Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert @helyn_kim.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Ariell Bertrand, Melissa Arnold Lyon, Rebecca Jacobsen

April 18, 2024

Modupe (Mo) Olateju, Grace Cannon

April 15, 2024

Phillip Levine

April 12, 2024

Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

benefits of teaching problem solving

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

benefits of teaching problem solving

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

benefits of teaching problem solving

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

benefits of teaching problem solving

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

  • Prodigy Math
  • Prodigy English
  • Is a Premium Membership Worth It?
  • Promote a Growth Mindset
  • Help Your Child Who's Struggling with Math
  • Parent's Guide to Prodigy
  • Assessments
  • Math Curriculum Coverage
  • English Curriculum Coverage
  • Game Portal

5 Advantages and Disadvantages of Problem-Based Learning [+ Activity Design Steps]

no image

Written by Marcus Guido

Easily differentiate learning and engage your students with Prodigy Math.

  • Teaching Strategies

Advantages of Problem-Based Learning

Disadvantages of problem-based learning, steps to designing problem-based learning activities.

Used since the 1960s, many teachers express concerns about the effectiveness of problem-based learning (PBL) in certain classroom settings.

Whether you introduce the student-centred pedagogy as a one-time activity or mainstay exercise, grouping students together to solve open-ended problems can present pros and cons.

Below are five advantages and disadvantages of problem-based learning to help you determine if it can work in your classroom.

If you decide to introduce an activity, there are also design creation steps and a downloadable guide to keep at your desk for easy reference.

1. Development of Long-Term Knowledge Retention

Students who participate in problem-based learning activities can improve their abilities to retain and recall information, according to a literature review of studies about the pedagogy .

The literature review states “elaboration of knowledge at the time of learning” -- by sharing facts and ideas through discussion and answering questions -- “enhances subsequent retrieval.” This form of elaborating reinforces understanding of subject matter , making it easier to remember.

Small-group discussion can be especially beneficial -- ideally, each student will get chances to participate.

But regardless of group size, problem-based learning promotes long-term knowledge retention by encouraging students to discuss -- and answer questions about -- new concepts as they’re learning them.

2. Use of Diverse Instruction Types

benefits of teaching problem solving

You can use problem-based learning activities to the meet the diverse learning needs and styles of your students, effectively engaging a diverse classroom in the process. In general, grouping students together for problem-based learning will allow them to:

  • Address real-life issues that require real-life solutions, appealing to students who struggle to grasp abstract concepts
  • Participate in small-group and large-group learning, helping students who don’t excel during solo work grasp new material
  • Talk about their ideas and challenge each other in a constructive manner, giving participatory learners an avenue to excel
  • Tackle a problem using a range of content you provide -- such as videos, audio recordings, news articles and other applicable material -- allowing the lesson to appeal to distinct learning styles

Since running a problem-based learning scenario will give you a way to use these differentiated instruction approaches , it can be especially worthwhile if your students don’t have similar learning preferences.

3. Continuous Engagement

benefits of teaching problem solving

Providing a problem-based learning challenge can engage students by acting as a break from normal lessons and common exercises.

It’s not hard to see the potential for engagement, as kids collaborate to solve real-world problems that directly affect or heavily interest them.

Although conducted with post-secondary students, a study published by the Association for the Study of Medical Education reported increased student attendance to -- and better attitudes towards -- courses that feature problem-based learning.

These activities may lose some inherent engagement if you repeat them too often, but can certainly inject excitement into class.

4. Development of Transferable Skills

Problem-based learning can help students develop skills they can transfer to real-world scenarios, according to a 2015 book that outlines theories and characteristics of the pedagogy .

The tangible contexts and consequences presented in a problem-based learning activity “allow learning to become more profound and durable.” As you present lessons through these real-life scenarios, students should be able to apply learnings if they eventually face similar issues.

For example, if they work together to address a dispute within the school, they may develop lifelong skills related to negotiation and communicating their thoughts with others.

As long as the problem’s context applies to out-of-class scenarios, students should be able to build skills they can use again.

5. Improvement of Teamwork and Interpersonal Skills

benefits of teaching problem solving

Successful completion of a problem-based learning challenge hinges on interaction and communication, meaning students should also build transferable skills based on teamwork and collaboration . Instead of memorizing facts, they get chances to present their ideas to a group, defending and revising them when needed.

What’s more, this should help them understand a group dynamic. Depending on a given student, this can involve developing listening skills and a sense of responsibility when completing one’s tasks. Such skills and knowledge should serve your students well when they enter higher education levels and, eventually, the working world.

1. Potentially Poorer Performance on Tests

benefits of teaching problem solving

Devoting too much time to problem-based learning can cause issues when students take standardized tests, as they may not have the breadth of knowledge needed to achieve high scores. Whereas problem-based learners develop skills related to collaboration and justifying their reasoning, many tests reward fact-based learning with multiple choice and short answer questions. Despite offering many advantages, you could spot this problem develop if you run problem-based learning activities too regularly.

2. Student Unpreparedness

benefits of teaching problem solving

Problem-based learning exercises can engage many of your kids, but others may feel disengaged as a result of not being ready to handle this type of exercise for a number of reasons. On a class-by-class and activity-by-activity basis, participation may be hindered due to:

  • Immaturity  -- Some students may not display enough maturity to effectively work in a group, not fulfilling expectations and distracting other students.
  • Unfamiliarity  -- Some kids may struggle to grasp the concept of an open problem, since they can’t rely on you for answers.
  • Lack of Prerequisite Knowledge  -- Although the activity should address a relevant and tangible problem, students may require new or abstract information to create an effective solution.

You can partially mitigate these issues by actively monitoring the classroom and distributing helpful resources, such as guiding questions and articles to read. This should keep students focused and help them overcome knowledge gaps. But if you foresee facing these challenges too frequently, you may decide to avoid or seldom introduce problem-based learning exercises.

3. Teacher Unpreparedness

If supervising a problem-based learning activity is a new experience, you may have to prepare to adjust some teaching habits . For example, overtly correcting students who make flawed assumptions or statements can prevent them from thinking through difficult concepts and questions. Similarly, you shouldn’t teach to promote the fast recall of facts. Instead, you should concentrate on:

  • Giving hints to help fix improper reasoning
  • Questioning student logic and ideas in a constructive manner
  • Distributing content for research and to reinforce new concepts
  • Asking targeted questions to a group or the class, focusing their attention on a specific aspect of the problem

Depending on your teaching style, it may take time to prepare yourself to successfully run a problem-based learning lesson.

4. Time-Consuming Assessment

benefits of teaching problem solving

If you choose to give marks, assessing a student’s performance throughout a problem-based learning exercise demands constant monitoring and note-taking. You must take factors into account such as:

  • Completed tasks
  • The quality of those tasks
  • The group’s overall work and solution
  • Communication among team members
  • Anything you outlined on the activity’s rubric

Monitoring these criteria is required for each student, making it time-consuming to give and justify a mark for everyone.

5. Varying Degrees of Relevancy and Applicability

It can be difficult to identify a tangible problem that students can solve with content they’re studying and skills they’re mastering. This introduces two clear issues. First, if it is easy for students to divert from the challenge’s objectives, they may miss pertinent information. Second, you could veer off the problem’s focus and purpose as students run into unanticipated obstacles. Overcoming obstacles has benefits, but may compromise the planning you did. It can also make it hard to get back on track once the activity is complete. Because of the difficulty associated with keeping activities relevant and applicable, you may see problem-based learning as too taxing.

If the advantages outweigh the disadvantages -- or you just want to give problem-based learning a shot -- follow these steps:

1. Identify an Applicable Real-Life Problem

benefits of teaching problem solving

Find a tangible problem that’s relevant to your students, allowing them to easily contextualize it and hopefully apply it to future challenges. To identify an appropriate real-world problem, look at issues related to your:

  • Students’ shared interests

You must also ensure that students understand the problem and the information around it. So, not all problems are appropriate for all grade levels.

2. Determine the Overarching Purpose of the Activity

Depending on the problem you choose, determine what you want to accomplish by running the challenge. For example, you may intend to help your students improve skills related to:

  • Collaboration
  • Problem-solving
  • Curriculum-aligned topics
  • Processing diverse content

A more precise example, you may prioritize collaboration skills by assigning specific tasks to pairs of students within each team. In doing so, students will continuously develop communication and collaboration abilities by working as a couple and part of a small group. By defining a clear purpose, you’ll also have an easier time following the next step.

3. Create and Distribute Helpful Material

benefits of teaching problem solving

Handouts and other content not only act as a set of resources, but help students stay focused on the activity and its purpose. For example, if you want them to improve a certain math skill , you should make material that highlights the mathematical aspects of the problem. You may decide to provide items such as:

  • Data that helps quantify and add context to the problem
  • Videos, presentations and other audio-visual material
  • A list of preliminary questions to investigate

Providing a range of resources can be especially important for elementary students and struggling students in higher grades, who may not have self-direction skills to work without them.

4. Set Goals and Expectations for Your Students

Along with the aforementioned materials, give students a guide or rubric that details goals and expectations. It will allow you to further highlight the purpose of the problem-based learning exercise, as you can explain what you’re looking for in terms of collaboration, the final product and anything else. It should also help students stay on track by acting as a reference throughout the activity.

5. Participate

benefits of teaching problem solving

Although explicitly correcting students may be discouraged, you can still help them and ask questions to dig into their thought processes. When you see an opportunity, consider if it’s worthwhile to:

  • Fill gaps in knowledge
  • Provide hints, not answers
  • Question a student’s conclusion or logic regarding a certain point, helping them think through tough spots

By participating in these ways, you can provide insight when students need it most, encouraging them to effectively analyze the problem.

6. Have Students Present Ideas and Findings

If you divided them into small groups, requiring students to present their thoughts and results in front the class adds a large-group learning component to the lesson. Encourage other students to ask questions, allowing the presenting group to elaborate and provide evidence for their thoughts. This wraps up the activity and gives your class a final chance to find solutions to the problem.

Wrapping Up

The effectiveness of problem-based learning may differ between classrooms and individual students, depending on how significant specific advantages and disadvantages are to you. Evaluative research consistently shows value in giving students a question and letting them take control of their learning. But the extent of this value can depend on the difficulties you face.It may be wise to try a problem-based learning activity, and go forward based on results.

Create or log into your teacher account on Prodigy -- an adaptive math game that adjusts content to accommodate player trouble spots and learning speeds. Aligned to US and Canadian curricula, it’s used by more than 350,000 teachers and 10 million students. It may be wise to try a problem-based learning activity, and go forward based on results.

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

benefits of teaching problem solving

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Benefits of Problem-Solving in the K-12 Classroom

Posted October 5, 2022 by Miranda Marshall

benefits of teaching problem solving

From solving complex algebra problems to investigating scientific theories, to making inferences about written texts, problem-solving is central to every subject explored in school. Even beyond the classroom, problem-solving is ranked among the most important skills for students to demonstrate on their resumes, with 82.9% of employers considering it a highly valued attribute. On an even broader scale, students who learn how to apply their problem-solving skills to the issues they notice in their communities – or even globally –  have the tools they need to change the future and leave a lasting impact on the world around them.

Problem-solving can be taught in any content area and can even combine cross-curricular concepts to connect learning from all subjects. On top of building transferrable skills for higher education and beyond, read on to learn more about five amazing benefits students will gain from the inclusion of problem-based learning in their education:

  • Problem-solving is inherently student-centered.

Student-centered learning refers to methods of teaching that recognize and cater to students’ individual needs. Students learn at varying paces, have their own unique strengths, and even further, have their own interests and motivations – and a student-centered approach recognizes this diversity within classrooms by giving students some degree of control over their learning and making them active participants in the learning process.

Incorporating problem-solving into your curriculum is a great way to make learning more student-centered, as it requires students to engage with topics by asking questions and thinking critically about explanations and solutions, rather than expecting them to absorb information in a lecture format or through wrote memorization.

  • Increases confidence and achievement across all school subjects.

As with any skill, the more students practice problem-solving, the more comfortable they become with the type of critical and analytical thinking that will carry over into other areas of their academic careers. By learning how to approach concepts they are unfamiliar with or questions they do not know the answers to, students develop a greater sense of self-confidence in their ability to apply problem-solving techniques to other subject areas, and even outside of school in their day-to-day lives.

The goal in teaching problem-solving is for it to become second nature, and for students to routinely express their curiosity, explore innovative solutions, and analyze the world around them to draw their own conclusions.

  • Encourages collaboration and teamwork.

Since problem-solving often involves working cooperatively in teams, students build a number of important interpersonal skills alongside problem-solving skills. Effective teamwork requires clear communication, a sense of personal responsibility, empathy and understanding for teammates, and goal setting and organization – all of which are important throughout higher education and in the workplace as well.

  • Increases metacognitive skills.

Metacognition is often described as “thinking about thinking” because it refers to a person’s ability to analyze and understand their own thought processes. When making decisions, metacognition allows problem-solvers to consider the outcomes of multiple plans of action and determine which one will yield the best results.

Higher metacognitive skills have also widely been linked to improved learning outcomes and improved studying strategies. Metacognitive students are able to reflect on their learning experiences to understand themselves and the world around them better.

  • Helps with long-term knowledge retention.

Students who learn problem-solving skills may see an improved ability to retain and recall information. Specifically, being asked to explain how they reached their conclusions at the time of learning, by sharing their ideas and facts they have researched, helps reinforce their understanding of the subject matter.

Problem-solving scenarios in which students participate in small-group discussions can be especially beneficial, as this discussion gives students the opportunity to both ask and answer questions about the new concepts they’re exploring.

At all grade levels, students can see tremendous gains in their academic performance and emotional intelligence when problem-solving is thoughtfully planned into their learning.

Interested in helping your students build problem-solving skills, but aren’t sure where to start? Future Problem Solving Problem International (FPSPI) is an amazing academic competition for students of all ages, all around the world, that includes helpful resources for educators to implement in their own classrooms!

Learn more about this year’s competition season from this recorded webinar:    https://youtu.be/AbeKQ8_Sm8U and/or email [email protected] to get started!

Signup Newsletter

Sign me up for the newsletter!

benefits of teaching problem solving

The Institute of Competition Sciences (ICS) was founded in 2012 to help transform learning into an exciting challenge for all students. We exist to support students in realizing the full potential of their future.

Quick Links

  • Competitions
  • Privacy Policy
  • Terms and Conditions

Connect with us on social media

Copyright © 2024 Institute of Competition Sciences. All rights reserved.

  • Faculty & Staff

Teaching problem solving

Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem.

Introducing the problem

Explaining how people in your discipline understand and interpret these types of problems can help students develop the skills they need to understand the problem (and find a solution). After introducing how you would go about solving a problem, you could then ask students to:

  • frame the problem in their own words
  • define key terms and concepts
  • determine statements that accurately represent the givens of a problem
  • identify analogous problems
  • determine what information is needed to solve the problem

Working on solutions

In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to:

  • identify the general model or procedure they have in mind for solving the problem
  • set sub-goals for solving the problem
  • identify necessary operations and steps
  • draw conclusions
  • carry out necessary operations

You can help students tackle a problem effectively by asking them to:

  • systematically explain each step and its rationale
  • explain how they would approach solving the problem
  • help you solve the problem by posing questions at key points in the process
  • work together in small groups (3 to 5 students) to solve the problem and then have the solution presented to the rest of the class (either by you or by a student in the group)

In all cases, the more you get the students to articulate their own understandings of the problem and potential solutions, the more you can help them develop their expertise in approaching problems in your discipline.

  • Illinois Online
  • Illinois Remote

teaching_learning_banner

  • TA Resources
  • Teaching Consultation
  • Teaching Portfolio Program
  • Grad Academy for College Teaching
  • Faculty Events
  • The Art of Teaching
  • 2022 Illinois Summer Teaching Institute
  • Large Classes
  • Leading Discussions
  • Laboratory Classes
  • Lecture-Based Classes
  • Planning a Class Session
  • Questioning Strategies
  • Classroom Assessment Techniques (CATs)
  • Problem-Based Learning (PBL)
  • The Case Method
  • Community-Based Learning: Service Learning
  • Group Learning
  • Just-in-Time Teaching
  • Creating a Syllabus
  • Motivating Students
  • Dealing With Cheating
  • Discouraging & Detecting Plagiarism
  • Diversity & Creating an Inclusive Classroom
  • Harassment & Discrimination
  • Professional Conduct
  • Foundations of Good Teaching
  • Student Engagement
  • Assessment Strategies
  • Course Design
  • Student Resources
  • Teaching Tips
  • Graduate Teacher Certificate
  • Certificate in Foundations of Teaching
  • Teacher Scholar Certificate
  • Certificate in Technology-Enhanced Teaching
  • Master Course in Online Teaching (MCOT)
  • 2022 Celebration of College Teaching
  • 2023 Celebration of College Teaching
  • Hybrid Teaching and Learning Certificate
  • Classroom Observation Etiquette
  • Teaching Philosophy Statement
  • Pedagogical Literature Review
  • Scholarship of Teaching and Learning
  • Instructor Stories
  • Podcast: Teach Talk Listen Learn
  • Universal Design for Learning

Sign-Up to receive Teaching and Learning news and events

Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and life-long learning (Duch et al, 2001).

PBL can be incorporated into any learning situation. In the strictest definition of PBL, the approach is used over the entire semester as the primary method of teaching. However, broader definitions and uses range from including PBL in lab and design classes, to using it simply to start a single discussion. PBL can also be used to create assessment items. The main thread connecting these various uses is the real-world problem.

Any subject area can be adapted to PBL with a little creativity. While the core problems will vary among disciplines, there are some characteristics of good PBL problems that transcend fields (Duch, Groh, and Allen, 2001):

  • The problem must motivate students to seek out a deeper understanding of concepts.
  • The problem should require students to make reasoned decisions and to defend them.
  • The problem should incorporate the content objectives in such a way as to connect it to previous courses/knowledge.
  • If used for a group project, the problem needs a level of complexity to ensure that the students must work together to solve it.
  • If used for a multistage project, the initial steps of the problem should be open-ended and engaging to draw students into the problem.

The problems can come from a variety of sources: newspapers, magazines, journals, books, textbooks, and television/ movies. Some are in such form that they can be used with little editing; however, others need to be rewritten to be of use. The following guidelines from The Power of Problem-Based Learning (Duch et al, 2001) are written for creating PBL problems for a class centered around the method; however, the general ideas can be applied in simpler uses of PBL:

  • Choose a central idea, concept, or principle that is always taught in a given course, and then think of a typical end-of-chapter problem, assignment, or homework that is usually assigned to students to help them learn that concept. List the learning objectives that students should meet when they work through the problem.
  • Think of a real-world context for the concept under consideration. Develop a storytelling aspect to an end-of-chapter problem, or research an actual case that can be adapted, adding some motivation for students to solve the problem. More complex problems will challenge students to go beyond simple plug-and-chug to solve it. Look at magazines, newspapers, and articles for ideas on the story line. Some PBL practitioners talk to professionals in the field, searching for ideas of realistic applications of the concept being taught.
  • What will the first page (or stage) look like? What open-ended questions can be asked? What learning issues will be identified?
  • How will the problem be structured?
  • How long will the problem be? How many class periods will it take to complete?
  • Will students be given information in subsequent pages (or stages) as they work through the problem?
  • What resources will the students need?
  • What end product will the students produce at the completion of the problem?
  • Write a teacher's guide detailing the instructional plans on using the problem in the course. If the course is a medium- to large-size class, a combination of mini-lectures, whole-class discussions, and small group work with regular reporting may be necessary. The teacher's guide can indicate plans or options for cycling through the pages of the problem interspersing the various modes of learning.
  • The final step is to identify key resources for students. Students need to learn to identify and utilize learning resources on their own, but it can be helpful if the instructor indicates a few good sources to get them started. Many students will want to limit their research to the Internet, so it will be important to guide them toward the library as well.

The method for distributing a PBL problem falls under three closely related teaching techniques: case studies, role-plays, and simulations. Case studies are presented to students in written form. Role-plays have students improvise scenes based on character descriptions given. Today, simulations often involve computer-based programs. Regardless of which technique is used, the heart of the method remains the same: the real-world problem.

Where can I learn more?

  • PBL through the Institute for Transforming Undergraduate Education at the University of Delaware
  • Duch, B. J., Groh, S. E, & Allen, D. E. (Eds.). (2001). The power of problem-based learning . Sterling, VA: Stylus.
  • Grasha, A. F. (1996). Teaching with style: A practical guide to enhancing learning by understanding teaching and learning styles. Pittsburgh: Alliance Publishers.

Center for Innovation in Teaching & Learning

249 Armory Building 505 East Armory Avenue Champaign, IL 61820

217 333-1462

Email: [email protected]

Office of the Provost

  • Utility Menu

University Logo

GA4 Tracking Code

Home

fa51e2b1dc8cca8f7467da564e77b5ea

  • Make a Gift
  • Join Our Email List
  • Problem Solving in STEM

Solving problems is a key component of many science, math, and engineering classes.  If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer different types of problems.  Problem solving during section or class allows students to develop their confidence in these skills under your guidance, better preparing them to succeed on their homework and exams. This page offers advice about strategies for facilitating problem solving during class.

How do I decide which problems to cover in section or class?

In-class problem solving should reinforce the major concepts from the class and provide the opportunity for theoretical concepts to become more concrete. If students have a problem set for homework, then in-class problem solving should prepare students for the types of problems that they will see on their homework. You may wish to include some simpler problems both in the interest of time and to help students gain confidence, but it is ideal if the complexity of at least some of the in-class problems mirrors the level of difficulty of the homework. You may also want to ask your students ahead of time which skills or concepts they find confusing, and include some problems that are directly targeted to their concerns.

You have given your students a problem to solve in class. What are some strategies to work through it?

  • Try to give your students a chance to grapple with the problems as much as possible.  Offering them the chance to do the problem themselves allows them to learn from their mistakes in the presence of your expertise as their teacher. (If time is limited, they may not be able to get all the way through multi-step problems, in which case it can help to prioritize giving them a chance to tackle the most challenging steps.)
  • When you do want to teach by solving the problem yourself at the board, talk through the logic of how you choose to apply certain approaches to solve certain problems.  This way you can externalize the type of thinking you hope your students internalize when they solve similar problems themselves.
  • Start by setting up the problem on the board (e.g you might write down key variables and equations; draw a figure illustrating the question).  Ask students to start solving the problem, either independently or in small groups.  As they are working on the problem, walk around to hear what they are saying and see what they are writing down. If several students seem stuck, it might be a good to collect the whole class again to clarify any confusion.  After students have made progress, bring the everyone back together and have students guide you as to what to write on the board.
  • It can help to first ask students to work on the problem by themselves for a minute, and then get into small groups to work on the problem collaboratively.
  • If you have ample board space, have students work in small groups at the board while solving the problem.  That way you can monitor their progress by standing back and watching what they put up on the board.
  • If you have several problems you would like to have the students practice, but not enough time for everyone to do all of them, you can assign different groups of students to work on different – but related - problems.

When do you want students to work in groups to solve problems?

  • Don’t ask students to work in groups for straightforward problems that most students could solve independently in a short amount of time.
  • Do have students work in groups for thought-provoking problems, where students will benefit from meaningful collaboration.
  • Even in cases where you plan to have students work in groups, it can be useful to give students some time to work on their own before collaborating with others.  This ensures that every student engages with the problem and is ready to contribute to a discussion.

What are some benefits of having students work in groups?

  • Students bring different strengths, different knowledge, and different ideas for how to solve a problem; collaboration can help students work through problems that are more challenging than they might be able to tackle on their own.
  • In working in a group, students might consider multiple ways to approach a problem, thus enriching their repertoire of strategies.
  • Students who think they understand the material will gain a deeper understanding by explaining concepts to their peers.

What are some strategies for helping students to form groups?  

  • Instruct students to work with the person (or people) sitting next to them.
  • Count off.  (e.g. 1, 2, 3, 4; all the 1’s find each other and form a group, etc)
  • Hand out playing cards; students need to find the person with the same number card. (There are many variants to this.  For example, you can print pictures of images that go together [rain and umbrella]; each person gets a card and needs to find their partner[s].)
  • Based on what you know about the students, assign groups in advance. List the groups on the board.
  • Note: Always have students take the time to introduce themselves to each other in a new group.

What should you do while your students are working on problems?

  • Walk around and talk to students. Observing their work gives you a sense of what people understand and what they are struggling with. Answer students’ questions, and ask them questions that lead in a productive direction if they are stuck.
  • If you discover that many people have the same question—or that someone has a misunderstanding that others might have—you might stop everyone and discuss a key idea with the entire class.

After students work on a problem during class, what are strategies to have them share their answers and their thinking?

