of the problem; identifying, prioritizing, and selecting alternatives for a solution; and implementing a solution. ... Case Studies. Refreshing Louisville Metro's Problem-Solving System (Journal for Quality and Participation ...

  3. Problem Solving

    This chapter follows the historical development of research on problem solving. It begins with a description of two research traditions that addressed different aspects of the problem-solving process: ( 1) research on problem representation (the Gestalt legacy) that examined how people understand the problem at hand, and ( 2) research on search ...

  4. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  5. Empirical Evaluations of Skinner's Analysis of Problem Solving

    The 12 applied studies in this review provide empirical support for Skinner's (1957, 1968) definition of problem solving. Studying and appreciating the analysis of problem solving will help behavior analysts continue moving from teaching rote responses to facilitating the emergence of complex communication, social, and academic repertoires.

  6. Problem Solving and Decision Making

    Problem solving and decision making are both examples of complex, higher-order thinking. Both involve the assessment of the environment, the involvement of working memory or short-term memory, reliance on long term memory, effects of knowledge, and the application of heuristics to complete a behavior. A problem can be defined as an impasse or ...

  7. The McKinsey guide to problem solving

    May 14, 2023 - Leaders today are confronted with more problems, of greater magnitude, than ever before. In these volatile times, it's natural to react based on what's worked best in the past. But when you're solving the toughest business challenges on an ongoing basis, it's crucial to start from a place of awareness.

  8. Full article: Understanding and explaining pedagogical problem solving

    1. Introduction. The focus of this paper is on understanding and explaining pedagogical problem solving. This theoretical paper builds on two previous studies (Riordan, Citation 2020; and Riordan, Hardman and Cumbers, Citation 2021) by introducing an 'extended Pedagogy Analysis Framework' and a 'Pedagogical Problem Typology' illustrating both with examples from video-based analysis of ...

  9. How to master the seven-step problem-solving process

    When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that's very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use ...

  10. Problem Solving

    Problem solving is the process of articulating solutions to problems. Problems have two critical attributes. First, a problem is an unknown in some context. That is, there is a situation in which there is something that is unknown (the difference between a goal state and a current state). Those situations vary from algorithmic math problems to ...

  11. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  12. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  13. Problem Solving Definition and Methodology

    Broadly defined, problem solving is the process of finding solutions to difficult or complex issues. But you already knew that. Understanding problem solving frameworks, however, requires a deeper dive. Think about a recent problem you faced. Maybe it was an interpersonal issue.

  14. Problem solving through values: A challenge for thinking and capability

    Abstract. The paper aims to introduce the conceptual framework of problem solving through values. The framework consists of problem analysis, selection of value (s) as a background for the solution, the search for alternative ways of the solution, and the rationale for the solution. This framework reveals when, how, and why is important to ...

  15. (PDF) Theory of Problem Solving

    The OECD publication in 2004 on problem-solving for tomorrow's world, discussed issues related to the definition of problem-solving competence as the ability of individuals to use cognitive skills ...

  16. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  17. Problem-solving Definition & Meaning

    The meaning of PROBLEM-SOLVING is the process or act of finding a solution to a problem. How to use problem-solving in a sentence. ... Argenti highlighted the value of philosophical study, citing its role in refining problem-solving abilities. ... Post the Definition of problem-solving to Facebook Facebook.

  18. Problem Solving

    Short Summary. Problem solving is a highly sought-after skill. There are many techniques to problem solving. Examples include trial and error, difference reduction, means-ends analysis, working ...

  19. This is How Students Can Learn Problem-Solving Skills in Social Studies

    Researchers found students were able to learn problem-solving skills through the series of structured computer analysis projects. "The purpose of social studies is to enhance student's ability to participate in a democratic society," said Meghan Manfra, associate professor of education at NC State.

  20. Are You Solving the Right Problem?

    Are You Solving the Right Problem? Summary. The rigor with which a problem is defined is the most important factor in finding a good solution. Many organizations, however, are not proficient at ...

  21. What is Problem Solving

    At its simplest, the meaning of problem-solving is the process of defining a problem, determining its cause, and implementing a solution. The definition of problem-solving is rooted in the fact that as humans, we exert control over our environment through solutions. We move forward in life when we solve problems and make decisions.

  22. (PDF) Enhancing students' problem-solving skills ...

    This study presents a three-stage, context-. based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project ...

  23. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  24. What is a Cause and Effect Diagram? Definition, Examples, Benefits, and

    The Cause and Effect Diagram is a versatile tool that can be used in various problem-solving and improvement initiatives, including quality management, process improvement, root cause analysis, and project management. It encourages collaboration, brainstorming, and structured analysis, enabling teams to gain deeper insights into complex ...