  • Ask for volunteers to share answers. Depending on the nature of the problem, student might provide answers verbally or by writing on the board. As a variant, for questions where a variety of answers are relevant, ask for at least three volunteers before anyone shares their ideas.
  • Use online polling software for students to respond to a multiple-choice question anonymously.
  • If students are working in groups, assign reporters ahead of time. For example, the person with the next birthday could be responsible for sharing their group’s work with the class.
  • Cold call. To reduce student anxiety about cold calling, it can help to identify students who seem to have the correct answer as you were walking around the class and checking in on their progress solving the assigned problem. You may even want to warn the student ahead of time: "This is a great answer! Do you mind if I call on you when we come back together as a class?"
  • Have students write an answer on a notecard that they turn in to you.  If your goal is to understand whether students in general solved a problem correctly, the notecards could be submitted anonymously; if you wish to assess individual students’ work, you would want to ask students to put their names on their notecard.  
  • Use a jigsaw strategy, where you rearrange groups such that each new group is comprised of people who came from different initial groups and had solved different problems.  Students now are responsible for teaching the other students in their new group how to solve their problem.
  • Have a representative from each group explain their problem to the class.
  • Have a representative from each group draw or write the answer on the board.

What happens if a student gives a wrong answer?

  • Ask for their reasoning so that you can understand where they went wrong.
  • Ask if anyone else has other ideas. You can also ask this sometimes when an answer is right.
  • Cultivate an environment where it’s okay to be wrong. Emphasize that you are all learning together, and that you learn through making mistakes.
  • Do make sure that you clarify what the correct answer is before moving on.
  • Once the correct answer is given, go through some answer-checking techniques that can distinguish between correct and incorrect answers. This can help prepare students to verify their future work.

How can you make your classroom inclusive?

  • The goal is that everyone is thinking, talking, and sharing their ideas, and that everyone feels valued and respected. Use a variety of teaching strategies (independent work and group work; allow students to talk to each other before they talk to the class). Create an environment where it is normal to struggle and make mistakes.
  • See Kimberly Tanner’s article on strategies to promoste student engagement and cultivate classroom equity. 

A few final notes…

  • Make sure that you have worked all of the problems and also thought about alternative approaches to solving them.
  • Board work matters. You should have a plan beforehand of what you will write on the board, where, when, what needs to be added, and what can be erased when. If students are going to write their answers on the board, you need to also have a plan for making sure that everyone gets to the correct answer. Students will copy what is on the board and use it as their notes for later study, so correct and logical information must be written there.

For more information...

Tipsheet: Problem Solving in STEM Sections

Tanner, K. D. (2013). Structure matters: twenty-one teaching strategies to promote student engagement and cultivate classroom equity . CBE-Life Sciences Education, 12(3), 322-331.

  • Designing Your Course
  • A Teaching Timeline: From Pre-Term Planning to the Final Exam
  • The First Day of Class
  • Group Agreements
  • Classroom Debate
  • Flipped Classrooms
  • Leading Discussions
  • Polling & Clickers
  • Teaching with Cases
  • Engaged Scholarship
  • Devices in the Classroom
  • Beyond the Classroom
  • On Professionalism
  • Getting Feedback
  • Equitable & Inclusive Teaching
  • Advising and Mentoring
  • Teaching and Your Career
  • Teaching Remotely
  • Tools and Platforms
  • The Science of Learning
  • Bok Publications
  • Other Resources Around Campus

benefits of teaching problem solving

  • Ideas for Action
  • Join the MAHB
  • Why Join the MAHB?
  • Current Associates
  • Current Nodes
  • What is the MAHB?
  • Who is the MAHB?
  • Acknowledgments

Problems, Problem Solving, and Education: An Inquiry into “Convention” as a Problem and What We Might Do About It

| April 21, 2024 | Leave a Comment

benefits of teaching problem solving

Digits.co.uk Images, CC BY 2.0 , via Wikimedia Commons

Item Link: Access the Resource

File: Download

Date of Publication: March 6

Year of Publication: 2024

Publication City: Bethlehem, PA

Publisher: The Mother's Service Society

Author(s): Susan G. Clark

Journal: Cadmus

Adequately responding to our deteriorating environmental and social situation is a matter of increasing urgency. An obstacle to achieving a concerted response is the way that we have normalized “convention,” or as some authors claim “thoughtless convention.” The author takes on this obstacle (i.e., convention, thoughtlessness) as the primary subject of this paper. We all live in the everyday, averaged-off way things are done, understood, and thought about in our respective cultures (this is convention). Problems are typically framed, embodied, and emplaced from within convention using a “metaphysics of control and mastery or dominance” over the biophysical world. Conventionally, this is the doctrine of scientific positivism mixed with neoliberal capitalistic economics. It plays out in complex ways with consequences. Too often, this approach blocks what should count as our appropriate relationship (“sustainability,” coexistence) with the world, including nonhuman life.

Accepting convention (status quo), which is very widely accepted, absolves us from thinking too deeply or looking at ourselves and our problems. This doctrine keeps us in a certain kind of dialectic of the “practical,” concrete, and literal. In turn, this translates into the present social and political organization of our culture, problem-solving heuristics, and academic curriculums. As a deeply rooted psychological mindset and way to frame problems, convention serves as an existential coping mechanism to avoid examination of self and culture, actual problems, and a way to reject promising alternatives, especially integrative functional approaches. Perhaps convention is so widespread because of these evolutionary/psychological dynamics and because there are so many problems—personal to global—that we do not understand or know how to address. Consequently, it is extremely hard to even question the pervasive conventional framing of our situation and current entrenched thought and operations. Fortunately, some people move beyond convention integrating conventional and functional understandings to address problems. An integrative standpoint looks for connections, relationships, and systems properties across social processes and decision-making. It offers a way to orient to problems more reliably than convention allows.

Frameworks exist for integration that have proven helpful. As an inquiry into convention, the author looks at our contemporary problems, our evolutionary history, problem-solving, the academy, and education, and offers a brief overview. Recommendations are about (1) helping people, leaders, and institutions, (2) learning integrative concepts and operations for effectively orienting to problems, functionally in realistic and pragmatic ways, and, (3) developing education in the academy to upskill students and address problems. The future, our global solidarity, and any global movements to address problems will depend on the  learning and transformations we can bring about.

Read the full paper here or download it from the link above.

Early Childhood University Logo

Importance of Problem Solving Skills  and How to Nurture them in your Child

We all face problems on a daily basis. You, me—our kids aren’t even exempted. Across all different age groups, there rarely is a day when we don’t experience them.

Teaching our kids to develop resilience can help as they face these challenges. Practical problem solving skills are just as necessary to teach our kids. The methods needed to resolve problems may require other skills such as creativity, critical thinking, emotional intelligence, teamwork, decision making, etc.

Unlike with math problems, life doesn’t just come with one formula or guidebook that’s applicable to solve every little problem we face. Being adaptable to various situations is important. So is nurturing problem solving skills in your child. 

Here we’ll take a look at the importance of problem solving skills and some ways to nurture them in your child. 

Why do we need problem-solving skills?

One thing that always comes up when we speak of problem-solving skills are the benefits for one’s mental health .

Problems are often complex. This means that problem solving skills aren’t a one-size-fits-all solution to all problems.

Strengthening and nurturing this set of skills helps children cope with challenges as they come. They can face and resolve a wider variety of problems with efficiency and without resulting in a breakdown.

This will help develop your child’s independence, allowing for them to grow into confident, responsible adults. 

Another importance of problem-solving skills is its impact on relationships . Whether they be friendships, family, or business relationships, poor problem solving skills may result in relationships breaking apart.

Being able to get to the bottom of a problem and find solutions together, with all the parties involved, helps keep relationships intact and eliminate conflicts as they arise. Being adept at this skill may even help strengthen and deepen relationships.

benefits of teaching problem solving

What steps can you take to nurture your child’s problem-solving skills?

Nurturing problem-solving skills in your child requires more than just focusing on the big picture and laying out steps to resolve problems. It requires that you teach them to find and focus on a problem’s essential components.

This may challenge your child’s critical thinking and creativity, among other things. 

Critical Thinking

This refers to the ability of breaking down a complex problem and analyzing its component parts.

The ability to do that will make it easier to come up with logical solutions to almost any problem. Being able to sort through and organize that pile of smaller chunks of information helps them face problems with ease. It also prevents your child from feeling overwhelmed when a huge barrier is laid out in front of them. 

Help your child practice critical thinking by asking them questions. Open-ended questions specifically help them think outside the box and analyze the situation.

Teach them to look into possible reasons why something is the way it is. Why is the sky blue? Why are plants green? Encourage them to be curious and ask questions themselves. 

Creative thinking is being able to look at different possible reasons and solutions in the context of problem-solving. It’s coming up with ideas and finding new ways of getting around a problem. Or being open to different ways of looking at an object or scenario.

Creative thinking is best nurtured with activities that involve reflection.

Try getting your child’s viewpoint on topics that may have different answers or reasons for taking place. Get them in the habit of brainstorming ideas, doing story-telling activities, and reading books. All of these help broaden a person’s thinking and flex their creative muscles.

Encourage Independence 

It’s important to retain your role as an observer, supporter, or facilitator. Step back and let your kids try out their own solutions. Watch what happens while ensuring their safety and well-being.

As an observer, you encourage independence by stepping back and watching how your child resolves the problem in their own way. It may take longer than it would if you jumped in, but leaving them to their own devices can do a lot for nurturing their skills at problem solving. 

Support your child by appreciating and acknowledging their efforts. Create a space where they can freely and effectively express their ideas without fear of judgement. Present them with opportunities to play and solve problems on their own. Encourage them to express themselves by brainstorming activities that they might want to do instead of telling them what to do.

These simple steps of overseeing your child can help them become more independent and be resilient enough to tackle problems on their own. 

Here at Early Childhood University , we value the importance of enhancing problem solving skills, creativity and critical thinking. Send your little ones to a school that focuses on a child’s holistic development. Give us a call for more information. 

best child care

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Elementary teachers’ experience of engaging with Teaching Through Problem Solving using Lesson Study

Mairéad hourigan.

Department of STEM Education, Mary Immaculate College, University of Limerick, Limerick, Ireland

Aisling M. Leavy

For many decades, problem solving has been a focus of elementary mathematics education reforms. Despite this, in many education systems, the prevalent approach to mathematics problem solving treats it as an isolated activity instead of an integral part of teaching and learning. In this study, two mathematics teacher educators introduced 19 Irish elementary teachers to an alternative problem solving approach, namely Teaching Through Problem Solving (TTP), using Lesson Study (LS) as the professional development model. The findings suggest that the opportunity to experience TTP first-hand within their schools supported teachers in appreciating the affordances of various TTP practices. In particular, teachers reported changes in their beliefs regarding problem solving practice alongside developing problem posing knowledge. Of particular note was teachers’ contention that engaging with TTP practices through LS facilitated them to appreciate their students’ problem solving potential to the fullest extent. However, the planning implications of the TTP approach presented as a persistent barrier.

Introduction

A fundamental goal of mathematics education is to develop students’ ability to engage in mathematical problem solving. Despite curricular emphasis internationally on problem solving, many teachers are uncertain how to harness students’ problem solving potential (Cheeseman, 2018 ). While many problem solving programmes focus on providing students with step-by-step supports through modelling, heuristics, and other structures (Polya, 1957 ), Goldenberg et al. ( 2001 ) suggest that the most effective approach to developing students’ problem solving ability is by providing them with frequent opportunities over a prolonged period to solve worthwhile open-ended problems that are challenging yet accessible to all. This viewpoint is in close alignment with reform mathematics perspectives that promote conceptual understanding, where students actively construct their knowledge and relate new ideas to prior knowledge, creating a web of connected knowledge (Hiebert, 2003 ; Lester, 2013 ; Takahashi, 2006 ; Watanabe, 2001 ).

There is consensus in the mathematics education community that problem solving should not be taught as an isolated topic focused solely on developing problem solving skills and strategies or presented as an end-of-chapter activity (Takahashi, 2006 , 2016 ; Takahashi et al., 2013 ). Instead, problem solving should be integrated across the curriculum as a fundamental part of mathematics teaching and learning (Cai & Lester, 2010 ; Takahashi, 2016 ).

A ‘Teaching Through Problem Solving’ (TTP) approach, a problem solving style of instruction that originated in elementary education in Japan, meets these criteria treating problem solving as a core practice rather than an ‘add-on’ to mathematics instruction.

Teaching Through Problem Solving (TTP)

Teaching Through Problem Solving (TTP) is considered a powerful means of promoting mathematical understanding as a by-product of solving problems, where the teacher presents students with a specially designed problem that targets certain mathematics content (Stacey, 2018 ; Takahashi et al., 2013 ). The lesson implementation starts with the teacher presenting a problem and ensuring that students understand what is required. Students then solve the problem either individually or in groups, inventing their approaches. At this stage, the teacher does not model or suggest a solution procedure. Instead, they take on the role of facilitator, providing support to students only at the right time (Hiebert, 2003 ; Lester, 2013 ; Takahashi, 2006 ). As students solve the problem, the teacher circulates, observes the range of student strategies, and identifies work that illustrates desired features. However, the problem solving lesson does not end when the students find a solution. The subsequent sharing phase, called Neriage (polishing ideas), is considered by Japanese teachers to be the heart of the lesson rather than its culmination. During Neriage, the teacher purposefully selects students to share their strategies, compares various approaches, and introduces increasingly sophisticated solution methods. Effective questioning is central to this process, alongside careful recording of the multiple solutions on the board. The teacher concludes the lesson by formalising and consolidating the lesson’s main points. This process promotes learning for all students (Hiebert, 2003 ; Stacey, 2018 ; Takahashi, 2016 ; Takahashi et al., 2013 ; Watanabe, 2001 ).

The TTP approach assumes that students develop, extend, and enrich their understandings as they confront problematic situations using existing knowledge. Therefore, TTP fosters the symbiotic relationship between conceptual understanding and problem solving, as conceptual understanding is required to solve challenging problems and make sense of new ideas by connecting them with existing knowledge. Equally, problem solving promotes conceptual understanding through the active construction of knowledge (Hiebert, 2003 ; Lambdin, 2003 ; Takahashi, 2006 ). Consequently, students simultaneously develop more profound understandings of the mathematics content while cultivating problem solving skills (Kapur, 2010 ; Stacey, 2018 ).

Relevant research affirms that teachers acknowledge the merits of this approach (Sullivan et al., 2014 ) and most students report positive experiences (Russo & Minas, 2020 ). The process is considered to make students’ thinking and learning visible (Ingram et al., 2020 ). Engagement in TTP has resulted in teachers becoming more aware of and confident in their students’ problem solving abilities and subsequently expecting more from them (Crespo & Featherstone, 2006 ; Sakshaug & Wohlhuter, 2010 ).

Demands of TTP

Adopting a TTP approach challenges pre-existing beliefs and poses additional knowledge demands for elementary teachers, both content and pedagogical (Takahashi, 2008 ).

Research has consistently reported a relationship between teacher beliefs and the instructional techniques used, with evidence of more rule-based, teacher-directed strategies used by teachers with traditional mathematics beliefs (Stipek et al., 2001 ; Swan, 2006 ; Thompson, 1985 ). These teachers tend to address problem solving separately from concept and skill development and possess a simplistic view of problem solving as translating a problem into abstract mathematical terms to solve it. Consequently, such teachers ‘are very concerned about developing skilfulness in translating (so-called) real-world problems into mathematical representations and vice versa’ (Lester, 2013 , p. 254). Early studies of problem solving practice reported direct instructional techniques where the teacher would model how to solve the problem followed by students practicing similar problems (Chapman, 2015 ; Hiebert, 2003 ; Lester, 2013 ). This naïve conception of problem solving is reflected in many textbook problems that simply require students to apply previously learned routine procedures to solve problems that are merely thinly disguised number operations (Lester, 2013 ; Singer & Voica, 2013 ). Hence, the TTP approach requires a significant shift for teachers who previously considered problem solving as an extra activity conducted after the new mathematics concepts are introduced (Lester, 2013 ; Takahashi et al., 2013 ) or whose personal experience of problem solving was confined to applying routine procedures to word problems (Sakshaug &Wohlhuter, 2010 ).

Alongside beliefs, teachers’ knowledge influences their problem solving practices. Teachers require a deep understanding of the nature of problem solving, in particular viewing problem solving as a process (Chapman, 2015 ). To be able to understand the stages problem solvers go through and appreciate what successful problem solving involves, teachers benefit from experiencing solving problems from the problem solver’s perspective (Chapman, 2015 ; Lester, 2013 ).

It is also essential that teachers understand what constitutes a worthwhile problem when selecting or posing problems (Cai, 2003 ; Chapman, 2015 ; Lester, 2013 ; O’Shea & Leavy, 2013 ). This requires an understanding that problems are ‘mathematical tasks for which the student does not have an obvious way to solve it’ (Chapman, 2015 , p. 22). Teachers need to appreciate the variety of problem characteristics that contribute to the richness of a problem, e.g. problem structures and cognitive demand (Klein & Leiken, 2020 ; O’Shea & Leavy, 2013 ). Such understandings are extensive, and rather than invest heavily in the time taken to construct their mathematics problems, teachers use pre-made textbook problems or make cosmetic changes to make cosmetic changes to these (Koichu et al., 2013 ). In TTP, due consideration must also be given to the problem characteristics that best support students in strengthening existing understandings and experiencing new learning of the target concept, process, or skill (Cai, 2003 ; Takahashi, 2008 ). Specialised content knowledge is also crucial for teachers to accurately predict and interpret various solution strategies and misconceptions/errors, to determine the validity of alternative approaches and the source of errors, to sequence student approaches, and to synthesise approaches and new learning during the TTP lesson (Ball et al., 2008 ; Cai, 2003 ; Leavy & Hourigan, 2018 ).

Teachers should also be knowledgeable regarding appropriate problem solving instruction. It is common for teachers to teach for problem solving (i.e., focusing on developing students’ problem solving skills and strategies). Teachers adopting a TTP approach engage in reform classroom practices that reflect a constructivist-oriented approach to problem solving instruction where the teacher guides students to work collaboratively to construct meaning, deciding when and how to support students without removing their autonomy (Chapman, 2015 ; Hiebert, 2003 ; Lester, 2013 ). Teachers ought to be aware of the various relevant models of problem solving, including Polya’s ( 1957 ) model that supports teaching for problem solving (Understand the problem-Devise a plan-Carry out the plan-Look back) alongside models that support TTP (e.g., Launch-Explore-Summarise) (Lester, 2013 ; Sullivan et al., 2021 ). While knowledge of heuristics and strategies may support teachers’ problem solving practices, there is consensus that teaching heuristics and strategies or teaching about problem solving does not significantly improve students’ problem solving ability. Teachers require a thorough knowledge of their students as problem solvers, for example, being aware of their abilities and factors that hinder their success, including language (Chapman, 2015 ). Knowledge of content and student, alongside content and teaching (Ball et al., 2008 ), is essential during TTP planning when predicting student approaches and errors. Such knowledge is also crucial during TTP implementation when determining the validity of alternative approaches, identifying the source of errors (Explore phase), sequencing student approaches, and synthesising the range of approaches and new learning effectively (Summarise phase) (Cai, 2003 ; Leavy & Hourigan, 2018 ).

Supports for teachers

Given the extensive demands of TTP, adopting this approach is arduous in terms of the planning time required to problem pose, predict approaches, and design questions and resources (Lester, 2013 ; Sullivan et al., 2010 ; Takahashi,  2008 ). Consequently, it is necessary to support teachers who adopt a TTP approach (Hiebert, 2003 ). Professional development must facilitate them to experience the approach themselves as learners and then provide classroom implementation opportunities that incorporate collaborative planning and reflection when trialling the approach (Watanabe, 2001 ). In Japan, a common form of professional development to promote, develop, and refine TTP implementation among teachers and test potential problems for TTP is Japanese Lesson Study (LS) (Stacey, 2018 ; Takahashi et al., 2013 ). Another valuable support is access to a repository of worthwhile problems. In Japan, government-authorised textbooks and teacher manuals provide a sequence of lessons with rich well-tested problems to introduce new concepts. They also detail alternative strategies used by students and highlight the key mathematical aspects of these strategies (Takahashi, 2016 ; Takahashi et al., 2013 ).

Teachers’ reservations about TTP

Despite the acknowledged benefits of TTP for students, some teachers report reluctance to employ TTP, identifying a range of obstacles. These include limited mathematics content knowledge or pedagogical content knowledge (Charalambous, 2008 ; Sakshaug & Wohlhuter, 2010 ) and a lack of access to resources or time to develop or modify appropriate resources (Ingram et al., 2020 ; Russo & Hopkins, 2019 ; Sullivan et al., 2015 ). Other barriers for teachers with limited experience of TTP include giving up control, struggling to support students without directing them, and a tendency to demonstrate how to solve the problem (Cheeseman, 2018 ; Crespo & Featherstone, 2006 ; Klein & Leiken, 2020 ; Takahashi et al., 2013 ). Resistance to TTP is also associated with some teachers’ perception that this approach would lead to student disengagement and hence be unsuitable for lower-performing students (Ingram et al., 2020 ; Russo & Hopkins, 2019 ; Sullivan et al., 2010 ).

Problem solving practices in Irish elementary mathematics education

Within the Irish context, problem solving is a central tenet of elementary mathematics curriculum documents (Department of Education and Science (DES), 1999 ) with recommendations that problem solving should be integral to students’ mathematical learning. However, research reveals a mismatch between intended and implemented problem solving practices (Dooley et al., 2014 ; Dunphy et al., 2014 ), where classroom practices reflect a narrow approach limited to problem solving as an ‘add on’, only applied after mathematical procedures had been learned and where problems are predominantly sourced from dedicated sections of textbooks (Department of Education and Skills (DES), 2011 ; Dooley et al., 2014 ; National Council for Curriculum and Assessment (NCCA), 2016 ; O’Shea & Leavy, 2013 ). Regarding the attained curriculum, Irish students have underperformed in mathematical problem solving, relative to other skills, in national and international assessments (NCCA, 2016 ; Shiel et al., 2014 ). Consensus exists that there is scope for improvement of problem solving practices, with ongoing calls for Irish primary teachers to receive support through school-based professional development models alongside creating a repository of quality problems (DES, 2011 ; Dooley et al., 2014 ; NCCA, 2016 ).

Lesson Study (LS) as a professional development model

Reform mathematics practices, such as TTP, challenge many elementary teachers’ beliefs, knowledge, practices, and cultural norms, particularly if they have not experienced the approach themselves as learners. To support teachers in enacting reform approaches, they require opportunities to engage in extended and targeted professional development involving collaborative and practice-centred experiences (Dudley et al., 2019 ; Murata et al., 2012 ; Takahashi et al., 2013 ). Lesson Study (LS) possesses the characteristics of effective professional development as it embeds ‘…teachers’ learning in their everyday work…increasing the likelihood that their learning will be meaningful’ (Fernandez et al., 2003 , p. 171).

In Japan, LS was developed in the 1980s to support teachers to use more student-centred practices. LS is a school-based, collaborative, reflective, iterative, and research-based form of professional development (Dudley et al., 2019 ; Murata et al., 2012 ). In Japan, LS is an integral part of teaching and is typically conducted as part of a school-wide project focused on addressing an identified teaching–learning challenge (Takahashi & McDougal, 2016 ). It involves a group of qualified teachers, generally within a single school, working together as part of a LS group to examine and better understand effective teaching practices. Within the four phases of the LS cycle, the LS group works collaboratively to study and plan a research lesson that addresses a pre-established goal before implementing (teach) and reflecting (observe, analyse and revise) on the impact of the lesson activities on students’ learning.

LS has become an increasingly popular professional development model outside of Japan in the last two decades. In these educational contexts, it is necessary to find a balance between fidelity to LS as originally envisaged and developing a LS approach that fits the cultural context of a country’s education system (Takahashi & McDougal, 2016 ).

Relevant research examining the impact of LS on qualified primary mathematics teachers reports many benefits. Several studies reveal that teachers demonstrated transformed beliefs regarding effective pedagogy and increased self-efficacy in their use due to engaging in LS (Cajkler et al., 2015 ; Dudley et al., 2019 ; Fernandez, 2005 ; Gutierez, 2016 ). Enhancements in participating teachers’ knowledge have also been reported (Cajkler et al., 2015 ; Dudley et al., 2019 ; Fernandez, 2005 ; Gutierez, 2016 ; Murata et al., 2012 ). Other gains recounted include improvements in practice with a greater focus on students (Cajkler et al., 2015 ; Dudley et al., 2019 ; Flanagan, 2021 ).

Context of this study

A cluster of urban schools, coordinated by their local Education Centre, engaged in an initiative to enhance teachers’ mathematics problem solving practices. The co-ordinator of the initiative approached the researchers, both mathematics teacher educators (MTEs), seeking a relevant professional development opportunity. Aware of the challenges of problem solving practice within the Irish context, the MTEs proposed an alternative perspective on problem solving: the Teaching Through Problem Solving (TTP) approach. Given Cai’s ( 2003 ) recommendation that teachers can best learn to teach through problem solving by teaching and reflecting as opposed to taking more courses, the MTEs identified LS as the best fit in terms of a supportive professional development model, as it is collaborative, experiential, and school-based (Dudley et al., 2019 ; Murata et al., 2012 ; Takahashi et al., 2013 ). Consequently, LS would promote teachers to work collaboratively to understand the TTP approach, plan TTP practices for their educational context, observe what it looks like in practice, and assess the impact on their students’ thinking (Takahashi et al., 2013 ). In particular, the MTEs believed that the LS phases and practices would naturally support TTP structures, emphasizing task selection and anticipating students’ solutions. Given Lester’s ( 2013 ) assertion that each problem solving experience a teacher engages in can potentially alter their knowledge for teaching problem solving, the MTEs sought to explore teachers’ perceptions of the impact of engaging with TTP through LS on their beliefs regarding problem solving and their knowledge for teaching problem solving.

Research questions

This paper examines two research questions:

  • Research question 1: What are elementary teachers’ reported problem solving practices prior to engaging in LS?
  • Research question 2: What are elementary teachers’ perceptions of what they learned from engaging with TTP through LS?

Methodology

Participants.

The MTEs worked with 19 elementary teachers (16 female, three male) from eight urban schools. Schools were paired to create four LS groups on the basis of the grade taught by participating class teachers, e.g. Grade 3 teacher from school 1 paired with Grade 4 teacher from school 2. Each LS group generally consisted of 4–5 teachers, with a minimum of two teachers from each school, along with the two MTEs. For most teachers, LS and TTP were new practices being implemented concurrently. However, given the acknowledged overlap between the features of the TTP and LS approaches, for example, the focus on problem posing and predicting student strategies, the researchers were confident that the content and structure were compatible. Also, in Japan, LS is commonly used to promote TTP implementation among teachers (Stacey, 2018 ; Takahashi et al., 2013 ).

All ethical obligations were adhered to throughout the research process, and the study received ethical approval from the researchers’ institutional board. Of the 19 participating LS teachers invited to partake in the research study, 16 provided informed consent to use their data for research purposes.

Over eight weeks, the MTEs worked with teachers, guiding each LS group through the four LS phases involving study, design, implementation, and reflection of a research lesson that focused on TTP while assuming the role of ‘knowledgeable others’ (Dudley et al., 2019 ; Hourigan & Leavy, 2021 ; Takahashi & McDougal, 2016 ). An overview of the timeline and summary of each LS phase is presented in Table ​ Table1 1 .

Lesson Study phases and timeline

An external file that holds a picture, illustration, etc.
Object name is 13394_2022_418_Tab1_HTML.jpg

LS phase 1: Study

This initial study phase involved a one-day workshop. The process and benefits of LS as a school-based form of professional development were discussed in the morning session and the afternoon component was spent focusing on the characteristics of TTP. Teachers experienced the TPP approach first-hand by engaging in the various lesson stages. For example, they solved a problem (growing pattern problem) themselves in pairs and shared their strategies. They also predicted children’s approaches to the problem and possible misconceptions and watched the video cases of TTP classroom practice for this problem. Particular focus was placed on the importance of problem selection and prediction of student strategies before the lesson implementation and the Neriage stage of the lesson. Teachers also discussed readings related to LS practices (e.g. Lewis & Tsuchida, 1998 ) and TTP (e.g., Takahashi, 2008 ). At the end of the workshop, members of each LS group were asked to communicate among themselves and the MTEs, before the planning phase, to decide the specific mathematics focus of their LS group’s TTP lesson (Table ​ (Table1 1 ).

LS phase 2: Planning

The planning phase was four weeks in duration and included two 1½ hour face-to-face planning sessions (i.e. planning meetings 1 and 2) between the MTEs and each LS group (Table ​ (Table1). 1 ). Meetings took place in one of the LS group’s schools. At the start of the first planning meeting, time was dedicated to Takahashi’s ( 2008 ) work focusing on the importance of problem selection and prediction of student strategies to plan the Neriage stage of the TTP lesson. The research lesson plan structure was also introduced. Ertle et al.’s ( 2001 ) four column lesson plan template was used. It was considered particularly compatible with the TTP approach, given the explicit attention to expected student response and the teacher’s response to student activity/response.

The planning then moved onto the content focus of each LS group’s TTP research lesson. LS groups selected TTP research lessons focusing on number (group A), growing patterns (group B), money (group C), and 3D shapes (group D). Across the planning phase, teachers invested substantial time extensively discussing the TTP lesson goals in terms of target mathematics content, developing or modifying a problem to address these goals, and exploring considerations for the various lesson stages. Drawing on Takahashi’s ( 2008 ) article, it was re-emphasised that no strategies would be explicitly taught before students engaged with the problem. While one LS group modified an existing problem (group B) (Hourigan & Leavy, 2015 ), the other three LS groups posed an original problem. To promote optimum teacher readiness to lead the Neriage stage, each LS group was encouraged to solve the problem themselves in various ways considering possible student strategies and their level of mathematical complexity, thus identifying the most appropriate sequence of sharing solutions.

LS phase 3: Implementation

The implementation phase involved one teacher in each LS group teaching the research lesson (teach 1) in their school. The remaining group members and MTEs observed and recorded students’ responses. Each LS group and the MTEs met immediately for a post-lesson discussion to evaluate the research lesson. The MTEs presented teachers with a series of focus questions: What were your observations of student learning? Were the goals of the lesson achieved? Did the problem support students in developing the appropriate understandings? Were there any strategies/errors that we had not predicted? How did the Neriage stage work? What aspects of the lesson plan should be reconsidered based on this evidence? Where appropriate, the MTEs drew teachers’ attention to particular lesson aspects they had not noticed. Subsequently, each LS group revised their research lesson in response to the observations, reflections, and discussion. The revised lesson was retaught 7–10 days later by a second group member from the paired LS group school (teach 2) (Table ​ (Table1). 1 ). The post-lesson discussion for teach 2 focused mainly on the impact of changes made after the first implementation on student learning, differences between the two classes, and further changes to the lesson.

LS phase 4: Reflection

While reflection occurred after both lesson implementations, the final reflection involved all teachers from the eight schools coming together for a half-day meeting in the local Education Centre to share their research lessons, experiences, and learning (Table ​ (Table1). 1 ). Each LS group made a presentation, identifying their research lesson’s content focus and sequence of activity. Artefacts (research lesson plan, materials, student work samples, photos) were used to support observations, reflections, and lesson modifications. During this meeting, teachers also reflected privately and in groups on their initial thoughts and experience of both LS and TTP, the benefits of participation, the challenges they faced, and they provided suggestions for future practice.

Data collection

The study was a collective case study (Stake, 1995 ). Each LS group constituted a case; thus, the analysis was structured around four cases. Data collection was closely aligned with and ran concurrent to the LS process. Table ​ Table2 2 details the links between the LS phases and the data collection process.

Overview of data collection methods across the research cycles

* MTE  mathematics teacher educator

The principal data sources (Table ​ (Table2) 2 ) included both MTEs’ fieldnotes (phase (P) 1–4), and reflections (P1–4), alongside email correspondence (P1–4), individual teacher reflections (P1, 2, 4) (see reflection tasks in Table ​ Table3), 3 ), and LS documentation including various drafts of lesson plans (P2–4) and group presentations (P4). Fieldnotes refer to all notes taken by MTEs when working with the LS groups, for example, during the study session, planning meetings, lesson implementations, post-lesson discussions, and the final reflection session.

Teacher reflection focus questions

The researchers were aware of the limitations of self-report data and the potential mismatch between one’s perceptions and reality. Furthermore, data in the form of opinions, attitudes, and beliefs may contain a certain degree of bias. However, this paper intentionally focuses solely on the teachers’ perceived learning in order to represent their ‘lived experience’ of TTP. Despite this, measures were taken to assure the trustworthiness and rigour of this qualitative study. The researchers engaged with the study over a prolonged period and collected data for each case (LS group) at every LS phase (Table ​ (Table2). 2 ). All transcripts reflected verbatim accounts of participants’ opinions and reflections. At regular intervals during the study, research meetings interrogated the researchers’ understandings, comparing participating teachers’ observations and reflections to promote meaning-making (Creswell, 2009 ; Suter, 2012 ).

Data analysis

The MTEs’ role as participant researchers was considered a strength of the research given that they possessed unique insights into the research context. A grounded theory approach was adopted, where the theory emerges from the data analysis process rather than starting with a theory to be confirmed or refuted (Glaser, 1978 ; Strauss & Corbin, 1998 ). Data were examined focusing on evidence of participants’ problem solving practices prior to LS and their perceptions of their learning as a result of engaging with TTP through LS. A systematic process of data analysis was adopted. Initially, raw data were organised into natural units of related data under various codes, e.g. resistance, traditional approach, ignorance, language, planning, fear of student response, relevance, and underestimation. Through successive examinations of the relationship between existing units, codes were amalgamated (Creswell, 2009 ). Progressive drafts resulted in the firming up of several themes. Triangulation was used to establish consistency across multiple data sources. While the first theme, Vast divide between prevalent problem solving practices and TTP , addresses research question 1, it is considered an overarching theme, given the impact of teachers’ established problem solving understandings and practices on their receptiveness to and experience of TTP. The remaining five themes ( Seeing is believing : the value of practice centred experiences ; A gained appreciation of the relevance and value of TTP practices ; Enhanced problem posing understandings ; Awakening to students’ problem solving potential ; and Reservations regarding TTP) represent a generalised model of teachers’ perceived learning due to engaging with TTP through LS, thus addressing research question 2. Although one of the researchers was responsible for the initial coding, both researchers met regularly during the analysis to discuss and interrogate the established codes and to agree on themes. This process served to counteract personal bias (Suter, 2012 ).

As teacher reflections were anonymised, it was not possible to track teachers across LS phases. Consequently, teacher reflection data are labelled as phase and instrument only. For example, ‘P2, teacher reflection’ communicates that the data were collected during LS phase 2 through teacher reflection. However, the remaining data are labelled according to phase, instrument, and source, e.g. ‘P3, fieldnotes: group B’. While phase 4 data reflect teachers’ perceptions after engaging fully with the TTP approach, data from the earlier phases reflect teachers’ evolving perceptions at a particular point in their unfolding TTP experience.

Discussion of findings

The findings draw on the analysis of the data collected across the LS phases and address the research questions. Within the confines of this paper, illustrative quotes are presented to provide insights into each theme. An additional layer of analysis was completed to ensure a balanced representation of teachers’ views in reporting findings. This process confirmed that the findings represent the views of teachers across LS groups, for example, within the first theme presented ( Vast divide ), the eight quotes used came from eight different teacher reflections. Equally, the six fieldnote excerpts selected represent six different teachers’ views across the four LS groups. Furthermore, in the second theme ( Seeing is believing ), the five quotes presented were sourced from five different participating teachers’ reflections and the six fieldnote excerpts included are from six different teachers across the four LS groups. Subsequent examination of the perceptions of those teachers not included in the reporting of findings confirmed that their perspectives were represented within the quotes used. Hence, the researchers are confident that the findings represent the views of teachers across all LS groups. For each theme, sources of evidence that informed the presented conclusions will be outlined.

Vast divide between prevalent problem solving practices and TTP

This overarching theme addresses the research question ‘What were elementary teachers’ reported problem solving practices prior to engaging in LS?’.

At the start of the initiative, within the study session (fieldnotes), all teachers identified mathematics problem solving as a problem of practice. The desire to develop problem solving practices was also apparent in some teachers’ reflections (phase 1 (P1), N  = 8):

I am anxious about it. Problem solving is an area of great difficulty throughout our school (P1, teacher reflection).

During both study and planning phase discussions, across all LS groups, teachers’ reports suggested the almost exclusive use of a teaching for problem solving approach, with no awareness of the Teaching Through Problem Solving (TTP) approach; a finding also evidenced in both teacher reflections (P1, N  = 7) and email correspondence:

Unfamiliar, not what I am used to. I have no experience of this kind of problem solving. This new approach is the reverse way to what I have used for problem solving (P1, teacher reflection) Being introduced to new methods of teaching problem solving and trying different approaches is both exciting and challenging (P1: email correspondence)

Teachers’ descriptions of their problem solving classroom practices in both teacher reflections (P1, N  = 8) and study session discussions (fieldnotes) suggested a naïve conception of problem solving, using heuristics such as the ‘RUDE (read, underline, draw a picture, estimate) strategy’ (P1, fieldnotes) to support students in decoding and solving the problem:

In general, the problem solving approach described by teachers is textbook-led, where concepts are taught context free first and the problems at the end of the chapter are completed afterwards (P1, reflection: MTE2)

This approach was confirmed as widespread across all LS groups within the planning meetings (fieldnotes).

In terms of problem solving instruction, a teacher-directed approach was reported by some teachers within teacher reflections (P1, N  = 5), where the teacher focused on a particular strategy and modelled its use by solving the problem:

I tend to introduce the problem, ensure everyone understands the language and what is being asked. I discuss the various strategies that children could use to solve the problem. Sometimes I demonstrate the approach. Then children practice similar problems … (P1: Teacher reflection)

However, it was evident within the planning meetings, that this traditional approach to problem solving was prevalent among the teachers in all LS groups. During the study session (field notes and teacher reflections (P1, N  = 7)), there was a sense that problem solving was an add-on as opposed to an integral part of mathematics teaching and learning. Again, within the planning meetings, discussions across all four LS groups verified this:

Challenge: Time to focus on problems not just computation (P1: Teacher reflection). From our discussions with the various LS groups’ first planning meeting, text-based teaching seems to be resulting in many teachers teaching concepts context-free initially and then matching the concept with the relevant problems afterwards (P2, reflection: MTE1)

However, while phase 1 teacher reflections suggested that a small number of participating teachers ( N  = 4) possessed broader problem solving understandings, subsequently during the planning meetings, there was ample evidence (field notes) of problem-posing knowledge and the use of constructivist-oriented approaches that would support the TTP approach among some participating teachers in each of the LS groups:

Challenge: Spend more time on meaningful problems and give them opportunities and time to engage in activities, rather than go too soon into tricks, rhymes etc (P1, Teacher reflection). The class are already used to sharing strategies and explaining where they went wrong (P2, fieldnotes, Group B) Teacher: The problem needs to have multiple entry points (P2, fieldnotes: Group C)

While a few teachers reported problem posing practices, in most cases, this consisted of cosmetic adjustments to textbook problems. Overall, despite evidence of some promising practices, the data evidenced predominantly traditional problem solving views and practices among participating teachers, with potential for further broadening of various aspects of their knowledge for teaching problem solving including what constitutes a worthwhile problem, the role of problem posing within problem solving, and problem solving instruction. Within phase 1 teacher reflections, when reporting ‘challenges’ to problem solving practices (Table ​ (Table3), 3 ), a small number of responses ( N  = 3) supported these conclusions:

Differences in teachers’ knowledge (P1: Teacher reflection). Need to challenge current classroom practices (P1: Teacher reflection).

However, from the outset, all participating teachers consistently demonstrated robust knowledge of their students as problem solvers, evidenced in phase 1 teacher reflections ( N  = 10) and planning meeting discussions (P2, fieldnotes). However, in these early phases, teachers generally portrayed a deficit view, focusing almost exclusively on the various challenges impacting their students’ problem solving abilities. While all teachers agreed that the language of problems was inhibiting student engagement, other common barriers reported included student motivation and perseverance:

They often have difficulties accessing the problem – they don’t know what it is asking them (P2, fieldnotes: Group C) Sourcing problems that are relevant to their lives. I need to change every problem to reference soccer so the children are interested (P1: teacher reflection) Our children deal poorly with struggle and are slow to consider alternative strategies (P2, fieldnotes: Group D)

Despite showcasing a strong awareness of their students’ problem solving difficulties, teachers initially demonstrated a lack of appreciation of the benefits accrued from predicting students’ approaches and misconceptions relating to problem solving. While it came to the researchers’ attention during the study phase, its prevalence became apparent during the initial planning meeting, as its necessity and purpose was raised in three of the LS groups:

What are the benefits of predicting the children’s responses? (P1, fieldnotes). I don’t think we can predict- we will have to wait and see (P2, fieldnotes: Group A).

This finding evidences teachers’ relatively limited knowledge for teaching problem solving, given that this practice is fundamental to TTP and constructivist-oriented approaches to problem solving instruction.

Perceived impacts of engaging with TTP through LS

In response to the research question ‘What are elementary teachers’ perceptions of what they learned from engaging with TTP through LS?’, thematic data analysis identified 5 predominant themes, namely, Seeing is believing : the value of practice centred experiences ; A gained appreciation of the relevance and value of TTP practices ; Enhanced problem posing understandings ; Awakening to students’ problem solving potential ; and Reservations regarding TTP.

Seeing is believing: the value of practice centred experiences

Teachers engaged with TTP during the study phase as both learners and teachers when solving the problem. They were also involved in predicting and analysing student responses when viewing the video cases, and engaged in extensive reading, discussion, and planning for their selected TTP problem within the planning phase. Nevertheless, teachers reported reservations about the relevance of TTP for their context within both phase 2 teacher reflections ( N  = 5) as well as within the planning meeting discourse of all LS groups. Teachers’ keen awareness of their students’ problem solving challenges, coupled with the vast divide between the nature of their prior problem solving practices and the TTP approach, resulted in teachers communicating concern regarding students’ possible reaction during the planning phase:

I am worried about the problem. I am concerned that if the problem is too complex the children won’t respond to it (P2, fieldnotes: Group B) The fear that the children will not understand the lesson objective. Will they engage? (P2, Teacher reflection)

Acknowledging their apprehension regarding students’ reactions to TTP, from the outset, all participating teachers communicated a willingness to trial TTP practices:

Exciting to be part of. Eager to see how it will pan out and the learning that will be taken from it (P1, teacher reflection) They should be ‘let off’ (P2, fieldnotes: Group A).

It was only within the implementation phase, when teachers received the opportunity to meaningfully observe the TTP approach in their everyday work context, with their students, that they explicitly demonstrated an appreciation for the value of TTP practices. It was evident from teacher commentary across all LS groups’ post-lesson discussions (fieldnotes) as well as in teacher reflections (P4, N  = 10) that observing first-hand the high levels of student engagement alongside students’ capacity to engage in desirable problem solving strategies and demonstrate sought-after dispositions had affected this change:

Class teacher: They engaged the whole time because it was interesting to them. The problem is core in terms of motivation. It determines their willingness to persevere. Otherwise, it won’t work whether they have the skills or not (P3, fieldnotes: Group C) LS group member: The problem context worked really well. The children were all eager and persevered. It facilitated all to enter at their own level, coming up with ideas and using their prior knowledge to solve the problem. Working in pairs and the concrete materials were very supportive. It’s something I’d never have done before (P3, fieldnotes: Group A)

Although all teachers showcased robust knowledge of their students’ problem solving abilities prior to engaging in TTP, albeit with a tendency to focus on their difficulties and factors that inhibited them, teachers’ contributions during post-lesson discussions (fieldnotes) alongside teacher reflections (P4, N  = 9) indicate that observing TTP in action supported them in developing an appreciation of value of the respective TTP practices, particularly the role of prediction and observation of students’ strategies/misconceptions in making the students’ thinking more visible:

You see the students through the process (P3, fieldnotes: Group C) It’s rare we have time to think, to break the problem down, to watch and understand children’s ways of thinking/solving. It’s really beneficial to get a chance to re-evaluate the teaching methods, to edit the lesson, to re-teach (P4, teacher reflection)

Analysis of the range of data sources across the phases suggests that it was the opportunity to experience TTP in practice in their classrooms that provided the ‘proof of concept’:

I thought it wasn’t realistic but bringing it down to your own classroom it is relevant (P4, teacher reflection).

Hence from the teachers’ perspective, they witnessed the affordances of TTP practices in the implementation phase of the LS process.

A gained appreciation of the relevance and value of TTP practices

While during the early LS phases, teachers’ reporting suggested a view of problem solving as teaching to problem solve, data from both fieldnotes (phases 3 and 4) and teacher reflections (phase 4) demonstrate that all teachers broadened their understanding of problem solving as a result of engaging with TTP:

Interesting to turn lessons on their head and give students the chance to think, plan and come up with possible strategies and solutions (P4, Teacher reflection)

On witnessing the affordances of TTP first-hand in their own classrooms, within both teacher reflections (P4, N  = 12) and LS group presentations, the teachers consistently reported valuing these new practices:

I just thought the whole way of teaching was a good way, an effective way of teaching. Sharing and exploring more than one way of solving is vital (P4, teacher reflection) There is a place for it in the classroom. I will use aspects of it going forward (P4, fieldnotes: Group C)

In fact, teachers’ support for this problem solving approach was apparent in phase 3 during the initial post-lesson discussions. It was particularly notable when a visitor outside of the LS group who observed teach 1 challenged the approach, recommending the explicit teaching of strategies prior to engagement. A LS group member’s reply evidenced the group’s belief that TTP naturally exposes students to the relevant learning: ‘Sharing and questioning will allow students to learn more efficient strategies [other LS group members nodding in agreement]’ (P3, fieldnotes; Group A).

In turn, within phase 4 teacher reflections, teachers consistently acknowledged that engaging with TTP through LS had challenged their understandings about what constitutes effective problem solving instruction ( N  = 12). In both teacher reflections (P4, N  = 14) and all LS group presentations, teachers reported an increased appreciation of the benefits of adopting a constructivist-oriented approach to problem solving instruction. Equally for some, this was accompanied by an acknowledgement of a heightened awareness of the limitations of their previous practice :

Really made me re-think problem solving lesson structures. I tend to spoon-feed them …over-scaffold, a lot of teacher talk. … I need to find a balance… (P4, teacher reflection) Less is more, one problem can be the basis for an entire lesson (P4, teacher reflection)

What was unexpected, was that some teachers (P4, N  = 8) reported that engaging with TTP through LS resulted in them developing an increased appreciation of the value of problem solving and the need for more regular opportunities for students to engage in problem solving:

I’ve come to realise that problem solving is critical and it should be focused on more often. I feel that with regular exposure to problems they’ll come to love being problem solvers (P4, teacher reflection)

Enhanced problem posing understandings

In the early phases of LS, few teachers demonstrated familiarity with problem characteristics (P2 teacher reflection, N  = 5). However, there was growth in teachers’ understandings of what constitutes a worthwhile problem and its role within TTP within all LS groups’ post-lesson discussions and presentations (fieldnotes) and teacher reflections (P4, N  = 10):

I have a deepened understanding of how to evaluate a problem (P2, teacher reflection) It’s essential to find or create a good problem with multiple strategies and/or solutions as a springboard for a topic. It has to be relevant and interesting for the kids (P4, teacher reflection)

As early as the planning phase, a small group of teachers’ reflections ( N  = 2) suggested an understanding that problem posing is an important aspect of problem solving that merits significant attention:

It was extremely helpful to problem solve the problem (P2, teacher reflection)

However, during subsequent phases, this realisation became more mainstream, evident within all LS groups’ post-lesson discussions and presentations (fieldnotes) and teacher reflections (P4, N  = 12):

During the first planning meeting, I was surprised and a bit anxious that we would never get to having created a problem. In hindsight, this was time well spent as the problem was crucial (P4, teacher reflection) I learned the problem is key. We don’t spend enough time picking the problem (P4, fieldnotes: Group C).

Alongside this, in all LS groups’ dialogues during the post-lesson discussion and presentations (fieldnotes) and teacher reflections (P4, N  = 15), teachers consistently demonstrated an enhanced awareness of the interdependence between the quality of the problem and students’ problem solving behaviours:

Better perseverance if the problem is of interest to them (P4, teacher reflection) It was an eye-opener to me, relevance is crucial, when the problem context is relevant to them, they are motivated to engage and can solve problems at an appropriate level…They all wanted to present (P3, fieldnotes: Group C)

The findings suggest that engaging with TTP through LS facilitated participating teachers to develop an enhanced understanding of the importance of problem posing and in identifying the features of a good mathematics problem, thus developing their future problem posing capacity. In essence, the opportunity to observe the TTP practices in their classrooms stimulated an enhanced appreciation for the value of meticulous attention to detail in TTP planning.

Awakening to students’ problem solving potential

In the final LS phases, teachers consistently reported that engaging with TTP through LS provided the opportunity to see the students through the process , thus supporting them in examining their students’ capabilities more closely. Across post-lesson discussions and presentations (fieldnotes) and teacher reflections (P4, N  = 14), teachers acknowledged that engagement in core TTP practices, including problem posing, prediction of students’ strategies during planning, and careful observation of approaches during the implementation phase, facilitated them to uncover the true extent of their students’ problem solving abilities, heightening their awareness of students’ proficiency in using a range of approaches:

Class teacher: While they took a while to warm up, I am most happy that they failed, tried again and succeeded. They all participated. Some found a pattern, others used trial and error. Others worked backward- opening the cube in different ways. They said afterward ‘That was the best maths class ever’ (P3, fieldnotes: Group D) I was surprised with what they could do. I have learned the importance of not teaching strategies first. I need to pull back and let the children solve the problems their own way and leave discussing strategies to the end (P4, teacher reflection)

In three LS groups, class teachers acknowledged in the post-lesson discussion (fieldnotes) that engaging with TTP had resulted in them realising their previous underestimation of [some or all] of their students’ problem solving abilities . Teacher reflections (P4, N  = 8) and LS group presentations (fieldnotes) also acknowledged this reality:

I underestimated my kids, which is awful. The children surprised me with the way they approached the problem. In the future I need to focus on what they can do as much as what might hinder them…they are more able than we may think (P4, reflection)

In all LS groups, teachers reported that their heightened appreciation of students’ problem solving capacities promoted them to use a more constructivist-orientated approach in the future:

I learned to trust the students to problem solve, less scaffolding. Children can be let off to explore without so much teacher intervention (P3, fieldnotes: Group D)

Some teachers ( N  = 3) also acknowledged the affective benefits of TTP on students:

I know the students enjoyed sharing their different strategies…it was great for their confidence (P4, teacher reflection)

Interestingly, in contrast with teachers’ initial reservations, their experiential and school-based participation in TTP through LS resulted in a lessening of concern regarding the suitability of TTP practices for their students. Hence, this practice-based model supported teachers in appreciating the full extent of their students’ capacities as problem solvers.

Reservations regarding TTP

When introduced to the concept of TTP in the study session, one teacher quickly addressed the time implications:

It is unrealistic in the everyday classroom environment. Time is the issue. We don’t have 2 hours to prep a problem geared at the various needs (P1, fieldnotes)

Subsequently, across the initiative, during both planning meetings, the reflection session and individual reflections (P4, N  = 14), acknowledgements of the affordances of TTP practices were accompanied by questioning of its sustainability due to the excessive planning commitment involved:

It would be hard to maintain this level of planning in advance of the lesson required to ensure a successful outcome (P4, teacher reflection)

Given the extensive time dedicated to problem posing, solving, prediction, and design of questions as well as selection or creation of materials both during and between planning meetings, there was agreement in the reflection session (fieldnotes) and in teacher reflections (P4, N  = 10) that while TTP practices were valuable, in the absence of suitable support materials for teachers, adjustments were essential to promote implementation:

There is definitely a role for TTP in the classroom, however the level of planning involved would have to be reduced to make it feasible (P4, teacher reflection) The TTP approach is very effective but the level of planning involved is unrealistic with an already overcrowded curriculum. However, elements of it can be used within the classroom (P4, teacher reflection)

A few teachers ( N  = 3) had hesitations beyond the time demands, believing the success of TTP is contingent on ‘a number of criteria…’ (P4, teacher reflection):

A whole-school approach is needed, it should be taught from junior infants (P4, teacher reflection) I still have worries about TTP. We found it difficult to decide a topic initially. It lends itself to certain areas. It worked well for shape and space (P4, teacher reflection)

Conclusions

The reported problem solving practice reflects those portrayed in the literature (NCCA, 2016 ; O’Shea & Leavy, 2013 ) and could be aptly described as ‘pendulum swings between emphases on basic skills and problem solving’ (Lesh & Zawojewski, 2007 in Takahashi et al., 2013 , p. 239). Teachers’ accounts depicted problem solving as an ‘add on’ occurring on an ad hoc basis after concepts were taught (Dooley et al., 2014 ; Takahashi et al., 2013 ), suggesting a simplistic view of problem solving (Singer & Voica, 2013 ; Swan, 2006 ). Hence, in reality there was a vast divide between teachers’ problem solving practices and TTP. Alongside traditional beliefs and problem solving practices (Stipek et al., 2001 ; Swan, 2006 ; Thompson, 1985 ), many teachers demonstrated limited insight regarding what constitutes a worthwhile problem (Klein & Lieken, 2020 ) or the critical role of problem posing in problem solving (Cai, 2003 ; Takahashi, 2008 ; Watson & Ohtani, 2015 ). Teachers’ reports suggested most were not actively problem posing, with reported practices limited to cosmetic changes to the problem context (Koichu et al., 2013 ). Equally, teachers demonstrated a lack of awareness of alternative approaches to teaching for problem solving (Chapman, 2015 ) alongside limited appreciation among most of the affordances of a more child-centred approach to problem solving instruction (Hiebert, 2003 ; Lester, 2013 ; Swan, 2006 ). Conversely, there was evidence that some teachers held relevant problem posing knowledge and utilised practices compatible with the TTP approach.

All teachers displayed relatively strong understandings of their students as problem solvers from the outset; however, they initially focused almost exclusively on factors impacting students’ limited problem solving capacity (Chapman, 2015 ). Teachers’ perceptions of their students’ problem solving abilities alongside the vast divide between teachers’ problem solving practice and the proposed TTP approach resulted in teachers being initially concerned regarding students’ response to TTP. This finding supports studies that reported resistance by teachers to the use of challenging tasks due to fears that students would not be able to manage (Ingram et al., 2020 ; Russo & Hopkins, 2019 ; Sullivan et al., 2010 ). Equally, teachers communicated disquiet from the study phase regarding the time investment required to adopt the TTP approach, a finding common in similar studies (Ingram et al., 2020 ; Russo & Hopkins, 2019 ; Sullivan et al., 2015 ). Hence, the transition to TTP was uneasy for most teachers, given the significant shift it represented in terms of moving beyond a teaching to problem solve approach alongside the range of teacher demands (Takahashi et al., 2013 ).

Nevertheless, despite initial reservations, all teachers reported that engagement with TTP through LS affected their problem solving beliefs and understandings. What was particularly notable was that they reported an awakening to students’ problem solving potential . During LS’s implementation and reflection stages, all teachers acknowledged that seeing was believing concerning the benefits of TTP for their students (Kapur, 2010 ; Stacey, 2018 ). In particular, they recognised students’ positive response (Russo & Minas, 2020 ) enacted in high levels of engagement, perseverance in finding a solution, and the utilisation of a range of different strategies. These behaviours were in stark contrast to teachers’ reports in the study phase. Teachers acknowledged that students had more potential to solve problems autonomously than they initially envisaged. This finding supports previous studies where teachers reported that allowing students to engage with challenging tasks independently made students’ thinking more visible (Crespo & Featherstone, 2006 ; Ingram et al., 2020 ; Sakshand & Wohluter, 2010 ). It also reflects Sakshaug and Wohlhuter’s ( 2010 ) findings of teachers’ tendency to underestimate students’ potential to solve problems. Interestingly, at the end of LS, concern regarding the appropriateness of the TTP approach for students was no longer cited by teachers. This finding contrasts with previous studies that report teacher resistance due to fears that students will become disengaged due to the unsuitability of the approach (challenging tasks) for lower-performing students (Ingram et al., 2020 ; Russo & Hopkins, 2019 ; Sullivan et al., 2015 ). Hence, engaging with TTP through LS supported teachers in developing an appreciation of their students’ potential as problem solvers.

Teachers reported enhanced problem posing understandings, consisting of newfound awareness of the connections between the quality of the problem, the approach to problem solving instruction, and student response (Chapman, 2015 ; Cai, 2003 ; Sullivan et al., 2015 ; Takahashi, 2008 ). They acknowledged that they had learned the importance of the problem in determining the quality of learning and affecting student engagement, motivation and perseverance, and willingness to share strategies (Cai, 2003 ; Watson & Oktani, 2015 ). These findings reflect previous research reporting that engagement in LS facilitated teachers to enhance their teacher knowledge (Cajkler et al., 2015 ; Dudley et al., 2019 ; Gutierez, 2016 ).

While all teachers acknowledged the benefits of the TTP approach for students (Cai & Lester, 2010 ; Sullivan et al., 2014 ; Takahashi, 2016 ), the majority confirmed their perception of the relevance and value of various TTP practices (Hiebert, 2003 ; Lambdin, 2003 ; Takahashi, 2006 ). They referenced the benefits of giving more attention to the problem, allowing students the opportunity to independently solve, and promoting the sharing of strategies and pledged to incorporate these in their problem solving practices going forward. Many verified that the experience had triggered them to question their previous problem solving beliefs and practices (Chapman, 2015 ; Lester, 2013 ; Takahashi et al., 2013 ). This study supports previous research reporting that LS challenged teachers’ beliefs regarding the characteristics of effective pedagogy (Cajkler et al., 2015 ; Dudley et al., 2019 ; Fernandez, 2005 ; Gutierez, 2016 ). However, teachers communicated reservations regarding TTP , refraining from committing to TTP in its entirety, highlighting that the time commitment required for successful implementation on an ongoing basis was unrealistic. Therefore, teachers’ issues with what they perceived to be the excessive resource implications of TTP practices remained constant across the initiative. This finding supports previous studies that report teachers were resistant to engaging their students with ‘challenging tasks’ provided by researchers due to the time commitment required to plan adequately (Ingram et al., 2020 ; Russo & Hopkins, 2019 ; Sullivan et al., 2015 ).

Unlike previous studies, teachers in this study did not perceive weak mathematics content or pedagogical content knowledge as a barrier to implementing TTP (Charalambous, 2008 ; Sakshaug & Wohlhuter, 2010 ). However, it should be noted that the collaborative nature of LS may have hidden the knowledge demands for an individual teacher working alone when engaging in the ‘Anticipate’ element of TTP particularly in the absence of appropriate supports such as a bank of suitable problems.

The findings suggest that LS played a crucial role in promoting reported changes, serving both as a supportive professional development model (Stacey, 2018 ; Takahashi et al., 2013 ) and as a catalyst, providing teachers with the opportunity to engage in a collaborative, practice-centred experience over an extended period (Dudley et al., 2019 ; Watanabe, 2001 ). The various features of the LS process provided teachers with opportunities to engage with, interrogate, and reflect upon key TTP practices. Reported developments in understandings and beliefs were closely tied to meaningful opportunities to witness first-hand the affordances of the TTP approach in their classrooms with their students (Dudley et al., 2019 ; Fernandez et al., 2003 ; Takahashi et al., 2013 ). We suggest that the use of traditional ‘one-off’ professional development models to introduce TTP, combined with the lack of support during the implementation phase, would most likely result in teachers maintaining their initial views about the unsuitability of TTP practices for their students.

In terms of study limitations, given that all data were collected during the LS phases, the findings do not reflect the impact on teachers’ problem solving classroom practice in the medium to long term. Equally, while acknowledging the limitations of self-report data, there was no sense that the teachers were trying to please the MTEs, as they were forthright when invited to identify issues. Also, all data collected through teacher reflection was anonymous. The relatively small number of participating teachers means that the findings are not generalisable. However, they do add weight to the body of relevant research. This study also contributes to the field as it documents potential challenges associated with implementing TTP for the first time. It also suggests that despite TTP being at odds with their problem solving practice and arduous, the opportunity to experience the impact of the TTP approach with students through LS positively affected teachers’ problem solving understandings and beliefs and their commitment to incorporating TTP practices in their future practice. Hence, this study showcases the potential role of collaborative, school-based professional development in supporting the implementation of upcoming reform proposals (Dooley et al., 2014 ; NCCA, 2016 , 2017 , 2020 ), in challenging existing beliefs and practices and fostering opportunities for teachers to work collaboratively to trial reform teaching practices over an extended period (Cajkler et al., 2015 ; Dudley et al., 2019 ). Equally, this study confirms and extends previous studies that identify time as an immense barrier to TTP. Given teachers’ positivity regarding the impact of the TTP approach, their consistent acknowledgement of the unsustainability of the unreasonable planning demands associated with TTP strengthens previous calls for the development of quality support materials in order to avoid resistance to TTP (Clarke et al., 2014 ; Takahashi, 2016 ).

The researchers are aware that while the reported changes in teachers’ problem solving beliefs and understandings are a necessary first step, for significant and lasting change to occur, classroom practice must change (Sakshaug & Wohlhuter, 2010 ). While it was intended that the MTEs would work alongside interested teachers and schools to engage further in TTP in the school term immediately following this research and initial contact had been made, plans had to be postponed due to the commencement of the COVID 19 pandemic. The MTEs are hopeful that it will be possible to pick up momentum again and move this initiative to its natural next stage. Future research will examine these teachers’ perceptions of TTP after further engagement and evaluate the effects of more regular opportunities to engage in TTP on teachers’ problem solving practices. Another possible focus is teachers’ receptiveness to TTP when quality support materials are available.

In practical terms, in order for teachers to fully embrace TTP practices, thus facilitating their students to avail of the many benefits accrued from engagement, teachers require access to professional development (such as LS) that incorporates collaboration and classroom implementation at a local level. However, quality school-based professional development alone is not enough. In reality, a TTP approach cannot be sustained unless teachers receive access to quality TTP resources alongside formal collaboration time.

Acknowledgements

The authors acknowledge the participating teachers’ time and contribution to this research study.

This work was supported by the Supporting Social Inclusion and Regeneration in Limerick’s Programme Innovation and Development Fund.

Declarations

We have received ethical approval for the research presented in this manuscript from Mary Immaculate College Research Ethical Committee (MIREC).

The manuscript has only been submitted to Mathematics Education Research Journal. All authors have approved the manuscript submission. We also acknowledge that the submitted work is original and the content of the manuscript has not been published or submitted for publication elsewhere.

Informed consent has been received for all data included in this study. Of the 19 participating teachers, 16 provided informed consent.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Ball DL, Thames MH, Phelps G. Content knowledge for teaching: What makes it special? Journal of Teacher Education. 2008; 59 (5):389–408. doi: 10.1177/0022487108324554. [ CrossRef ] [ Google Scholar ]
  • Cai J. What research tells us about teaching mathematics through problem solving. In: Lester F, editor. Research and issues in teaching mathematics through problem solving. National Council for Curriculum and Assessment; 2003. pp. 241–255. [ Google Scholar ]
  • Cai, J., & Lester, F. (2010). Why is teaching through problem solving important to children learning? National Council of Teachers of Mathematics.
  • Cajkler W, Wood P, Norton J, Pedder D, Xu H. Teacher perspectives about lesson study in secondary school departments: A collaborative vehicle for professional learning and practice development. Research Papers in Education. 2015; 30 (2):192–213. doi: 10.1080/02671522.2014.887139. [ CrossRef ] [ Google Scholar ]
  • Chapman O. Mathematics teachers’ knowledge for teaching problem solving. LUMAT International Journal on Math Science and Technology Education. 2015; 3 (1):19–36. doi: 10.31129/lumat.v3i1.1049. [ CrossRef ] [ Google Scholar ]
  • Charalambous, C. Y. (2008). Mathematical knowledge for teaching and the unfolding of tasks in mathematics lessons: Integrating two lines of research. In O. Figueras, J. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings of the 32nd conference of the International Group for the Psychology of Mathematics Education (pp. 281–288). PME.
  • Cheeseman, J. (2018). Teachers’ perceptions of obstacles to incorporating a problem solving style of mathematics into their teaching, In J. Hunter, P. Perger, & L. Darragh (Eds.), Making waves, opening spaces (Proceedings of the 41st annual conference of the Mathematics Education Research Group of Australasia) (pp. 210–217). MERGA.
  • Clarke D, Cheeseman J, Roche A, Van Der Schans S. Teaching strategies for building student persistence on challenging tasks: Insights emerging from two approaches to teacher professional learning. Mathematics Teacher Education and Development. 2014; 16 (2):46–70. [ Google Scholar ]
  • Creswell, J. W. (2009). Research design- Qualitative, quantitative and mixed methods approaches (3rd ed). Sage.
  • Crespo S, Featherstone H. Teacher learning in mathematics teacher groups: One math problem at a time. In: Lynch-Davis K, Rider RL, editors. The work of mathematics teacher educators: Continuing the conversation. Association of Mathematics Teacher Educators; 2006. pp. 97–115. [ Google Scholar ]
  • Department of Education and Science (DES). (1999). Primary school mathematics curriculum . The Stationery Office.
  • Department of Education and Skills (DES). (2011). Literacy and numeracy for learning and life: The national strategy to improve literacy and numeracy among children and young people 2011–2020 . The Stationary Office.
  • Dooley, T., Dunphy, E., & Shiel, G. (2014). Mathematics in early childhood and primary education. Research report 18. National Council for Curriculum and Assessment.
  • Dudley P, Xu H, Vermunt JD, Lang J. Empirical evidence of the impact of lesson study on students’ achievement, teachers’ professional learning and on institutional and system evolution. European Journal of Education. 2019; 54 :202–217. doi: 10.1111/ejed.12337. [ CrossRef ] [ Google Scholar ]
  • Dunphy, E., Dooley, T., Shiel, G. (2014). Mathematics in early childhood and primary education. Research report 17 . National Council for Curriculum and Assessment.
  • Ertle, B., Chokshi, S., & Fernandez, C. (2001). Lesson planning tool. Available online: https://sarahbsd.files.wordpress.com/2014/09/lesson_planning_tool.pdf
  • Fernandez C. Lesson Study: A means for elementary teachers to develop the knowledge of mathematics needed for reform-minded teaching? Mathematical Thinking and Learning. 2005; 7 (4):265–289. doi: 10.1207/s15327833mtl0704_1. [ CrossRef ] [ Google Scholar ]
  • Fernandez C, Cannon J, Chokshi S. A US–Japan lesson study collaboration reveals critical lenses for examining practice. Teaching and Teacher Education. 2003; 19 :171–185. doi: 10.1016/S0742-051X(02)00102-6. [ CrossRef ] [ Google Scholar ]
  • Flanagan, B. (2021). Teachers’ understandings of lesson study as a professional development tool, Unpublished thesis, University of Limerick.
  • Glaser, B. G. (1978). Theoretical sensitivity: Advances in the methodology of grounded theory . Sociology Press.
  • Goldenberg EP, Shteingold N, Feurzig N. Mathematical habits of mind for young children. In: Lester F, editor. Research and issues in teaching mathematics through problem solving. National Council for Curriculum and Assessment; 2001. pp. 15–30. [ Google Scholar ]
  • Gutierez SB. Building a classroom-based professional learning community through lesson study: Insights from elementary school science teachers. Professional Development in Education. 2016; 42 (5):801–817. doi: 10.1080/19415257.2015.1119709. [ CrossRef ] [ Google Scholar ]
  • Hiebert J. Signposts for teaching mathematics through problem solving. In: Lester F, editor. Research and issues in teaching mathematics through problem solving. National Council for Curriculum and Assessment; 2003. pp. 53–62. [ Google Scholar ]
  • Hourigan, M., & Leavy, A. (2015). Geometric growing patterns: What’s the rule? Australian Primary Mathematics Classroom, 20 (4), 31–40.
  • Hourigan, M., & Leavy, A. M. (2021). The complexities of assuming the ‘teacher of teachers’ role during Lesson Study.  Professional Development in Education. Online first. 10.1080/19415257.2021.1895287
  • Ingram N, Holmes M, Linsell C, Livy S, McCormick M, Sullivan P. Exploring an innovative approach to teaching mathematics through the use of challenging tasks: A New Zealand perspective. Mathematics Education Research Journal. 2020; 32 (3):497–522. doi: 10.1007/s13394-019-00266-1. [ CrossRef ] [ Google Scholar ]
  • Kapur M. Productive failure in mathematical problem solving. Instructional Science. 2010; 38 :523–550. doi: 10.1007/s11251-009-9093-x. [ CrossRef ] [ Google Scholar ]
  • Klein S, Leikin R. Opening mathematical problems for posing open mathematical tasks: What do teachers do and feel? Educational Studies in Mathematics. 2020; 105 :349–365. doi: 10.1007/s10649-020-09983-y. [ CrossRef ] [ Google Scholar ]
  • Koichu B, Harel G, Manaster A. Ways of thinking associated with mathematics teachers’ problem posing in the context of division of fractions. Instructional Science. 2013; 41 (4):681–698. doi: 10.1007/s11251-012-9254-1. [ CrossRef ] [ Google Scholar ]
  • Lambdin DV. Benefits of teaching through problem solving. In: Lester F, editor. Research and issues in teaching mathematics through problem solving. National Council for Curriculum and Assessment; 2003. pp. 2–15. [ Google Scholar ]
  • Leavy, A., & Hourigan, M. (2018). The role of perceptual similarity, data context and task context when selecting attributes: Examination of considerations made by 5-6 year olds in data modelling environments. Educational Studies in Mathematics. 97 (2), 163–183. 10.1007/s10649-017-9791-2
  • Lesh R, Zawojewski J. Problem solving and modeling. In: Lester FK, editor. Second handbook of research on mathematics teaching and learning. Charlotte, NC: Information Age; 2007. pp. 763–804. [ Google Scholar ]
  • Lester FK., Jr Thoughts about research on mathematical problem-solving instruction. The Mathematics Enthusiast. 2013; 10 (1–2):245–278. doi: 10.54870/1551-3440.1267. [ CrossRef ] [ Google Scholar ]
  • Lewis C, Tsuchida I. A lesson is like a swiftly flowing river: How researc lessons improve Japanese ducation. American Educator. 1998; 22 (4):12–17. [ Google Scholar ]
  • Murata A, Bofferding L, Pothen BE, Taylor MW, Wischnia S. Making connections among student learning, content, and teaching: Teacher talk paths in elementary mathematics lesson study. Journal for Research in Mathematics Education. 2012; 43 (5):616–650. doi: 10.5951/jresematheduc.43.5.0616. [ CrossRef ] [ Google Scholar ]
  • National Council for Curriculum and Assessment (NCCA). (2016). Background paper and brief for the development of a new primary mathematics curriculum. NCCA.
  • National Council for Curriculum and Assessment (NCCA). (2017). Primary mathematics curriculum. Draft specifications. Junior infant to second class. For Consultation . NCCA.
  • National Council for Curriculum and Assessment (NCCA). (2020). Draft primary curriculum framework. For consultation. Primary curriculum review and development. NCCA.
  • O’Shea, J., & Leavy, A. M. (2013). Teaching mathematical problem-solving from an emergent constructivist perspective: the experiences of Irish primary teachers. Journal of Mathematics Teacher Education, 16 (4), 293–318. 10.1007/s10857-013-9235-6
  • Polya G. How to solve it (2nd edition) Doubleday; 1957. [ Google Scholar ]
  • Russo J, Hopkins S. Teachers’ perceptions of students when observing lessons involving challenging tasks. International Journal of Science and Mathematics Education. 2019; 17 (4):759–779. doi: 10.1007/s10763-018-9888-9. [ CrossRef ] [ Google Scholar ]
  • Russo J, Minas M. Student attitudes towards learning mathematics through challenging problem solving tasks: “It’s so hard-in a good way” International Electronic Journal of Elementary Education. 2020; 13 (2):215–225. [ Google Scholar ]
  • Sakshaug LE, Wohlhuter KA. Journey toward teaching mathematics through problem solving. School Science and Mathematics. 2010; 110 (8):397–409. doi: 10.1111/j.1949-8594.2010.00051.x. [ CrossRef ] [ Google Scholar ]
  • Shiel, G., Kavanagh, L., & Millar, D. (2014). The national assessments of english reading and mathematics: Volume 1 performance report . Educational Research Centre.
  • Singer FM, Voica C. A problem-solving conceptual framework and its implications in designing problem-posing tasks. Educational Studies in Mathematics. 2013; 83 (1):9–26. doi: 10.1007/s10649-012-9422-x. [ CrossRef ] [ Google Scholar ]
  • Stacey K. Teaching Mathematics through Problem Solving. Numeros. 2018; 98 :7–18. [ Google Scholar ]
  • Stake RE. The art of case study research. Thousand Oaks, CA: Sage Publications; 1995. [ Google Scholar ]
  • Stipek DJ, Givvin KB, Salmon JM, MacGyvers VL. Teachers’ beliefs and practices related to mathematics instruction. Teaching and Teacher Education. 2001; 17 (2):213–226. doi: 10.1016/S0742-051X(00)00052-4. [ CrossRef ] [ Google Scholar ]
  • Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed). Sage.
  • Sullivan P, Askew M, Cheeseman J, Clarke D, Mornane A, Roche A. Supporting teachers in structuring mathematics lessons involving challenging tasks. Journal of Mathematics Teacher Education. 2015; 18 (2):123–140. doi: 10.1007/s10857-014-9279-2. [ CrossRef ] [ Google Scholar ]
  • Sullivan P, Bobis J, Downton A, Feng M, Hughes S, Livy S, McCormick M, Russo J. An instructional model to support planning and teaching student centred structured inquiry lessons. Australian Primary Mathematics Classroom. 2021; 26 (1):9–13. [ Google Scholar ]
  • Sullivan, P., Clarke, D., Cheeseman, J., Mornane, A., Roche, A., Sawatzki, C., & Walker, N. (2014). Students’ willingness to engage with mathematical challenges: Implications for classroom pedagogies. In J. Anderson, M. Cavanagh, & A. Prescott (Eds.), Curriculum in focus: Research guided practice. (Proceedings of the 37th annual conference of the Mathematics Education Research Group of Australasia) (pp. 597–604). MERGA.
  • Sullivan P, Clarke DM, Clarke B, O’Shea H. Exploring the relationship between task, teacher actions, and student learning. PNA. 2010; 4 (4):133–142. [ Google Scholar ]
  • Suter, W. N. (2012). Introduction to educational research: A critical thinking approach (2nd ed). Sage.
  • Swan M. Designing and using research instruments to describe the beliefs and practices of mathematics teachers. Research in Education. 2006; 75 (1):58–70. doi: 10.7227/RIE.75.5. [ CrossRef ] [ Google Scholar ]
  • Takahashi, A. (2006). Characteristics of Japanese mathematics lessons. Paper presented at the APEC International Conference on Innovative Teaching Mathematics through Lesson Study, Tokyo, Japan, January 14–20. https://www.criced.tsukuba.ac.jp/math/sympo_2006/takahashi.pdf
  • Takahashi, A. (2008). Beyond show and tell: neriage for teaching through problem-solving—ideas from Japanese problem-solving approaches for teaching mathematics. Paper presented at the 11th International Congress on Mathematics Education in Mexico (Section TSG 19: Research and Development in Problem Solving in Mathematics Education), Monteree, Mexico.
  • Takahashi A. Recent trends in Japanese mathematics textbooks for elementary grades: Supporting teachers to teach mathematics through problem solving. Universal Journal of Educational Research. 2016; 4 (2):313–319. doi: 10.13189/ujer.2016.040201. [ CrossRef ] [ Google Scholar ]
  • Takahashi A, Lewis C, Perry R. US lesson study network to spread teaching through problem solving. International Journal for Lesson and Learning Studies. 2013; 2 (3):237–255. doi: 10.1108/IJLLS-05-2013-0029. [ CrossRef ] [ Google Scholar ]
  • Takahashi, A., & McDougal, T. (2016). Collaborative lesson research: Maximizing the impact of lesson study. ZDM: Mathematics Education, 48, 513–526.
  • Thompson AG. Teachers’ conceptions of mathematics and the teaching of problem solving. In: Silver EA, editor. Teaching and learning mathematical problem solving: Multiple research perspectives. Erlbaum; 1985. pp. 281–294. [ Google Scholar ]
  • Watanabe, T. (2001). Anticipating children’s thinking: A Japanese approach to instruction . National Council for Curriculum and Assessment.
  • Watson, A., & Ohtani, M. (2015). Task design in mathematics education: An ICMI study 22 . Springer International.

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

benefits of teaching problem solving

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

  • Try for free

Problem-Solving

TeacherVision Staff

Jabberwocky

Problem-solving is the ability to identify and solve problems by applying appropriate skills systematically.

Problem-solving is a process—an ongoing activity in which we take what we know to discover what we don't know. It involves overcoming obstacles by generating hypo-theses, testing those predictions, and arriving at satisfactory solutions.

Problem-solving involves three basic functions:

Seeking information

Generating new knowledge

Making decisions

Problem-solving is, and should be, a very real part of the curriculum. It presupposes that students can take on some of the responsibility for their own learning and can take personal action to solve problems, resolve conflicts, discuss alternatives, and focus on thinking as a vital element of the curriculum. It provides students with opportunities to use their newly acquired knowledge in meaningful, real-life activities and assists them in working at higher levels of thinking (see Levels of Questions ).

Here is a five-stage model that most students can easily memorize and put into action and which has direct applications to many areas of the curriculum as well as everyday life:

Expert Opinion

Here are some techniques that will help students understand the nature of a problem and the conditions that surround it:

  • List all related relevant facts.
  • Make a list of all the given information.
  • Restate the problem in their own words.
  • List the conditions that surround a problem.
  • Describe related known problems.

It's Elementary

For younger students, illustrations are helpful in organizing data, manipulating information, and outlining the limits of a problem and its possible solution(s). Students can use drawings to help them look at a problem from many different perspectives.

Understand the problem. It's important that students understand the nature of a problem and its related goals. Encourage students to frame a problem in their own words.

Describe any barriers. Students need to be aware of any barriers or constraints that may be preventing them from achieving their goal. In short, what is creating the problem? Encouraging students to verbalize these impediments is always an important step.

Identify various solutions. After the nature and parameters of a problem are understood, students will need to select one or more appropriate strategies to help resolve the problem. Students need to understand that they have many strategies available to them and that no single strategy will work for all problems. Here are some problem-solving possibilities:

Create visual images. Many problem-solvers find it useful to create “mind pictures” of a problem and its potential solutions prior to working on the problem. Mental imaging allows the problem-solvers to map out many dimensions of a problem and “see” it clearly.

Guesstimate. Give students opportunities to engage in some trial-and-error approaches to problem-solving. It should be understood, however, that this is not a singular approach to problem-solving but rather an attempt to gather some preliminary data.

Create a table. A table is an orderly arrangement of data. When students have opportunities to design and create tables of information, they begin to understand that they can group and organize most data relative to a problem.

Use manipulatives. By moving objects around on a table or desk, students can develop patterns and organize elements of a problem into recognizable and visually satisfying components.

Work backward. It's frequently helpful for students to take the data presented at the end of a problem and use a series of computations to arrive at the data presented at the beginning of the problem.

Look for a pattern. Looking for patterns is an important problem-solving strategy because many problems are similar and fall into predictable patterns. A pattern, by definition, is a regular, systematic repetition and may be numerical, visual, or behavioral.

Create a systematic list. Recording information in list form is a process used quite frequently to map out a plan of attack for defining and solving problems. Encourage students to record their ideas in lists to determine regularities, patterns, or similarities between problem elements.

Try out a solution. When working through a strategy or combination of strategies, it will be important for students to …

Keep accurate and up-to-date records of their thoughts, proceedings, and procedures. Recording the data collected, the predictions made, and the strategies used is an important part of the problem solving process.

Try to work through a selected strategy or combination of strategies until it becomes evident that it's not working, it needs to be modified, or it is yielding inappropriate data. As students become more proficient problem-solvers, they should feel comfortable rejecting potential strategies at any time during their quest for solutions.

Monitor with great care the steps undertaken as part of a solution. Although it might be a natural tendency for students to “rush” through a strategy to arrive at a quick answer, encourage them to carefully assess and monitor their progress.

Feel comfortable putting a problem aside for a period of time and tackling it at a later time. For example, scientists rarely come up with a solution the first time they approach a problem. Students should also feel comfortable letting a problem rest for a while and returning to it later.

Evaluate the results. It's vitally important that students have multiple opportunities to assess their own problem-solving skills and the solutions they generate from using those skills. Frequently, students are overly dependent upon teachers to evaluate their performance in the classroom. The process of self-assessment is not easy, however. It involves risk-taking, self-assurance, and a certain level of independence. But it can be effectively promoted by asking students questions such as “How do you feel about your progress so far?” “Are you satisfied with the results you obtained?” and “Why do you believe this is an appropriate response to the problem?”

Featured High School Resources

lesson plans for animal farm - kit for a complete unit on the novel

Related Resources

Students taking a test

About the author

TeacherVision Staff

TeacherVision Editorial Staff

The TeacherVision editorial team is comprised of teachers, experts, and content professionals dedicated to bringing you the most accurate and relevant information in the teaching space.

sandbbox logo

Real-world and active – the benefits of problem-based learning

Real-world and active – the benefits of problem-based learning

This is an edited version of an article that was originally published in the March 2011 print edition of Teacher .

Do you ever ask yourself, when you’re teaching, how much are my students taking in; is there a better way for them to learn the same material; are they really learning to think for themselves and developing skills that will be useful later in life?

It was the pursuit of deep learning, beyond absorbing and regurgitating information, that led to the development of problem-based learning in educational settings. Its basic rationale is to develop skills for solving real-life problems.

In approach, it moves away from traditional ‘facts-based’ teaching.

In essence, problem-based learning involves giving groups of students an unstructured problem with little other information. They are expected to produce and justify a solution in the time available. This requires students to work together, listen to opinions, collect information and consider different possibilities.

The problem is designed to engage the students, allowing them to set parameters and investigate within these. Thus the learning is self-directed, and the role of the teacher changes significantly from a knowledge provider to a coach or guide.

Key benefits

By introducing problem-based learning to secondary education we can foster analytical thinking skills in our students. The key benefit of problem-based learning is that it develops students who are able to collaborate, solve problems, think clearly and connect prior knowledge to a problem.

Don Margetson, quoted in Hildebrand, Mulcahy, & Wilks (2001) concludes that problem-based learning encourages students to be ‘open minded, reflective, critical’ and to ‘undertake active learning.’ It gives them an opportunity to make what they learn meaningful and to develop strategies they will be able to use to solve problems in the future, irrespective of subject matter.

Higher-order thinking skills

Higher-order thinking skills should be taught as part of any curriculum. Typically, students view learning as remembering facts, terms and definitions, but it’s actually the case that problem-based learning builds their skills in doing that because it teaches students to develop thinking skills such as the ability to evaluate, generalise, hypothesise, synthesise and analyse information rather than simply recall it.

Collaboration

In all aspects of life after school or university, individuals are required to work in teams. Working in groups requires fundamental skills such as listening, cooperating, negotiating and communicating. Problem-based learning requires students to work in small teams, learning to work together effectively to complete a specific task.

Self-directed learning

We inhabit a technologically evolving world in which individuals are responsible for their own learning, if only in order to keep up with new developments. The knowledge that professionals require in the workplace is vast and continually changing, especially in the area of technology. That’s why students need not only to be able to find relevant information, but also to be able to analyse and evaluate it.

Put simply, they need to learn how to learn in order to be self-directed learners. Problem-based learning using authentic assessment helps them to do that by providing the opportunity to learn skills that can be directly applied to other environments, including the workplace.

Setting up and implementing problem-based learning

Designing a good problem

If a problem is to be tackled successfully by students, you need to spend time designing a good problem that will engage them. The problem must be real, to enable students to make connections between previous experiences and the problem at hand.

The problem must be structured so that students will cover the required content and develop problem-solving skills at the same time. It should also be sufficiently open-ended so students have the flexibility to make findings and build their own ideas into the solution.

A well-designed problem should lead to students to pose more questions that will help them solve the problem.

When I first introduced problem-based learning into my classes on human biology, having taught about the various body systems for almost 10 years, I used the simple question: How does a cell in your big toe stay alive? My hypothesis was that this question would stimulate my students to think about fundamentals like the requirements of a cell in your big toe and how these requirements get to the cell.

Problem-based learning gives students ownership of the learning because they themselves design the learning activities they’ll need to carry out to solve the problem. That’s why it has to be a real problem. It has to be something in which your students are interested and want to solve.

Establishing groups

Students in the class need to be split into small groups. The ideal group size is probably three or four students. This size allows each member to voice opinions and contribute to the group.

Students can be grouped in numerous ways, but remember you, the teacher, know your students best, so the way you group is really up to you.

Presenting the problem

The problem needs to be presented to the students in a stimulating manner, preferably one that provokes a response. You might present the problem as a short scenario or by drawing on a journal article.

With groups established and the problem presented, you need to create an environment where your students can learn effectively.

Effective learning environments and the role of the teacher

The teacher in an effective problem-based learning environment needs to act as a facilitator, be a role model, model questioning and support and encourage the students.

Your role is to encourage your students to develop thinking skills and to direct their thinking, which is not the same as providing them with the knowledge to solve the problem, but more to do with scaffolding their thinking.

You can model questioning by asking types of questions that will lead to a greater understanding of the problem. Robin Fogarty, in Problem-Based Learning, suggests students create a KND chart or list where they write down:

  • what they know
  • what they need to know, and
  • what they don’t know.

By showing your students the types of questions they need to ask in order to begin solving their problem you can build their confidence to become more independent and self-directed learners.

Your role is also to model thinking. This is as simple as thinking aloud to demonstrate behaviour to do with evaluating, generalising, hypothesising, synthesising and analysing. Your role, further, is to model reflective thinking, to encourage your students to reflect on their learning methods as well as the content they’ve learnt.

There’s a useful model developed by Hildebrand, Mulcahy and Wilks (2001) for teachers which incorporates problem-based learning theory, which involves three phases:

Phase 1: encountering the problem;

Phase 2: ‘doing it’, and;

Phase 3: drawing it together.

The first phase requires students to brainstorm using concept maps and mind maps. Here, students should develop a series of questions that will help them find out what they already know and what they need to know. In the second phase the students move into researching the problem and trying to collect information they need to solve the problem. Finally, students sort through the information gathered and discuss with their group the outcomes and possible solutions to the problem.

This is an ideal framework for teachers to use as they begin implementing problem-based learning into their teaching and learning with their students, as the students will need much guidance. As the students become experienced with problem-based learning, they should be able to independently determine the direction they take and be less reliant on such a framework.

Fogarty, R. (1997). Problem-Based Learning: Other curriculum models for the multiple intelligences classroom. Melbourne: Hawker Brownlow Education.

Hildebrand, G., Mulcahy, D., & Wilks, S. (2001). Learning to teach through PBL: Process and progress. Australian Teacher Education Association Conference: Teacher Education, Change of Heart, Mind and Action. Melbourne, (24-26 September).

This is an edited version of an article that was originally published in the March 2011 print edition of Teacher. The author biography remains unchanged and may not be accurate at this point in time.

Related articles

Teaching thinking skills in schools

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

14k Accesses

13 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

benefits of teaching problem solving

Fostering twenty-first century skills among primary school students through math project-based learning

Nadia Rehman, Wenlan Zhang, … Samia Batool

benefits of teaching problem solving

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

Malavika E. Santhosh, Jolly Bhadra, … Noora Al-Thani

benefits of teaching problem solving

A guide to critical thinking: implications for dental education

Deborah Martin

Introduction

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis.

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

benefits of teaching problem solving

Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

Learning to Teach Mathematics Through Problem Solving

  • Open access
  • Published: 21 April 2022
  • Volume 57 , pages 407–423, ( 2022 )

Cite this article

You have full access to this open access article

  • Judy Bailey   ORCID: orcid.org/0000-0001-9610-9083 1  

5059 Accesses

2 Citations

1 Altmetric

Explore all metrics

While there has been much research focused on beginning teachers; and mathematical problem solving in the classroom, little is known about beginning primary teachers’ learning to teach mathematics through problem solving. This longitudinal study examined what supported beginning teachers to start and sustain teaching mathematics through problem solving in their first 2 years of teaching. Findings show ‘sustaining’ required a combination of three factors: (i) participation in professional development centred on problem solving (ii) attending subject-specific complementary professional development initiatives alongside colleagues from their school; and (iii) an in-school colleague who also teaches mathematics through problem solving. If only one factor is present, in this study attending the professional development focussed on problem solving, the result was little movement towards a problem solving based pedagogy. Recommendations for supporting beginning teachers to embed problem solving are included.

Similar content being viewed by others

benefits of teaching problem solving

Teaching with digital technology

Alison Clark-Wilson, Ornella Robutti & Mike Thomas

benefits of teaching problem solving

Research on early childhood mathematics teaching and learning

Camilla Björklund, Marja van den Heuvel-Panhuizen & Angelika Kullberg

benefits of teaching problem solving

Mathematics Learning Challenges and Difficulties: A Students’ Perspective

Avoid common mistakes on your manuscript.

Introduction

For many years curriculum documents worldwide have positioned mathematics as a problem solving endeavour (e.g., see Australian Curriculum, Assessment and Reporting Authority, 2018 ; Ministry of Education, 2007 ). There is evidence however that even with this prolonged emphasis, problem solving has not become a significant presence in many classrooms (Felmer et al., 2019 ). Research has reported on a multitude of potential barriers, even for experienced teachers (Clarke et al., 2007 ; Holton, 2009 ). At the same time it is widely recognised that beginning teachers encounter many challenges as they start their careers, and that these challenges are particularly compelling when seeking to implement ambitious methods of teaching, such as problem solving (Wood et al., 2012 ).

Problem solving has been central to mathematics knowledge construction from the beginning of human history (Felmer et al., 2019 ). Teaching and learning mathematics through problem solving supports learners’ development of deep and conceptual understandings (Inoue et al., 2019 ), and is regarded as an effective way of catering for diversity (Hunter et al., 2018 ). While the importance and challenge of mathematical problem solving in school classrooms is not questioned, the promotion and enabling of problem solving is a contentious endeavour (English & Gainsburg, 2016 ). One debate centres on whether to teach mathematics through problem solving or to teach problem solving in and of itself. Recent scholarship (and this research) leans towards teaching mathematics through problem solving as a means for students to learn mathematics and come to appreciate what it means to do mathematics (Schoenfeld, 2013 ).

Problem solving has been defined in a multitude of ways over the years. Of central importance to problem solving as it is explored in this research study is Schoenfeld’s ( 1985 ) proposition that, “if one has ready access to a solution schema for a mathematical task, that task is an exercise and not a problem” (p. 74). A more recent definition of what constitutes a mathematical problem from Mamona-Downs and Mamona ( 2013 ) also emphasises the centrality of the learner not knowing how to proceed, highlighting that problems cannot be solved by procedural effort alone. These are important distinctions because traditional school texts and programmes often position problems and problem solving as an ‘add-on’ providing a practice opportunity for a previously taught, specific procedure. Given the range of learners in any education setting an important point to also consider is that what constitutes a problem for some students may not be a problem for others (Schoenfeld, 2013 ).

A research focus exploring what supports beginning teachers’ learning about teaching mathematics through problem solving is particularly relevant at this time given calls for an increased curricular focus on mathematical practices such as problem solving (Grootenboer et al., 2021 ) and recent recommendations from an expert advisory panel on the English-medium Mathematics and Statistics curriculum in Aotearoa (Royal Society Te Apārangi, 2021 ). The ninth recommendation from this report advocates for the provision of sustained professional learning in mathematics and statistics for all teachers of Years 0–8. With regard to beginning primary teachers, the recommendation goes further suggesting that ‘mathematics and statistics professional learning’ (p. 36) be considered as compulsory in the first 2 years of teaching. This research explores what the nature of that professional learning might involve, with a focus on problem solving.

Scoping the Context for Learning and Sustaining Problem Solving

The literature reviewed for this study draws from two key fields: the nature of support and professional development effective for beginning teachers; and specialised supports helping teachers to employ problem solving pedagogies.

Beginning Teachers, Support and Professional Development

A teacher’s early years in the profession are regarded as critical in terms of constructing a professional practice (Feiman-Nemser, 2003 ) and avoiding high attrition (Karlberg & Bezzina, 2020 ). Research has established that beginning teachers need professional development opportunities geared specifically to their needs (Fantilli & McDougall, 2009 ) and their contexts (Gaikhorst, et al., 2017 ). Providing appropriate support is not an uncontentious matter with calls for institutions to come together and collaborate to provide adequate and ongoing support (Karlberg & Bezzina, 2020 ). The proposal is that support is needed from both within and beyond the beginning teacher’s school; and begins with effective pre-service teacher preparation (Keese et al., 2022 ).

Within schools where beginning teachers regard the support they receive positively, collaboration, encouragement and ‘involved colleagues’ are considered as vital; with the guidance of a 'buddy’ identified as some of the most valuable in-school support activities (Gaikhorst et al., 2014 ). Cameron et al.’s ( 2007 ) research in Aotearoa reports beginning teachers joining collaborative work cultures had greater opportunities to talk about teaching with their colleagues, share planning and resources, examine students’ work, and benefit from the collective expertise of team members.

Opportunities to participate in networks beyond the beginning teacher’s school have also been identified as being important for teacher induction (Akiri & Dori, 2021 ; Cameron et al., 2007 ). Fantilli & McDougall ( 2009 ) in their Canadian study found beginning teachers reported a need for many support and professional development opportunities including subject-specific (e.g., mathematics) workshops prior to and throughout the year. Akiri and Dori ( 2021 ) also refer to the need for specialised support from subject-specific mentors. This echoes the findings of Wood et al. ( 2012 ) who advocate that given the complexity of learning to teach mathematics, induction support specific to mathematics, and rich opportunities to learn are not only desirable but essential.

Akiri and Dori ( 2021 ) describe three levels of mentoring support for beginning teachers including individual mentoring, group mentoring and mentoring networks with all three facilitating substantive professional growth. Of relevance to this paper are individual and group mentoring. Individual mentoring involves pairing an experienced teacher with a beginning teacher, so that a beginning teacher’s learning is supported. Group mentoring involves a group of teachers working with one or more mentors, with participants receiving guidance from their mentor(s) (Akiri & Dori, 2021 ). Findings from Akiri and Dori suggest that of the varying forms of mentoring, individual mentoring contributes the most for beginning teachers’ professional learning.

Teachers Learning to Teach Mathematics Through Problem Solving

Learning to teach mathematics through problem solving begins in pre-service teacher education. It has been shown that providing pre-service teachers with opportunities to engage in problem solving as learners can be productive (Bailey, 2015 ). Opportunities to practise content-specific instructional strategies such as problem solving during student teaching has also been positively associated with first-year teachers’ enactment of problem solving (Youngs et al., 2022 ).

The move from pre-service teacher education to the classroom can be fraught for beginning teachers (Feiman-Nemser, 2003 ), and all the more so for beginning teachers attempting to teach mathematics through problem solving (Wood et al., 2012 ). In a recent study (Darragh & Radovic, 2019 ) it has been shown that an individual willingness to change to a problem-based pedagogy may not be enough to sustain a change in practice in the long term, particularly if there is a contradiction with the context and ‘norms’ (e.g., school curriculum) within which a teacher is working. Cady et al. ( 2006 ) explored the beliefs and practices of two teachers from pre-service teacher education through to becoming experienced teachers. One teacher who initially adopted reform practices reverted to traditional beliefs about the learning and teaching of mathematics. In contrast, the other teacher implemented new practices only after understanding these and gaining teaching experience. Participation in mathematically focused professional development and involvement in resource development were thought to favourably influence the second teacher.

Lesson structures have been found to support teachers learning to teach mathematics through problem solving. Sullivan et al. ( 2016 ) explored the use of a structure comprising four phases: launching, exploring, summarising and consolidating. Teachers in Australia and Aotearoa have reported the structure as productive and feasible (Ingram et al., 2019 ; Sullivan et al., 2016 ). Teaching using challenging tasks (such as in problem solving) and a structure have been shown to accommodate student diversity, a pressing concern for many teachers. Student diversity has often been managed by grouping students according to perceived levels of capability (called ability grouping). Research identifies this practice as problematic, excluding and marginalising disadvantaged groups of students (e.g., see Anthony & Hunter, 2017 ). The lesson structure explored by Sullivan et al. ( 2016 ) caters for diversity by deliberately differentiating tasks, providing enabling and extending prompts. Extending prompts are offered to students who finish an original task quickly and ideally elicit abstraction and generalisation. Enabling prompts involve reducing the number of steps, simplifying the numbers, and/or varying forms of representation for students who cannot initially proceed, with the explicit intention that students then return to the original task.

Recognising the established challenges teachers encounter when learning about teaching mathematics through problem solving, and the paucity of recent research focussing on beginning teachers learning about teaching mathematics in this way, this paper draws on data from a 2 year longitudinal study. The study was guided by the research question:

What supports beginning teachers’ implementation of a problem solving pedagogy for the teaching and learning of mathematics?

Research Methodology and Methods

Data were gathered from three beginning primary teachers who had completed a 1 year graduate diploma programme in primary teacher education the previous year. The beginning teachers had undertaken a course in mathematics education (taught by the author for half of the course) as part of the graduate diploma. An invitation to be involved in the research was sent to the graduate diploma cohort at the end of the programme. Three beginning teachers indicated their interest and remained involved for the 2 year research period. The teachers had all secured their first teaching positions, and were teaching at different year levels at three different schools. Julia (pseudonyms have been used for all names) was teaching year 0–2 (5–6 years) at a small rural school; Charlotte, year 5–6 (9–10 years) at a large urban city school; and Reine, year 7–8 (11–12 years), at another small rural school. All three beginning teachers taught at their respective schools, teaching the same year levels in both years of the study. Ethical approval was sought and given by the author’s university ethics committee. Informed consent was gained from the teachers, school principals and involved parents and children.

Participatory action research was selected as the approach in the study because of its emphasis on the participation and collaboration of all those involved (Townsend, 2013 ). Congruent with the principles of action research, activities and procedures were negotiated throughout both years in a responsive and emergent way. The author acted as a co-participant with the teachers, aiming to improve practice, to challenge and reorient thinking, and transform contexts for children’s learning (Locke et al., 2013 ). The author’s role included facilitating the research-based problem solving workshops (see below), contributing her experience as a mathematics educator and researcher. The beginning teachers were involved in making sense of their own practice related to their particular sites and context.

The first step in the research process was a focus group discussion before the beginning teachers commenced their first year of teaching. This discussion included reflecting on their learning about problem solving during the mathematics education course; and envisaging what would be helpful to support implementation. It was agreed that a series of workshops would be useful. Two were subsequently held in the first year of the study, each for three hours, at the end of terms one and two. Four workshops were held during the second year, one during each term. At the end of the first year the author suggested a small number of experienced teachers who teach mathematics through problem solving join the workshops for the second year. The presence of these teachers was envisaged to support the beginning teachers’ learning. The beginning teachers agreed, and an invitation was extended to four teachers from other schools whom the author knew (e.g., through professional subject associations). The focus of the research remained the same, namely exploring what supported beginning teachers to implement a problem solving pedagogy.

Each workshop began with sharing and oral reflections about recent problem solving experiences, including successes and challenges. Key workshop tasks included developing a shared understanding of what constitutes problem solving, participating in solving mathematical problems (modelled using a lesson structure (Sullivan et al., 2016 ), and learning techniques such as asking questions. A time for reflective writing was provided at the end of each workshop to record what had been learned and an opportunity to set goals.

During the first focus group discussion it was also decided the author would visit and observe the beginning teachers teaching a problem solving lesson (or two) in term three or four of each year. A semi-structured interview between the author and each beginning teacher took place following each observed lesson. The beginning teachers also had an opportunity to ask questions as they reflected on the lesson, and feedback was given as requested. A second focus group discussion was held at the end of the first year (an approximate midpoint in the research), and a final focus group discussion was held at the end of the second year.

All focus group discussions, problem solving workshops, observations and interviews were audio-recorded and transcribed. Field notes of workshops (recorded by the author), reflections from the beginning teachers (written at the end of each workshop), and lesson observation notes (recorded by the author) were also gathered. The final data collected included occasional emails between each beginning teacher and the author.

Data Analysis

The analysis reported in this paper drew on all data sets, primarily using inductive thematic analysis (Braun & Clarke, 2006 ). The research question guided the key question for analysis, namely: What supports beginning teachers’ implementation of a problem solving pedagogy for the teaching and learning of mathematics? Alongside this question, consideration was also given to the challenges beginning teachers encountered as they implemented a problem solving pedagogy. Data familiarisation was developed through reading and re-reading the whole body of data. This process informed data analysis and the content for each subsequent workshop and focus group discussions. Colour-coding and naming of themes included comparing and contrasting data from each beginning teacher and throughout the 2-year period. As a theme was constructed (Braun & Clarke, 2006 ) subsequent data was checked to ascertain whether the theme remained valid and/or whether it changed during the 2 years. Three key themes emerged revealing what supported the beginning teachers’ developing problem solving pedagogy, and these constitute the focus for this paper.

Mindful of the time pressures beginning teachers experience in their early years, the author undertook responsibility for data analysis. The author’s understanding of the unfolding ‘story’ of each beginning teacher’s experiences and the emerging themes were shared with the beginning teachers, usually at the beginning of a workshop, focus group discussion or observation. Through this process the author’s understandings were checked and clarified. This iterative process of member checking (Lincoln & Guba, 1985 ) began at a mid-point during the first year, once a significant body of data had been gathered. At a later point in the analysis and writing, the beginning teachers also had an opportunity to read, check and/or amend quotes chosen to exemplify their thinking and experiences.

Findings and Discussion

In this section the three beginning teachers’ experiences at the start of the 2 year research timeframe is briefly described, followed by the first theme centred on the use of a lesson structure including prompts for differentiation. The second and third themes are presented together, starting with a brief outline of each beginning teacher’s ‘story’ providing the context within which the themes emerged. Sharing the ‘story’ of each beginning teacher and including their ‘voice’ through quotes acknowledges them and their experiences as central to this research.

The beginning teachers’ pre-service teacher education set the scene for learning about teaching mathematics through problem solving. A detailed list brainstormed during the first focus group discussion suggested a developing understanding from their shared pre-service mathematics education course. In their first few weeks of teaching, all three beginning teachers implemented a few problems. It transpired however this inclusion of problem solving occurred only while children were being assessed and grouped. Following this, all three followed a traditional format of skill-based (with a focus on number) mathematics, taught using ability groups. The beginning teachers’ trajectories then varied with Julia and Reine both eventually adopting a pedagogy primarily based on problem solving, while Charlotte employed a traditional skill-based mathematics using a combination of whole class and small group teaching.

A Lesson Structure that Caters for Diversity Supports Early Efforts

Data show that developing familiarity with a lesson structure including prompts for differentiation supported the beginning teachers’ early efforts with a problem solving pedagogy. This addressed a key issue that emerged during the first workshop. During the workshop while a ‘list’ of ideas for teaching a problem solving lesson was co-constructed, considerable concern was expressed about catering for a range of learners when introducing and working with a problem. For example, Charlotte queried, “ Well, what happens when you are trying to do something more complicated, and we’re (referring to children) sitting here going, ‘I’ve no idea what you're talking about” ? Reine suggested keeping some children with the teacher, thinking he would say, “ If you’re unsure of any part stay behind” . He was unsure however about how he would then maintain the integrity of the problem.

It was in light of this discussion that a lesson structure with differentiated prompts (Sullivan et al., 2016 ) was introduced, experienced and reflected on during the second workshop. While the co-constructed list developed during the first workshop had included many components of Sullivan’s lesson structure, (e.g., a consideration of ‘extensions’) there had been no mention of ‘enabling prompts’. Now, with the inclusion of both enabling and extending prompts, the beginning teachers’ discussion revealed them starting to more fully envisage the possibilities of using a problem solving approach, and being able to cater for all children. Reine commented that, “… you can give the entire class a problem, you've just got to have a plan, [and] your enabling and extension prompts” . Charlotte was also now considering and valuing the possibility of having a whole class work on the same problem. She said, “I think … it’s important and it’s useful for your whole class to be working on the same thing. And … have enablers and extenders to make sure that everyone feels successful” . Julia also referred to the planning prompts. She thought it would be key to “plan it well so that we’ve got enabling and extending prompts” .

Successful Problem Solving Lessons

Following the second workshop all three beginning teachers were observed teaching a lesson using the structure. These lessons delighted the beginning teachers, with them noting prolonged engagement of children, the children’s learning and being able to cater for all learners. Reine commented on how excited and engaged the children were, saying they were, “ just so enthusiastic about it ”. In Charlotte’s words, “ it really worked ”, and Julia enthusiastically pondered this could be “ the only way you teach maths !”.

During the focus group discussion at the end of the first year, all three reflected on the value of the lesson structure. Reine called it a ‘framework’ commenting,

I like the framework. So from start to finish, how you go through that whole lesson. So how you set it up and then you go through the phases… I like the prompts that we went through…. knowing where you could go, if they’re like, ‘What do I do?’ And then if they get it too easy then ‘Where can you go?’ So you've got all these little avenues.

Charlotte also valued the lesson structure for the breadth of learning that could occur, explaining,

… it really helped, and really worked. So I found that useful for me and my class ‘cause they really understood. And I think also making sure that you know all the ins and outs of a problem. So where could they go? What do you need to know? What do they need to know?

While the beginning teachers’ pre-service teacher education and the subsequent research process, including the use of the lesson structure, supported the beginning teachers’ early efforts teaching mathematics through problem solving, two key factors further enabled two of the beginning teachers (Julia and Reine) to sustain a problem solving pedagogy. These were:

Being involved in complementary mathematics professional development alongside members of their respective school staff (a form of group mentoring); and

Having a colleague in the same school teaching mathematics through problem solving (a form of individual mentoring).

Charlotte did not have these opportunities and she indicated this limited her implementation. Data for these findings for each teacher are presented below.

Complementary Professional Development and Problem Solving Colleague in Same School

Julia began to significantly implement problem solving from the second term in the first year. This coincided with her attending a 2-day workshop (with staff from her school) that focused on the use of problem solving to support children who are not achieving at expected levels (see ALiM: Accelerated Learning in Maths—Ministry of Education, 2022 ). She explained, “ … I did the PD with (colleague’s name), which was really helpful. And we did lots of talking about rich learning tasks and problem solving tasks…. And what it means ”. Following this, Julia reported using rich tasks and problem solving in her mathematics teaching in a regular (at least weekly) and ongoing way.

During the observation in term three of the first year Julia again referred to the impact of having a colleague also teaching mathematics through problem solving. When asked what she believed had supported her to become a teacher who teaches mathematics in this way she firstly identified her involvement in the research project, and then spoke about her colleague. She said, “ I’m really lucky one of our other teachers is doing the ALiM project… So we’re kind of bouncing off each other a little bit with resources and activities, and things like that. So that’s been really good ”.

At the beginning of the second year, Julia reiterated this point again. On this occasion she said having a colleague teaching mathematics through problem solving, “ made a huge difference for me last year ”, explaining the value included having someone to talk with on a daily basis. Mid-way through the second year Julia repeated her opinion about the value of frequent contact with a practising problem solving colleague. Whereas her initial comments spoke of the impact in terms of being “ a little bit ”, later references recount these as ‘ huge ’ and ‘ enabling ’. She described:

a huge effect… it enabled me. Cause I mean these workshops are really helpful. But when it’s only once a term, having [colleague] there just enabled me to kind of bounce ideas off. And if I did a lesson that didn’t work very well, we could talk about why that was, and actually talk about what the learning was instead…. . It was being able to reflect together, but also share ideas. It was amazing.

Julia’s comments raise two points. It is likely that participating in the ALiM professional development (which could be conceived as a form of group mentoring) consolidated the learning she first encountered during pre-service teacher education and later extended through her involvement in the research. Having a colleague (in essence, an individual mentor) within the same school teaching mathematics through problem solving appears to be another factor that supported Julia to implement problem solving in a more sustained way. Julia’s comments allude to a number of reasons for this, including: (i) the more frequent discussion opportunities with a colleague who understands what it means for children to learn mathematics through problem solving; (ii) being able to share and plan suitable activities and resources; and (iii) as a means for reflection, particularly when challenges were encountered.

Reine’s mathematics programme throughout the first year was based on ability groups and could be described as traditional. He occasionally used some mathematical problems as ‘extension activities’ for ‘higher level’ children, or as ‘fillers’. In the second year, Reine moved to working with mixed ability groups (where students work together in small groups with varying levels of perceived capability) and initially implemented problem solving approximately once a fortnight. In thinking back to these lessons he commented, “ We weren’t really unpacking one problem properly, it was just lots of busy stuff ”. A significant shift occurred in Reine’s practice to teaching mathematics primarily by problem solving towards the last half of the second year. He explained, “ I really ramped up towards terms three and four, where it’s more picking one problem across the whole maths class but being really, really conscious of that problem. Low entry, high ceiling, and doing more of it too ”.

Reine attributed this change to a number of factors. In response to a question about what he considered led to the change he explained,

… having this, talking about this stuff, trialling it and then with our PD at school with the research into ability grouping... We’ve got a lot of PD saying why it can be harmful to group on ability, and that’s been that last little kick I needed, I think. And with other teachers trialling this as well. Our senior teacher has flipped her whole maths program and just does problem solving.

Like Julia, Reine firstly referred to his involvement in the research project including having opportunities to try problems in his class and discuss his experiences within the research group. He then told of a colleague teaching at his school leading school-wide professional development focussed on the pitfalls of ability grouping in mathematics (e.g., see Clarke, 2021 ) and instead using problem solving tasks. He also referred to having another teacher also teaching mathematics through problem solving. It is interesting to consider that having positive experiences in pre-service teacher education, the positive and encouraging support of colleagues (Reine’s principal and co-teacher in both years), regular participation in ongoing professional development (the problem solving workshops), and having a highly successful one-off problem solving teaching experience (the first year observation) were not enough for Reine to meaningfully sustain problem solving in his first year of teaching.

As for Julia, pivotal factors leading to a sustaining of problem solving teaching practice in the second year included complementary mathematics professional development (a form of group mentoring) and at least one other teacher (acting as an individual mentor) in the same school teaching mathematics through problem solving. It could be argued that pre-service teacher education and the problem solving workshops ‘paved the way’ for Julia and Reine to make a change. However, for both, the complementary professional development and presence of a colleague also teaching through problem solving were pivotal. It is also interesting to note that three of the four experienced teachers in the larger research group taught at the same level as Reine (see Table 1 below) yet he did not relate this to the significant change in his practice observed towards the end of the second year.

Charlotte’s mathematics programme during the first year was also traditional, teaching skill-based mathematics using ability groups. At the beginning of the second year Charlotte moved to teaching her class as a whole group, using flexible grouping as needed (children are grouped together in response to learning needs with regard to a specific idea at a point in time, rather than perceived notions of ability). She reported that she occasionally taught a lesson using problem solving in the first year, and approximately once or twice a term in the second year. Charlotte did not have opportunities for professional development in mathematics nor did she have a colleague in the same school teaching mathematics through problem solving. Pondering this, Charlotte said,

It would have been helpful if I had someone else in my school doing the same thing. I just thought about when you were saying the other lady was doing it [referring to Julia’s colleague]. You know, someone that you can just kind of back-and-forth like. I find with Science, I usually plan with this other lady, and we share ideas and plan together. We come up with some really cool stuff whereas I don’t really have the same thing for this.

Based on her experiences with teaching science it is clear Charlotte recognised the value of working alongside a colleague. In this, her view aligns with what Julia and Reine experienced.

Table 1 provides a summary of the variables for each beginning teacher, and whether a sustained implementation of teaching mathematics through problem solving occurred.

The table shows two variables common to Julia and Reine, the beginning teachers who began and sustained problem solving. They both participated in complementary professional development with colleagues from their school, and the presence of a colleague, also at their school, teaching mathematics through problem solving. Given that Julia was able to implement problem solving in the absence of a ‘research workshop colleague’ teaching at the same year level, and Reine’s lack of comment about the potential impact of this, suggests that this was not a key factor enabling a sustained implementation of problem solving.

Attributing the changes in Julia and Reine’s teaching practice primarily to their involvement in complementary professional development attended by members of their school staff, and the presence of at least one other teacher teaching mathematics through problem solving in their school, is further supported by a consideration of the timing of the changes. The data shows that while Julia could be considered an ‘early adopter’, Reine changed his practice reasonably late in the 2 year period. Julia’s early adoption of teaching mathematics through problem solving coincided with her involvement, early in the 2 years, in the professional development and opportunity to work alongside a problem solving practising colleague. Reine encountered these similar conditions towards the end of the 2 years and it is notable that this was the point at which he changed his practice. That problem solving did not become embedded or frequent within Charlotte’s mathematics programme tends to support the argument.

Understanding what supports primary teachers to teach mathematics through problem solving at the beginning of their careers is important because all students, including those taught by beginning teachers, need opportunities to develop high-level thinking, reasoning, and problem solving skills. It is also important in light of recent calls for mathematics curricula to include more emphasis on mathematical practices (such as problem solving) (e.g., see Grootenboer et al., 2021 ); and the Royal Society Te Apārangi report ( 2021 ). Findings from this research suggest that learning about problem solving during pre-service teacher education is enough for beginning teachers to trial teaching mathematics in this way. Early efforts were supported by gaining experience with a lesson structure that specifically attends to diversity. The lesson structure prompted the beginning teachers to anticipate different children’s responses, and consider how they would respond to these. An increased confidence and sense of security to trial teaching mathematics through problem solving was enabled, based on their more in-depth preparation. Beginning teachers finding the lesson structure useful extends the findings of Sullivan et al. ( 2016 ) in Australia and Ingram et al. ( 2019 ) in Aotearoa to include less experienced teachers.

In order for teaching mathematics through problem solving to be sustained however, a combination of three factors, subsequent to pre-service teacher education, was needed: (i) active participation in problem solving workshops (in this context provided by the research-based problem solving workshops); (ii) attending complementary professional development initiatives alongside colleagues from their school (a form of group mentoring); and (iii) the presence of an in-school colleague who also teaches mathematics through problem solving (a form of individual mentoring). It seems possible these three factors acted synergistically resulting in Julia and Reine being able to sustain implementation. If only one factor is present, in this study attending the problem solving workshops, and despite a genuine interest in using a problem based pedagogy, the result was limited movement towards this way of teaching.

Akiri and Dori ( 2021 ) have reported that individual mentoring contributes the most to beginning teachers’ professional growth. In a manner consistent with these findings, an in-school colleague (who in essence was acting as an individual mentor) played a critical role in supporting Reine and Julia. However, while Akiri and Dori, amongst others (e.g., Cameron et al., 2007 ; Karlberg & Bezzina, 2020 ), have identified the value of supportive, approachable colleagues, for both Julia and Reine it was important that their colleague was supportive and approachable, and actively engaged in teaching mathematics through problem solving. Having supportive and approachable colleagues, as Reine experienced in his first year, on their own were not enough to support a sustained problem solving pedagogy.

Implications for Productive Professional Learning and Development

This study sought to explore the conditions that supported problem solving for beginning teachers, each in their unique context and from their perspective. The research did not examine how the teaching of mathematics through problem solving affected children’s learning. However, multiple sets of data were collected and analysed over a 2-year period. While it is neither possible nor appropriate to make claims as to generalisability some suggestions for productive beginning teacher professional learning and development are offered.

Given the first years of teaching constitute a particular and critical phase of teacher learning (Karlberg & Bezzina, 2020 ) and the findings from this research, it is imperative that well-funded, subject-focussed support occurs throughout a beginning teacher’s first 2 years of teaching. This is consistent with the ninth recommendation in the Royal Society Te Apārangi report ( 2021 ) suggesting compulsory professional learning during the induction period (2 years in Aotearoa New Zealand). Participation in subject-specific professional development has been recognised to favourably influence new teachers’ efforts to adopt reform practices such as problem solving (Cady et al., 2006 ).

Findings from this study suggest professional development opportunities that complement each other support beginning teacher learning. In the first instance complementarity needs to be with what beginning teachers have learned during their pre-service teacher education. In this study, the research-based problem solving workshops served this role. Complementarity between varying forms of professional development also appears to be important. Furthermore, as indicated by Julia and Reine’s experiences, subsequent professional development need not be on exactly the same topic. Rather, it can be complementary in the sense that there is an underlying congruence in philosophy and/or focus on a particular issue. For example, it emerged in the problem solving workshops, that being able to cater for diversity was a central concern for the beginning teachers. Attending to this issue within the problem solving workshops via the introduction of a lesson structure that enabled differentiation, was congruent with the nature of the professional development in the two schools: ALiM in Julia’s school, and mixed ability grouping and teaching mathematics through problem solving in Reine’s school. All three of these settings were focussed on positively responding to diversity in learning needs.

The presence of a colleague within the same school teaching mathematics through problem solving also appears to be pivotal. This is consistent with Darragh and Radovic ( 2019 ) who have shown the significant impact a teacher’s school context has on their potential to sustain problem based pedagogies in mathematics. Given that problem solving is not prevalent in many primary classrooms, it would seem clear that colleagues who have yet to learn about teaching mathematics through problem solving, particularly those that have a role supporting beginning teachers, will also require access to professional development opportunities. It seems possible that beginning and experienced teachers learning together is a potential pathway forward. Finding such pathways will be critical if mathematical problem solving is to be consistently implemented in primary classrooms.

Finally, these implications together with calls for institutions to collaborate to provide adequate and ongoing support for new teachers (Karlberg & Bezzina, 2020 ) suggest there is a need for pre-service teacher educators, professional development providers and the Teaching Council of Aotearoa New Zealand to work together to support beginning teachers’ starting and sustaining teaching mathematics through problem solving pedagogies.

Akiri, E., & Dori, Y. (2021). Professional growth of novice and experienced STEM teachers. Journal of Science Education and Technology, 31 (1), 129–142.

Article   Google Scholar  

Anthony, G., & Hunter, R. (2017). Grouping practices in New Zealand mathematics classrooms: Where are we at and where should we be? New Zealand Journal of Educational Studies, 52 (1), 73–92.

Australian Curriculum, Assessment and Reporting Authority. (2018). F-10 curriculum: Mathematics . Retrieved from https://www.australiancurriculum.edu.au/f-10-curriculum/mathematics/ . Accessed 20 April 2022.

Bailey, J. (2015). Experiencing a mathematical problem solving teaching approach: Opportunity to identify ambitious teaching practices. Mathematics Teacher Education and Development, 17 (2), 111–124.

Google Scholar  

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3 (2), 77–101.

Cady, J., Meier, S., & Lubinski, C. (2006). the mathematical tale of two teachers: A longitudinal study relating mathematics instructional practices to level of intellectual development. Mathematics Education Research Journal, 18 (1), 3–26.

Cameron, M., Lovett, S., & Garvey Berger, J. (2007). Starting out in teaching: Surviving or thriving as a new teacher. SET Research Information for Teachers, 3 , 32–37.

Clarke, D. (2021). Calling a spade a spade: The impact of within-class ability grouping on opportunity to learn mathematics in the primary school. Australian Primary Mathematics Classroom, 26 (1), 3–8.

Clarke, D., Goos, M., & Morony, W. (2007). Problem solving and working mathematically. ZDM Mathematics Education, 39 (5–6), 475–490.

Darragh, L., & Radovic, D. (2019). Chaos, control, and need: Success and sustainability of professional development in problem solving. In P. Felmer, P. Liljedahl, & B. Koichu (Eds.), Problem solving in mathematics instruction and teacher professional development (pp. 339–358). Springer. https://doi.org/10.1007/978-3-030-29215-7_18

Chapter   Google Scholar  

English, L., & Gainsburg, J. (2016). Problem solving in a 21st-century mathematics curriculum. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 313–335). Routledge.

Fantilli, R., & McDougall, D. (2009). A study of novice teachers: Challenges and supports in the first years. Teaching and Teacher Education, 25 (6), 814–825.

Feiman-Nemser, S. (2003). What new teachers need to learn. Educational Leadership, 60 (8), 25–29.

Felmer, P., Liljedahl, P., & Koichu, B. (Eds.). (2019). Problem solving in mathematics instruction and teacher professional development . Springer. https://doi.org/10.1007/978-3-030-29215-7_18

Book   Google Scholar  

Gaikhorst, L., Beishuizen, J., Korstjens, I., & Volman, M. (2014). Induction of beginning teachers in urban environments: An exploration of the support structure and culture for beginning teachers at primary schools needed to improve retention of primary school teachers. Teaching and Teacher Education, 42 , 23–33.

Gaikhorst, L., Beishuizen, J., Roosenboom, B., & Volman, M. (2017). The challenges of beginning teachers in urban primary schools. European Journal of Teacher Education , 40 (1), 46–61.

Grootenboer, P., Edwards-Groves, C., & Kemmis, S. (2021). A curriculum of mathematical practices. Pedagogy, Culture & Society. https://doi.org/10.1080/14681366.2021.1937678

Holton, D. (2009). Problem solving in the secondary school. In R. Averill & R. Harvey (Eds.), Teaching secondary school mathematics and statistics: Evidence-based practice (Vol. 1, pp. 37–53). NZCER Press.

Hunter, R., Hunter, J., Anthony, G., & McChesney, K. (2018). Developing mathematical inquiry communities: Enacting culturally responsive, culturally sustaining, ambitious mathematics teaching. SET Research Information for Teachers, 2 , 25–32.

Ingram, N., Holmes, M., Linsell, C., Livy, S., McCormick, M., & Sullivan, P. (2019). Exploring an innovative approach to teaching mathematics through the use of challenging tasks: A New Zealand perspective. Mathematics Education Research Journal . https://doi.org/10.1007/s13394-019-00266-1

Inoue, N., Asada, T., Maeda, N., & Nakamura, S. (2019). Deconstructing teacher expertise for inquiry-based teaching: Looking into consensus building pedagogy in Japanese classrooms. Teaching and Teacher Education, 77 , 366–377.

Karlberg, M., & Bezzina, C. (2020). The professional development needs of beginning and experienced teachers in four municipalities in Sweden. Professional Development in Education . https://doi.org/10.1080/19415257.2020.1712451

Keese, J., Waxman, H., Lobat, A., & Graham, M. (2022). Retention intention: Modeling the relationships between structures of preparation and support and novice teacher decisions to stay. Teaching and Teacher Education . https://doi.org/10.1016/j.tate.2021.103594

Locke, T., Alcorn, N., & O’Neill, J. (2013). Ethical issues in collaborative action research. Educational Action Research, 21 (1), 107–123.

Lincoln, Y., & Guba, E. (1985). Naturalistic Inquiry . Sage Publications.

Mamona-Downs, J., & Mamona, M. (2013). Problem solving and its elements in forming proof. The Mathematics Enthusiast, 10 (1–2), 137–162.

Ministry of Education. (2022). ALiM: Accelerated Learning in Maths. Retrieved from https://www.education.govt.nz/school/funding-and-financials/resourcing/school-funding-for-programmes-forstudents-pfs/#sh-ALiM . Accessed 20 April 2022.

Ministry of Education. (2007). The New Zealand Curriculum . Learning Media.

Royal Society Te Apārangi. (2021). Pāngarau Mathematics and Tauanga Statistics in Aotearoa New Zealand: Advice on refreshing the English-medium Mathematics and Statistics learning area of the New Zealand Curriculum : Expert Advisory Panel. Publisher

Schoenfeld, A. (1985). Mathematical problem solving . Academic Press.

Schoenfeld, A. (2013). Reflections on problem solving theory and practice. The Mathematics Enthusiast, 10 (1/2), 9–34.

Sullivan, P., Borcek, C., Walker, N., & Rennie, M. (2016). Exploring a structure for mathematics lessons that initiate learning by activating cognition on challenging tasks. The Journal of Mathematical Behaviour, 41 , 159–170.

Townsend, A. (2013). Action research: The challenges of understanding and changing practice . Open University Press.

Wood, M., Jilk, L., & Paine, L. (2012). Moving beyond sinking or swimming: Reconceptualizing the needs of beginning mathematics teachers. Teachers College Record, 114 , 1–44.

Youngs, P., Molloy Elreda, L., Anagnostopoulos, D., Cohen, J., Drake, C., & Konstantopoulos, S. (2022). The development of ambitious instruction: How beginning elementary teachers’ preparation experiences are associated with their mathematics and English language arts instructional practices. Teaching and Teacher Education . https://doi.org/10.1016/j.tate.2021.103576

Download references

Open Access funding enabled and organized by CAUL and its Member Institutions.

Author information

Authors and affiliations.

University of Waikato, Hamilton, New Zealand

Judy Bailey

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Judy Bailey .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Bailey, J. Learning to Teach Mathematics Through Problem Solving. NZ J Educ Stud 57 , 407–423 (2022). https://doi.org/10.1007/s40841-022-00249-0

Download citation

Received : 17 January 2022

Accepted : 04 April 2022

Published : 21 April 2022

Issue Date : December 2022

DOI : https://doi.org/10.1007/s40841-022-00249-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Beginning teachers
  • Mathematical problem solving
  • Professional development
  • Problem solving lesson structure
  • Find a journal
  • Publish with us
  • Track your research

What is problem solving and why is it important

benefits of teaching problem solving

By Wayne Stottler , Kepner-Tregoe

  • Problem Solving & Decision Making Over time, developing and refining problem solving skills provides the ability to solve increasingly complex problems Learn More

For over 60 years, Kepner-Tregoe has been helping companies across industries and geographies to develop and mature their problem-solving capabilities through KT’s industry leading approach to training and the implementation of best practice processes. Considering that problem solving is a part of almost every person’s daily life (both at home and in the workplace), it is surprising how often we are asked to explain what problem solving is and why it is important.

Problem solving is at the core of human evolution. It is the methods we use to understand what is happening in our environment, identify things we want to change and then figure out the things that need to be done to create the desired outcome. Problem solving is the source of all new inventions, social and cultural evolution, and the basis for market based economies. It is the basis for continuous improvement, communication and learning.

If this problem-solving thing is so important to daily life, what is it?

Problem-solving is the process of observing what is going on in your environment; identifying things that could be changed or improved; diagnosing why the current state is the way it is and the factors and forces that influence it; developing approaches and alternatives to influence change; making decisions about which alternative to select; taking action to implement the changes; and observing impact of those actions in the environment.

Each step in the problem-solving process employs skills and methods that contribute to the overall effectiveness of influencing change and determine the level of problem complexity that can be addressed. Humans learn how to solve simple problems from a very early age (learning to eat, make coordinated movements and communicate) – and as a person goes through life problem-solving skills are refined, matured and become more sophisticated (enabling them to solve more difficult problems).

Problem-solving is important both to individuals and organizations because it enables us to exert control over our environment.

Fixing things that are broken

Some things wear out and break over time, others are flawed from day-1. Personal and business environments are full of things, activities, interactions and processes that are broken or not operating in the way they are desired to work. Problem-solving gives us a mechanism for identifying these things, figuring out why they are broken and determining a course of action to fix them.

Addressing risk

Humans have learned to identify trends and developed an awareness of cause-and-effect relationships in their environment. These skills not only enable us to fix things when they break but also anticipate what may happen in the future (based on past-experience and current events). Problem-solving can be applied to the anticipated future events and used to enable action in the present to influence the likelihood of the event occurring and/or alter the impact if the event does occur.

Improving performance

Individuals and organizations do not exist in isolation in the environment. There is a complex and ever-changing web of relationships that exist and as a result, the actions of one person will often have either a direct impact on others or an indirect impact by changing the environment dynamics. These interdependencies enable humans to work together to solve more complex problems but they also create a force that requires everyone to continuously improve performance to adapt to improvements by others. Problem-solving helps us understand relationships and implement the changes and improvements needed to compete and survive in a continually changing environment.

Seizing opportunity

Problem solving isn’t just about responding to (and fixing) the environment that exists today. It is also about innovating, creating new things and changing the environment to be more desirable. Problem-solving enables us to identify and exploit opportunities in the environment and exert (some level of) control over the future.

Problem solving skills and the problem-solving process are a critical part of daily life both as individuals and organizations. Developing and refining these skills through training, practice and learning can provide the ability to solve problems more effectively and over time address problems with a greater degree of complexity and difficulty. View KT’s Problem Solving workshop known to be the gold standard for over 60 years.

Blog Image 1

We are experts in:

For inquiries, details, or a proposal!

Subscribe to the KT Newsletter

The home of mathematics education in New Zealand.

  • Forgot password ?
  • Supporting professional practice
  • Gifted and talented
  • Problem Solving

Benefits of Problem Solving

The Ministry is migrating nzmaths content to Tāhurangi.             Relevant and up-to-date teaching resources are being moved to Tāhūrangi (tahurangi.education.govt.nz).  When all identified resources have been successfully moved, this website will close. We expect this to be in June 2024.  e-ako maths, e-ako Pāngarau, and e-ako PLD 360 will continue to be available. 

For more information visit https://tahurangi.education.govt.nz/updates-to-nzmaths

Using a problem solving approach to teaching and learning maths is of value to all students and especially to those who are high achieving. Some of the reasons for using problem solving are summarised below.

  • Problem solving places the focus on the student making sense of mathematical ideas. When solving problems students are exploring the mathematics within a problem context rather than as an abstract.
  • Problem solving encourages students to believe in their ability to think mathematically. They will see that they can apply the maths that they are learning to find the solution to a problem.
  • Problem solving provides ongoing assessment information that can help teachers make instructional decisions. The discussions and recording involved in problem solving provide a rich source of information about students' mathematical knowledge and understanding.
  • Good problem solving activities provide an entry point that allows all students to be working on the same problem. The open-ended nature of problem solving allows high achieving students to extend the ideas involved to challenge their greater knowledge and understanding.
  • Problem solving develops mathematical power. It gives students the tools to apply their mathematical knowledge to solve hypothetical and real world problems.
  • Problem solving is enjoyable. It allows students to work at their own pace and make decisions about the way they explore the problem. Because the focus is not limited to a specific answer students at different ability levels can experience both challenges and successes on the same problem.
  • Problem solving better represents the nature of mathematics. Research mathematicians apply this exact approach in their work on a daily basis.
  • Once students understand a problem solving approach to maths, a single well framed mathematical problem provides the potential for an extended period of exploration.
  • Open access
  • Published: 22 April 2024

The power of laughter: a study on humor and creativity in undergraduate nursing education in Egypt

  • Mona Metwally El-Sayed 1 ,
  • Eman Sameh AbdElhay 2 ,
  • Manal Mohammed Hawash 3 &
  • Samah Mohamed Taha 2  

BMC Nursing volume  23 , Article number:  259 ( 2024 ) Cite this article

Metrics details

Creativity in nursing education is crucial for developing practical problem-solving skills, and humor is a valuable tool for stress management and fostering a positive learning environment. This study explored the relationship between creativity and humor among nursing students.

A cross-sectional survey was conducted with 265 convenient undergraduate nursing students aged 20 to 25. The Short Scale of Creative Self (SSCS) and the Multidimensional Sense of Humor Scale (MSHS) were used to measure creativity and various aspects of humor.

Showed a significant positive correlation between humor and creativity ( r  = 0.238, p  < 0.001). Positive correlations were found between Humor Production, Coping or Adaptive Humor, and Appreciation of Humor with creativity ( r  = 0.254, 0.230, and 0.461, p  < 0.001, respectively). In contrast, Attitudes Toward Humor and Humorous People were negatively correlated with creativity ( r =-0.343, p  < 0.05). Humor accounted for 16.2% of the variance in creativity.

The study concluded a strong link between humor and creativity, with positive correlations observed between creative self-efficacy and creative personal identity with different aspects of humor. The study recommends the incorporation of humor into nursing education and healthcare settings to encourage creative problem-solving and reduce burnout among students and staff.

Peer Review reports

Introduction

Nursing education gives individuals the necessary knowledge and skills to become competent healthcare providers. The American Association of Colleges of Nursing (AACN) reports that improving the educational level of nurses leads to better patient outcomes, lower mortality rates, reduced readmission rates, and shorter hospital stays [ 1 ]. Learning in nursing is usually facilitated through course materials, quizzes, assignments, and discussions. Students are encouraged to actively engage in learning and find ways to improve their understanding. However, some challenges may negatively impact their academic achievement, such as boredom [ 2 ], disinterest in the course, withdrawal, and reluctance to take responsibility [ 3 ]. Humor can create a less intimidating learning environment, increasing students’ motivation to complete their assigned activities [ 4 , 5 , 6 ].

Humor is a playful and light-hearted approach that can ease tension, handle uncomfortable situations, and enhance communication and comprehension in educational settings [ 7 ]. It is a complex phenomenon that involves cognitive, emotional, behavioral, psychological, and social aspects [ 8 , 9 ]. It is a fundamental part of daily life and can act as a coping mechanism [ 8 ]. Humor is a positive experience that transcends cultural and social boundaries. It is the ability to recognize and appreciate the comical aspects of a situation [ 9 ]. Humor can play a vital role in engaging students in learning by directing their attention to the necessary information and creating a pleasant, emotional, and social atmosphere [ 10 ]. Humor can boost motivation in the learning process and improve students’ creative thinking abilities throughout learning activities [ 10 ].

Using humor in nursing education can be effective if it follows specific standards that ensure its positive impact. These standards include appropriateness, timing, and sensitivity to the needs of students. It is important to use humor respectfully, upholding the students’ dignity and not detracting from the seriousness of the educational environment [ 11 ]. To balance lightheartedness and professionalism, it is crucial to use humor in moderation and prevent it from becoming a distraction. Humor can be a valuable tool to break the ice, foster rapport, and reduce stress for students and educators. By applying humor thoughtfully and in line with these criteria, nursing students can have an enhanced educational experience while maintaining professionalism and respect [ 11 , 12 ].

Nursing education in Egypt considers creativity a fundamental skill. Creativity is crucial in helping nurses provide top-notch patient care as nursing tasks become more complicated [ 13 ]. Creativity lies in systematically generating innovative and meaningful ideas, and it is a vital component of nursing education, encompassing the arts and sciences [ 14 ]. It is a complex and multifaceted concept with various definitions [ 15 , 16 ]. Studies have demonstrated that promoting creative problem-solving skills and fostering creativity through teaching innovative teaching methods among nursing students can improve their academic performance [ 13 , 17 , 18 , 19 ]. Therefore, it is crucial to identify the factors influencing their creativity to promote creative thinking among nursing students.

Although the research agenda stresses the significance of exploring various areas, such as personalities and impediments, in education, there has been limited empirical research on creativity in nursing education [ 20 , 21 ]. However, the National Curriculum Standards in Undergraduate Nursing Program (NCSN) emphasizes that creativity, aesthetics, ethics, politics, and technical expertise are essential tools that enable students to make meaningful contributions to the care network, emphasizing patient care and a commitment to the healthcare system [ 22 ].

Chen and colleagues (2019) discovered that an excellent sense of humor is often associated with higher creative abilities. The confluence model explains the mechanism behind humor and its positive effects on creativity. From a cognitive perspective, understanding humor requires utilizing critical, creative skills. Positive emotions can lead to higher cognitive flexibility and more free associations, which benefit creativity. The emotional perspective highlights how humor fosters a positive attitude toward creativity. Appreciating humor can create positive emotions that may result in better creative output. Lastly, the motivational perspective clarifies how the happiness derived from humor leads to a strong motivation to engage in creative activities [ 23 ]. While some research indicates that positive emotions may promote unconventional ideas, other studies suggest that positive emotions may not necessarily confer any advantage in creative performance [ 24 ].

Research in nursing and education highlights the importance, relevance, and beneficial effects of incorporating humor in enhancing the educational experience [ 25 , 26 ]. Humor aids in mitigating stress and fostering a sense of unity among students and faculty, creating a more supportive and cooperative atmosphere [ 11 ]. This can stimulate creativity by inspiring students to think innovatively and tackle challenges with a fresh mindset. Incorporating humor and creativity in undergraduate nursing education is indispensable for developing well-rounded and capable nurses who can adeptly handle the complexities of patient care [ 12 ]. By creating a fun and engaging learning environment, students can be more motivated and inspired to excel in their studies. This benefits the students and enhances the quality of care they can provide for their patients [ 25 ].

The significance of humor and creativity in nursing education is paramount. Integrating these concepts in nursing education is essential for nurturing a new generation of skilled, knowledgeable, compassionate, and resilient nurses. Nevertheless, there appears to be a research gap in this field, particularly in Egypt and the MENA region. This study aimed to bridge this gap by investigating the relationship between humor and creativity among nursing students to understand how humor can foster creativity and enhance nursing practices.

Research hypothesis

Nursing students with higher humor would have higher creativity.

Research design

An observational cross-sectional survey, adhering to STROBE guidelines, was used, and data collection occurred from April 1st to June 30th, 2023.

The study was conducted at the College of Nursing at Mansoura University, which is affiliated with the Ministry of Higher Education in Egypt. The college offers nine undergraduate nursing programs through a credit-hour system.

Participants

The target population for this study was the 2nd-semester students enrolled during the 2022–2023 academic year.

Sample size calculation

The sample size for this study was determined using specific procedures. The population data was based on the total number of registered students in the 2nd semester of 2022–2023 at the College of Nursing, Alexandria University, which was 805. The Office of Undergraduate Nursing Students provided this data. The desired precision and confidence level was set at an absolute error (d) of 5%, a type 1 error (α) of 5%, a z-score of 1.96, and a 95% confidence level, based on previous studies by Goriup et al. (2017) and Barutcu (2017) [ 27 , 28 ]. The formula \( \frac{\left(Z1- a/2\right)*p(1-p)}{d2}\) was used to calculate the required sample size, resulting in a minimum sample size of 238. After considering an unresponsive rate of 10%, the final sample size was adjusted to 265.

Inclusion and exclusion criteria

The study was conducted with 2nd -semester undergraduate students from the College of Nursing at El-Mansoura University during the 2022–2023 academic year. Inclusion in the research was voluntary, and those who chose not to participate were excluded. Furthermore, students with self-reported pre-existing psychiatric conditions who received pharmacological or psychotherapies for such conditions were also excluded.

Sampling and recruitment

A convenient sample of undergraduate students was recruited. The total number of invited students was 291. Sixteen refused to participate, 4 initially accepted, withdrew, and did not complete the questionnaires, and 6 were deemed ineligible. These final 265 participants formed the basis for the subsequent analysis ( Fig.  1 ) .

figure 1

Flow chart of participants’ recruitment process

Study measures

Demographic characteristics data sheet.

The researchers developed it to elicit demographic characteristics of the participants, such as age, gender, marital status, region of residence, living arrangement, recreational activities, family monthly income, and work while studying.

Short scale of creative self (SSCS)

The SSCS evaluates two aspects of creativity: Creative Self-Efficacy (CSE) and Creative Personal Identity (CPI) [ 29 ]. The scale consists of 11 items, with six dedicated to the CSE subscale and five to the CPI subscale. Each item is scored on a 5-point Likert scale, where 1 signifies “definitely not,” and 5 represents “definitely yes.” The total score can range from 11 to 55, with higher scores indicating greater creativity. The CSE subscale scores can range from 6 to 30, and the CPI subscale scores can range from 5 to 25. The internal consistency of the two subscales was further supported by high Cronbach’s alpha values: 0.83 for CSE and 0.89 for CPI.

Multidimensional sense of humor scale (MSHS)

The MSHS is a comprehensive tool for assessing various aspects of humor [ 30 ]. It consists of 24 items that capture four independent dimensions of humor: (i) humor production and creativity, e.g., “Other people tell me that I say funny things.” (ii) coping or adaptive humor, e.g., “Uses of humor help to put me at ease.” (iii) appreciation of humor, e.g., “Humor helps me cope.” and (iv) attitudes toward humor and humorous people. “Calling somebody a “comedian” is a real insult”. The scale is presented as a 5-point Likert scale, ranging from 0 (strongly disagree) to 4 (strongly agree), with a possible total score between 0 and 96, calculated by summing the scores of each factor. The scale demonstrated high internal consistency, as indicated by a high Cronbach’s alpha of 0.91.

Ethical approval

Official permissions for the study were secured from the responsible authorities at the College of Nursing, Mansoura University. Before inclusion in the study, participants had to provide informed consent, which involved signing a document. The study’s purpose was communicated to the participants, emphasizing the anonymity of their responses and the assurance of confidentiality. Detailed instructions were provided on how to respond to the study tools. Utmost care was taken to respect the privacy and confidentiality of the data, which was maintained throughout the study. Students were informed of their right to participate and their freedom to withdraw from the study.

Pilot study and reliability

Prior to the commencement of the main study, a preliminary pilot study was conducted involving 20 nursing students. These students did not participate in the main study. The pilot study confirmed that all the tools used were accurate, Comprehensible, and suitable for the study. The internal consistency of the study measures was evaluated using Cronbach’s Alpha test.

Data collection

After the pilot study participants were excluded, a convenient sample was selected. Trained researchers conducted structured interviews with each participant, collecting necessary data using data collection tools. Each interview, lasting approximately 10–15 min, was conducted in a private setting, such as an empty classroom or clinical lab, to ensure privacy. Informed consent was obtained from each participant, ensuring their anonymity and confidentiality. The interviewers held no authority over the students, and there were no incentives for participation. The students were reassured that their participation was voluntary and that they had the right to withdraw without repercussions. All responses were kept confidential. To ensure the accuracy and completeness of the information, researchers meticulously reviewed the responses to the data collection tool provided by each participant.

Data analysis

Data analysis was performed using IBM SPSS software (version 26.0). A meticulous review and verification were conducted following data entry to ensure accuracy. The distribution normality of quantitative variables was evaluated using Kolmogorov-Smirnov and Shapiro’s tests. Cronbach’s alpha was used to assess the internal consistency of the research instruments, thereby indicating their reliability. The humor and creativity subscales were summarized using means (M), standard deviations (SD), and frequencies or percentages for categorical variables. Pearson’s correlation coefficient measured the strength and direction of the relationship between two normally distributed quantitative variables. A multiple linear regression analysis was carried out to determine the impact of various humor domains on creativity. All results were deemed significant at the 5% ( p  < 0.05).

Table  1 shows that the majority were female (61.51%). The age distribution was even, with 32.83% being 20 or older, 28.68% between 21 and 24 years, and 38.49% being 25 years or more. Most participants were single (93.58%) and lived with their families (74.71%). The participants were almost evenly split between urban (53.20%) and rural (46.80%) residences. Regarding income, 25.66% reported their family income as insufficient, while 51.32% found it somewhat sufficient, and 23.02% considered it sufficient. A significant majority of the students (90.94%) worked while studying. Regarding recreational activities, 70.19% engaged in sports, 33.21% in art and music, 93.96% enjoyed going on trips, 26.04% participated in campus activities, and 50.57% participated in cultural activities.

Table  2 presents the participants’ average scores on the Self-Concept of Creativity Scale (SSCS) and the Multidimensional Sense of Humor Scale (MSHS). The SSCS mean score for the Creative Self-Efficacy subscale was 22.29 (SD = 4.76); for the Creative Personal Identity subscale, it was 19.31 (SD = 2.52). The total mean score for the SSCS was 41.60 (SD = 7.28). Regarding the MSHS, the mean scores were as follows: 21.48 (SD = 2.56) for the Humor Production and Creativity subscale, 14.27 (SD = 2.68) for the Coping or Adaptive Humor subscale, 7.56 (SD = 1.96) for the Appreciation of Humor subscale, and 8.58 (SD = 2.48) for the Attitudes Toward Humor and Humorous People subscale. The total mean score for the MSHS was 51.89 (SD = 9.68).

Table  3 presents the Pearson correlation coefficients (r) between various aspects of humor and creativity among the participants. The Creative Self-Efficacy subscale demonstrated a significant positive correlation with the Humor Production and Creativity subscale ( r  = 0.224, p  < 0.001) and the Appreciation of Humor subscale ( r  = 0.529, p  < 0.05). However, it negatively correlated with the Attitudes Toward Humor and Humorous People subscale ( r =-0.224, p  < 0.05). Similarly, the Creative Personal Identity subscale exhibited significant positive correlations with the Humor Production and Creativity subscale ( r  = 0.265, p  < 0.001) and the Appreciation of Humor subscale ( r  = 0.417, p  < 0.05). It also negatively correlated with the Attitudes Toward Humor and Humorous People subscale ( r =-0.251, p  < 0.05). The total scores of the SSCS displayed significant positive correlations with the Humor Production and Creativity subscale ( r  = 0.254, p  < 0.001), the Coping or Adaptive Humor subscale ( r  = 0.230, p  < 0.05), the Appreciation of Humor subscale ( r  = 0.461, p  < 0.05), and the total of the MSHS ( r  = 0.238, p  < 0.001). However, they had a negative correlation with the Attitudes Toward Humor and Humorous People subscale ( r =-0.343, p  < 0.05).

Table  4 presents a multiple linear regression analysis examining the effect of various aspects of humor on creativity among participants. The model was statistically significant (F = 169.782, p  < 0.001) and explained 16.2% of the variance in creativity (Adjusted R^2 = 0.162). All four humor variables showed significant effects on creativity. Specifically, the Humor Production and Creativity subscale (B = 0.226, Beta = 0.102, p  < 0.001) and the Coping or Adaptive Humor subscale (B = 0.071, Beta = 0.121, p  < 0.001) had positive effects on creativity. However, the Appreciation of Humor subscale (B=-0.100, Beta = 0.075, p  = 0.005) and Attitudes Toward Humor and Humorous People subscale (B=-0.209, Beta = 0.377, p  < 0.001) had negative effects on creativity.

Creativity is vital for nursing education, economic development, and individual well-being. The nursing profession requires creative individuals with researcher roles who have access to knowledge and can produce and use information [ 26 ]. Expanding creativity enables modern nursing applications and greater problem-solving. The current study investigated the creativity of nursing students and the elements that influence it, such as humor.

The present study revealed that nursing students possess moderate creativity, as evaluated through the SSCS, with mean scores of 22.29 and 19.31 for CSE and CPI, respectively, and a total mean of 41.60. These findings were consistent with a cross-sectional study involving 720 medical students, which found that the majority demonstrated moderate creativity. The study identified several factors that can enhance creativity, including problem-based learning, critical thinking, concept mapping, teamwork, and innovative teaching methods [ 31 ]. Another study by Qian et al. (2023) suggested that creative self-efficacy (CSE) impacts an individual’s readiness to experiment with new ideas, effort levels, and resilience when faced with challenges. Those with high CSE will likely possess sufficient psychological capital to withstand uncertainties and difficulties, leading to increased motivation, cognitive resources, and activities to meet contextual demands [ 32 ].

Along the same line, Karwowski (2016) employed a crossover longitudinal and sequential approach to examine the development of CSE and creative personal identity (CPI) beliefs over time. The study involved 976 Polish participants aged between 15 and 60 who responded to the Short Scale of Creative Self. The results indicated that these beliefs remain stable in the short term (six months), but significant changes can be observed after 20 months. The study found evidence of growth in both constructs as individuals transition from adolescence to early adulthood. However, a decrease in CPI was observed in all age groups, except those aged 15 to 24, which showed a significant increase [ 33 ]. Moreover, a focus group study explored the perspectives of medical students, postgraduate medical trainees, and medical specialists on creativity within the medical context. The study concluded that participants perceived creativity as a form of art encompassing thought and action. Creative problem-solving strategies, considered the “creative part” of critical thinking, can enhance students’ critical thinking skills. These strategies encourage students to be open-minded, curious, and reflective and think and conceptualize outside the box. This process fosters the development of their intuition, associative ability, and metaphor usage [ 34 ].

These findings could be related to the fact that in the healthcare industry, nursing students must have the requisite skills and knowledge to tackle real-life scenarios. While indispensable, clinical training can be overwhelming due to its unique challenges. From witnessing the natural progression of death to dealing with highly contagious illnesses in real time and technological advancements, these experiences can be daunting [ 35 ]. The challenges they confront necessitate the application of new concepts and abilities, prompting personal introspection and self-examination. Working with limited resources and alongside individuals with poor clinical skills forces them to learn and grow, thus becoming better prepared to handle real-life situations. Modern teaching methods of “blending learning” require self-learning, and search places a premium on creative thinking, enabling students to become innovative problem solvers.

Our research has uncovered an exciting insight - most participants scored moderate on the humor scale, with a mean score of 51.89. This finding indicates how humor is deeply ingrained in Egyptian society, where using humor to alleviate difficult situations is widely accepted [ 36 ]. Such a cultural disposition aligns with a study conducted by Jiang et al. (2019), which examined the impact of culture on the perception and usage of humor and its mental health benefits. The study found that Easterners view humor less positively than their Western counterparts. They also use humor less often as a coping mechanism, primarily due to this perception. However, despite the cultural differences, Westerners and Easterners show similar patterns in the relationship between their humor and psychological well-being scores [ 37 ]. Numerous studies have shown that incorporating humor into the therapeutic relationship can positively impact the nurse’s mental health and understanding of the patient’s care needs [ 36 , 37 , 38 , 39 , 40 ]. According to Chelly et al. (2022), humor helps nurses alleviate stress and anxiety while humanizing the issue. Though the context in which humor can be used is highly influenced by personal factors, such as age, gender, and personality, its use is strongly recommended. However, it is necessary to use humor cautiously and in appropriate circumstances, as there may be barriers to its use [ 41 ].

Our findings indicated that the total scores of SSCS showed a significant positive correlation with Humor Production and Creativity ( r  = 0.254), Coping or Adaptive Humor ( r  = 0.230), and Appreciation of Humor ( r  = 0.461). However, there was a negative correlation between Attitudes toward Humor and Humorous People ( r =-0.343). Furthermore, the authors performed multiple linear regression analyses to determine the impact of various humor components on nursing students’ creativity. The model was statistically significant, accounting for 16.2% of the variance in creativity (Adjusted R^2 = 0.162). These findings could be linked to humor in educational environments, appreciated for its capacity to create a relaxed atmosphere and improve interpersonal dynamics, demonstrating humor’s diverse roles in various aspects of life. Nursing students employ humor as a coping mechanism to deal with challenges, such as imagining humorous scenarios, sharing jokes, or indulging in amusing conduct. This coping humor fosters creative problem-solving, positive emotions, resilience, and mental well-being [ 11 , 12 , 36 ].

These findings were congruent with another study on 228 psychological counselors aged between 23 and 52 years—of which 130 were female and 98 were male—which found a positively significant correlation between psychological resilience, psychological well-being, and coping humor. Research indicates that a sense of humor can improve physical and psychological health and overall well-being [ 42 ].

Ghayas and Malik (2013) also found that humor predicts creativity and sociability levels in university undergraduates. Moreover, humor’s creation and performance dimensions were strong predictors of creativity. In contrast, the elaboration subscale of creativity significantly predicted humor. The attitude towards humor and humorous people, along with the humor subscale, were the only significant predictors of sociability [ 43 ]. Similarly, Biemans and Huizingh (2023) employed a mixed-methods study design and found that being in a humorous mood improves creativity in specific creative situations. They highlight how research into the impact of humor on creativity and innovation can take new directions [ 44 ]. Moreover, Kocak (2018) studied the influence of various humor types on creativity and the role of university innovation environments in this relationship. The study involved 362 academics from Turkish universities. The findings revealed that aggressive humor negatively correlates with academic creativity while self-enhancing and affiliative humor positively correlate. Self-defeating humor, however, showed no significant link with creativity. The study also found that the innovation climate moderately affects the relationship between humor styles and creativity. These findings highlight the potential of different humor styles to enhance organizational productivity and creativity [ 45 ].

Nursing implications

This study’s findings present several implications for nursing education and practice. The positive correlation between humor and creativity suggests that integrating humor-based activities and creative problem-solving training into the curriculum could enhance students’ creativity. As a valuable tool for stress management, humor could help reduce burnout among students, potentially improving their inventive problem-solving skills. Nursing educators can incorporate relevant humor into their lessons using various forms such as cartoons, spontaneous humor, role-playing, jokes, and funny stories to engage students effectively. Moreover, it could help develop more effective communication strategies, improve patient-nurse relationships, and apply innovative nursing interventions to manage health problems and enhance the overall quality of patient care. Humor can make patients feel more comfortable and open during interactions, leading to better communication and, ultimately, better health outcomes.

Study limitations

This study offers important insights into the connection between humor and creativity in nursing education. However, it has several limitations. The findings are based on a non-probability convenient sampling technique, which may limit their applicability to a broader population. The study’s cross-sectional design prevents the establishment of a causal relationship between humor and creativity. The reliance on self-report measures could introduce social desirability bias. Future research could address these limitations using objective measurement tools, such as observational or peer-rated instruments and probability sampling methods. Longitudinal studies could provide a more nuanced understanding of how the relationship between humor and creativity evolves. Furthermore, exploring personality traits, learned helplessness, academic burnout, self-evaluation, motivation, and cultural influences as covariates with humor and creativity. Further experimental studies on humor-based activities and creative problem-solving training in nursing education to improve student creativity, stress levels, and academic performance. These studies can provide concrete evidence for the benefits of humor and creativity in healthcare settings.

Conclusion and recommendations

Our findings underscored a significant correlation between various facets of humor and creativity. Positive correlations were observed between creative self-efficacy and creative personal identity with different aspects of humor, such as humor production, coping or adaptive humor, and appreciation of humor. Conversely, negative correlations were found with unfavorable attitudes towards humor and humorous individuals. Considering these findings, it is crucial to maintain a comfortable and humorous atmosphere in nursing education settings. Such an environment encourages creative problem-solving skills and can help reduce burnout among nursing students and staff. Therefore, it is recommended that humor be integrated into the educational system and healthcare settings to enhance creativity and overall well-being.

Data availability

The datasets used or analyzed in this study are available from the corresponding author upon reasonable request.

Abbreviations

Kolmogorov-Smirnov

Statistical Package for Social Sciences

Research Ethical Committee

Short Scale of Creative Self

Creative Self-Efficacy

Creative Personal Identity

Multidimensional Sense of Humor Scale

American Association of Colleges of Nursing

McGhie-Anderson RL. Advanced nursing education: critical factors that influence diploma and associate degree nurses to advance. Nurs Educ Perspect. 2017;38(6):E2–6. https://doi.org/10.1097/01.nep.0000000000000226 .

Article   PubMed   Google Scholar  

Park T, Lim C. Design principles for improving emotional affordances in an online learning environment. Asia Pac Educ Rev. 2019;20:53–67. https://doi.org/10.1007/s12564-018-9560-7 .

Article   Google Scholar  

Anagor CR, Lukpata FE, Ikechukwu-Okoroezi JN, Obiora MU. Attitude of nursing students towards work in the clinical learning environment. Int J Stud Nurs. 2021;6(1):54. https://doi.org/10.20849/ijsn.v6i1.855 .

Bolkan S, Griffin DJ, Goodboy AK. Humor in the classroom: the effects of integrated humor on student learning. Communication Educ. 2018;67(2):144–64. https://doi.org/10.1080/03634523.2017.1413199 .

Graham EE. The involvement of a sense of humor in the development of social relationships. Communication Rep. 1995;8(2):158–69. https://doi.org/10.1177/0018726708088999 .

Abu Bakar F. The Use of Humor in Teaching and Learning in Higher Education. 2018. http://hdl.handle.net/10523/8238 .

Martin RA, Ford T. The psychology of humor: an integrative approach. Academic; 2018.

Beck CT. Humor in nursing practice: a phenomenological study. Int J Nurs Stud. 1997;34(5):346–52. https://doi.org/10.1016/s0020-7489(97)00026-6 .

Article   CAS   PubMed   Google Scholar  

Martin RA. Humor. American Psychological Association (2019). https://psycnet.apa.org/doi/10.1037/0000138-019 .

Erdoğdu F, Çakıroğlu Ü. The educational power of humor on student engagement in online learning environments. Res Pract Technol Enhanced Learn. 2021;16(1):1–25.

Google Scholar  

Ali BH, Irshad, Nafisa Iqbal B. Nurse Educ Today. 2023;105837. https://doi.org/10.1016/j.nedt.2023.105837 . Utilization of humor and application of learning theory: Perspective of nursing students.

Haydon G, Reis J, Lynette Bowen. The use of humor in nursing education: an integrative review of research literature. Nurse Educ Today. 2023;105827. https://doi.org/10.1016/j.nedt.2023.105827 .

Liu T, Yu X, Liu M, Wang M, Zhu X, Yang X. A mixed method evaluation of an integrated course in improving critical thinking and creative self-efficacy among nursing students. Nurse Educ Today. 2021;106:105067. https://doi.org/10.1016/j.nedt.2021.105067 .

Liu H, Wang I, Huang D, Hsu D, Han H. Nurturing and enhancing the creativity of nursing students in Taiwan: a quasi-experimental study. J Creative Behav. 2020;54(4):799–814. https://doi.org/10.1002/jocb.407 .

Sawyer RK, Henriksen D. Explaining creativity: the science of human innovation. Oxford University Press; 2024.

Egan A, Maguire R, Christophers L, Rooney B. Developing creativity in higher education for 21st-century learners: a protocol for a scoping review. Int J Educational Res. 2017;82:21–7. https://doi.org/10.1016/j.ijer.2016.12.004 .

Duhamel KV. Bringing us back to our creative senses: fostering creativity in graduate-level nursing education: a literary review. Nurse Educ Today. 2016;45:51–4. https://doi.org/10.1016/j.nedt.2016.06.016 .

Kim SO, Shim MS. Problem-solving ability, self-directed learning ability and confidence of core fundamental nursing skill performance of nursing students. J Korean Public Health Nurs. 2018;32(3):424–37.

Weng RH, Huang CY, Lin TE. Exploring the cross-level impact of market orientation on nursing innovation in hospitals. Health Care Manage Rev. 2013;38(2):125–36. https://doi.org/10.1097/hmr.0b013e31824b1c84 .

Lewis LS. Community College Nursing Students’ Experience of Repeating a Course After Academic Failure. 2016.

Kushner T. What actions can novice nurse practitioners take to develop and maintain therapeutic relationships with adult patients in primary care? 2017.

Silva O, Alves ED, Rodrigues MCS. Creativity in higher education of nursing–from the theoretical concepts to the pedagogical effects. 2014. https://doi.org/10.7184/cuid.2014.40.05 .

Chen CH, Chen HC, Roberts AM. Why humor enhances creativity from theoretical explanations to an empirical humor training program: effective ha-ha helps people to a-ha. Creativity and humor. Elsevier; 2019. pp. 83–108. https://doi.org/10.1016/B978-0-12-813802-1.00004-1 .

Zhou Z, Wu J, Luo H, Guo Y, Tu M, Yu Q, et al. The effect of humor on insight problem-solving. Personality Individual Differences J. 2021;183:111105. https://doi.org/10.1016/j.paid.2021.111105 .

Hayden-Miles M. Humor in clinical nursing education. J Nurs Educ. 2002;41(9):420–4. https://doi.org/10.3928/0148-4834-20020901-11 .

Chauvet S, Hofmeyer A. Humor as a facilitative style in problem-based learning environments for nursing students. Nurse Educ Today. 2007;27(4):286–92. https://doi.org/10.1016/j.nedt.2006.05.008 .

Goriup J, Stričević J, Sruk V. Is education for using humor in nursing needed? (Slovenian case study on sociological and ergonomic aspects of the impact of humor on nursing professionals). Acta Educationis Generalis. 2017;7(3):45–62. https://doi.org/10.1515/atd-2017-0023 .

Barutcu CD. The relationship between problem-solving and creative thinking skills among nursing students. Int J Psychol Educational Stud. 2017;4(2):34–41. https://doi.org/10.17220/ijpes.2017.02.004 .

Karwowski M. Short scale of the creative self. Retrieved from: https://osf.io/j72w5/download . 2011.

Thorson JA, Powell FC, Sarmany-Schuller I, Hampes WP. Psychological health and sense of humor. J Clin Psychol. 1997;53(6):605–19. https://doi.org/10.1002/(sici)1097-4679 . )53:6%3C605::aid-jclp9%3E3.0.co;2-i.

Amiri M, Khosravi A, Chaman R, Sadeghi Z, Raei M. Creativity and its determinants among medical students. J Educ Health Promotion. 2020;9. https://doi.org/10.4103/jehp.jehp_279_20 .

Qian J, Li X, Liu T, Zhang M, Li K. Direct and indirect effects of self-directed learning on creativity in healthcare undergraduates: a chain mediation model of openness to challenge and diversity and creative self-efficacy. Front Psychol. 2023;14:1182692. https://doi.org/10.3389/fpsyg.2023.1182692 .

Article   PubMed   PubMed Central   Google Scholar  

Karwowski M. The dynamics of creative self-concept: changes and reciprocal relations between creative self-efficacy and creative personal identity. Creativity Res J. 2016;28(1):99–104. https://doi.org/10.1080/10400419.2016.1125254 .

Ten Haven A, Pragt E, van Luijk SJ, Dolmans DHJM, van Mook WNKA. Creativity: a viable and valuable competency in medicine? A qualitative exploratory study. Med Teach. 2022;44(10):1158–64. https://doi.org/10.1080/0142159x.2022.2072278 .

Labrague LJ, McEnroe-Petitte DM, Leocadio MC, Van Bogaert P, Cummings GG. Stress and ways of coping among nurse managers: an integrative review. J Clin Nurs. 2018;27(7–8):1346–59.

Jiang T, Li H, Hou Y. Cultural differences in humor perception, usage, and implications. Front Psychol. 2019;10:123. https://doi.org/10.3389/fpsyg.2019.00123 .

Morris R. Egyptians have a perverse sense of humor. AQ-Australian Q. 2006;78(1):19–22.

Ghaffari F, Dehghan-Nayeri N, Shali M. Nurses’ experiences of humor in clinical settings. Med J Islamic Repub Iran J. 2015;29:182.

Åstedt-Kurki P, Liukkonen A. Humor in nursing care. J Adv Nurs. 1994;20(1):183–8. https://doi.org/10.1046/j.1365-2648.1994.20010183.x .

Sousa LMM, Marques-Vieira CMA, Antunes AV, Frade M, de Severino FG, Valentim SPS. Humor intervention in nurse-patient interaction. Revista Brasileira De Enfermagem. 2019;72:1078–85. https://doi.org/10.1590/0034-7167-2018-0609 .

Chelly F, Kacem I, Moussa A, Ghenim A, Krifa I, Methamem F, et al. Healing humor: the use of humor in the nurse-patient relationship. Occup Dis Environ Med. 2022;10(03):217–31. https://doi.org/10.4236/odem.2022.103017 .

Zöhre K, Yağan F. The Mediating Role of Psychological Resilience in the relationship between coping humor and Psychological Well-being. J Theoretical Educational Sci. 2022;15(1):146–68. https://doi.org/10.30831/akukeg.949736 .

Ghayas S, Malik F. Sense of humor as predictor of Creativity Level in University undergraduates. J Behav Sci. 2013;23(2).

Biemans WG, Huizingh EKRE. Why so serious? The effects of humor on creativity and innovation. Creativity Innov Manage. 2023. https://doi.org/10.1111/caim.12587 .

Kocak G. The relationship between humor styles and creativity: a research on academics. Eurasian J Bus Manage. 2018;6(4):44–58. https://doi.org/10.15604/ejbm.2018.06.04.005 .

Download references

Acknowledgements

The authors would like to thank the students who participated in this work.

The Science, Technology, & Innovation Funding Authority (STDF), in cooperation with the Egyptian Knowledge Bank (EKB), provides open-access funding.

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Author information

Authors and affiliations.

Psychiatric and Mental Health Nursing, College of Nursing, Alexandria University, Alexandria, Egypt

Mona Metwally El-Sayed

Psychiatric and Mental Health Nursing, College of Nursing, Mansoura University, Mansoura, Egypt

Eman Sameh AbdElhay & Samah Mohamed Taha

Gerontological Nursing, Faculty of Nursing, Alexandria University, Alexandria, Egypt

Manal Mohammed Hawash

You can also search for this author in PubMed   Google Scholar

Contributions

ME and MH planned and designed the research. ST and EE contributed to the methodology and data analysis. The manuscript was reviewed and approved by the research team.

Corresponding author

Correspondence to Mona Metwally El-Sayed .

Ethics declarations

Ethics approval and consent to participate.

The entire procedure followed the pertinent rules and recommendations of the Declaration of Helsinki ( DoH , 2008). The Research Ethics Committee of El-Mansoura University’s Faculty of Nursing granted the required formal consent and authority to conduct the study ( IRB 00013620/121/3/2023). Participants in the research provided written informed consent.

Consent for publication

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

El-Sayed, M.M., AbdElhay, E.S., Hawash, M.M. et al. The power of laughter: a study on humor and creativity in undergraduate nursing education in Egypt. BMC Nurs 23 , 259 (2024). https://doi.org/10.1186/s12912-024-01913-0

Download citation

Received : 23 January 2024

Accepted : 03 April 2024

Published : 22 April 2024

DOI : https://doi.org/10.1186/s12912-024-01913-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Undergraduate students
  • Nursing education

BMC Nursing

ISSN: 1472-6955

benefits of teaching problem solving

More From Forbes

Want to be heard you must learn to listen.

Forbes Books

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

It's important to listen. You have two ears and only one mouth for a reason.

When we think of leadership, we often think in terms of output. A leader is someone who provides inspiration, teaching, direction, vision, and problem-solving.

But true leaders distinguish themselves on the input side, the ability to take in information, feelings, and opinions from our team members.

To listen, in other words.

Human beings have a powerful need to be heard. We all want to feel valued and recognized for who we are. And when another human being takes the time to listen to us, we give that person our trust, our loyalty, and even our affection.

As a leader, these things are gold. When our patients and team members feel confident we’ve heard them and included them in our thinking, they are vastly more likely to hear what we have to say.

AEW Dynasty 2024 Results, Winners And Grades As Swerve Makes History

A psychologist reveals 8 secret ingredients for manifesting success, xiaomi 14 ultra review: the camera phone to beat, what does it mean to listen.

To listen means to give your full attention to another person—to set your own agenda aside and find out what is important to someone else. This feels like a natural extension of our profession when listening to patients and families but may not be quite so automatic when listening to healthcare teammates.

As physicians, we are natural doers, achievers, producers, solvers, and answerers. Listening can feel like an uncomfortably passive endeavor. But it’s in listening where valuable discoveries and connections are made.

I’ve always liked the saying, “You have two ears and one mouth for a reason.”

Admittedly, listening twice as much as you speak can be challenging in a leadership role. There are massive barriers to listening, not the least of which are distractions in the workplace. In a hospital, there are monitors flashing, alerts going off, and a steady stream of people who want to say hi or get your opinion.

There’s time pressure, too. You may have 25 patients to see and an overstuffed schedule. Then, of course, there’s the constant cellphone assault. For some reason, many of us (not just doctors) feel that when we get a text message, we’re mandated to read it immediately. And we become impatient when anything gets in the way.

Are you able to put all that pressure and distraction aside and make another person your priority for a set period of time?

Spend Time Actually Listening

Even if you can only give two or three minutes to a person, that’s a lot of time—if you spend it actually listening. In fact, when you’re fully present to another human being, time seems to expand, and you can accomplish a great deal in a small number of clock ticks.

And think about this: The few minutes you spend listening to another person isn’t really going to affect your day very much. But it might significantly change someone else’s day. It might even change their week, their month, or their life.

Some of this comes down to psychological size (see my previous post on this) and the outsized impact you have as a physician. Talking to you could be a huge event for a junior team member. The fact that you’re taking the time to listen to them sends a very powerful message, “I may not have a lot of time, but you are important to me.”

If a talk is going to take longer than a couple of minutes, you can make that assessment and say, “This sounds like something we want to spend more time on, so let’s figure out a good time to get back together.”

Then, the person knows you’re not brushing them off, but you’re invested enough to want to give their issue the time it deserves. You may even find out that your previously urgent agenda now takes a back seat because the present person’s concern is more urgent.

But you’ll never know if you deflect them with a hasty, “Hey, talk to me later.”

Leading starts with listening.

Leon E. Moores, MD, DSc, FACS

  • Editorial Standards
  • Reprints & Permissions

IMAGES

  1. How to Teach Problem-Solving to Kids (by age)

    benefits of teaching problem solving

  2. problem solving as a teaching method

    benefits of teaching problem solving

  3. Teach Problem-Solving for Kids Step-by-Step

    benefits of teaching problem solving

  4. 5 Thinking Skills of Effective Teachers

    benefits of teaching problem solving

  5. Problem Solving Activities: 7 Strategies

    benefits of teaching problem solving

  6. why is problem solving important in learning

    benefits of teaching problem solving

VIDEO

  1. TEACHING PROBLEM SOLVING IN THE POOL!

  2. "Problem-Solving Skills Made Fun: A Parent's Guide to Teach Kids"

  3. 5 Important Insights for Supporting Children's Emotional Growth

  4. वेन आरेख||Venn Diagrams #uppolice #reasoning

  5. Routines to Jump-Start Problem Solving

  6. "Empowering Kids to Bounce Back from Anger and Disappointment"

COMMENTS

  1. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition ...

  2. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  3. 5 Advantages and Disadvantages of Problem-Based ...

    Advantages of Problem-Based Learning. 1. Development of Long-Term Knowledge Retention. Students who participate in problem-based learning activities can improve their abilities to retain and recall information, according to a literature review of studies about the pedagogy.. The literature review states "elaboration of knowledge at the time of learning" -- by sharing facts and ideas ...

  4. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  5. Benefits of Problem-Solving in the K-12 Classroom

    Benefits of Problem-Solving in the K-12 Classroom. From solving complex algebra problems to investigating scientific theories, to making inferences about written texts, problem-solving is central to every subject explored in school. Even beyond the classroom, problem-solving is ranked among the most important skills for students to demonstrate ...

  6. Teaching problem solving

    Working on solutions. In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to: identify the general model or procedure they have in mind for solving the problem. set sub-goals for solving the problem. identify necessary operations and steps.

  7. Problem-Based Learning (PBL)

    Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and ...

  8. Problem Solving in STEM

    Problem Solving in STEM. Solving problems is a key component of many science, math, and engineering classes. If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer ...

  9. Benefits of Teaching through Problem Solving

    ent concepts. Thus, understanding enhances problem solving. A problem is, by definition, a situation that causes disequilib-rium and perplexity. A primary tenet of teaching through problem solving is that individuals confronted with honest-to-goodness problems are forced into a state of needing to connect what they know with the problem at hand.

  10. Problem-Based Learning: Benefits, Challenges, and the Way Forward

    Problem-based learning (PBL) is a student-centered approach that teachers use. to promote students' critical thinking or analytical skills to solve real-life or. open-ended problems in a group ...

  11. Problems, Problem Solving, and Education: An Inquiry into "Convention

    In turn, this translates into the present social and political organization of our culture, problem-solving heuristics, and academic curriculums. As a deeply rooted psychological mindset and way to frame problems, convention serves as an existential coping mechanism to avoid examination of self and culture, actual problems, and a way to reject ...

  12. Importance of Problem Solving Skills in your Child

    This will help develop your child's independence, allowing for them to grow into confident, responsible adults. Another importance of problem-solving skills is its impact on relationships. Whether they be friendships, family, or business relationships, poor problem solving skills may result in relationships breaking apart.

  13. The process of implementing problem-based learning in a teacher

    PBL has benefits for learning outcomes and the ... Citation 2017). I observed that the higher the students' learning engagement and problem-solving performance, the higher their professional knowledge in the course (Rr_20181224). ... & Shi, J. N. (2015). A cross-cultural perspective to creativity in engineering education in problem-based ...

  14. Elementary teachers' experience of engaging with Teaching Through

    Teaching Through Problem Solving (TTP) Teaching Through Problem Solving (TTP) is considered a powerful means of promoting mathematical understanding as a by-product of solving problems, where the teacher presents students with a specially designed problem that targets certain mathematics content (Stacey, 2018; Takahashi et al., 2013).The lesson implementation starts with the teacher presenting ...

  15. Teaching Mathematics Through Problem Solving

    Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...

  16. Problem Solving Resources

    Problem-solving is the ability to identify and solve problems by applying appropriate skills systematically. Problem-solving is a process—an ongoing activity in which we take what we know to discover what we don't know. It involves overcoming obstacles by generating hypo-theses, testing those predictions, and arriving at satisfactory solutions.

  17. Real-world and active

    Key benefits. By introducing problem-based learning to secondary education we can foster analytical thinking skills in our students. The key benefit of problem-based learning is that it develops students who are able to collaborate, solve problems, think clearly and connect prior knowledge to a problem. Don Margetson, quoted in Hildebrand ...

  18. The effectiveness of collaborative problem solving in promoting

    The findings show that (1) collaborative problem solving is an effective teaching approach to foster students' critical thinking, with a significant overall effect size ...

  19. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  20. Why is Problem Solving Important in Child Development?

    Problem solving is important in child development because confident, capable children usually grow into confident, capable adults. <. If students practice problem solving consistently, they can develop greater situational and social awareness. Additionally, they learn to manage time and develop patience. As students mature, problems they face ...

  21. Why teach problem solving?

    under two headings: benefits of problem solving, and difficulties of teaching problem solving. Benefits of problem solving. Problem solving is the process part of mathematics that has often been overlooked in the past in favour of other skills (see What is problem solving?). But there are other reasons for it to be included in your mathematics ...

  22. Learning to Teach Mathematics Through Problem Solving

    Teaching and learning mathematics through problem solving supports learners' development of deep and conceptual understandings (Inoue et al., 2019 ), and is regarded as an effective way of catering for diversity (Hunter et al., 2018 ). While the importance and challenge of mathematical problem solving in school classrooms is not questioned ...

  23. What is problem solving and why is it important

    Problem-solving enables us to identify and exploit opportunities in the environment and exert (some level of) control over the future. Problem solving skills and the problem-solving process are a critical part of daily life both as individuals and organizations. Developing and refining these skills through training, practice and learning can ...

  24. Benefits of Problem Solving

    Problem solving develops mathematical power. It gives students the tools to apply their mathematical knowledge to solve hypothetical and real world problems. Problem solving is enjoyable. It allows students to work at their own pace and make decisions about the way they explore the problem. Because the focus is not limited to a specific answer ...

  25. What is a Cause and Effect Diagram? Definition, Examples, Benefits, and

    The Cause and Effect Diagram is a versatile tool that can be used in various problem-solving and improvement initiatives, including quality management, process improvement, root cause analysis, and project management. It encourages collaboration, brainstorming, and structured analysis, enabling teams to gain deeper insights into complex ...

  26. The power of laughter: a study on humor and creativity in undergraduate

    Creativity in nursing education is crucial for developing practical problem-solving skills, and humor is a valuable tool for stress management and fostering a positive learning environment. This study explored the relationship between creativity and humor among nursing students. A cross-sectional survey was conducted with 265 convenient undergraduate nursing students aged 20 to 25.

  27. Want to Be Heard? You Must Learn to Listen

    A leader is someone who provides inspiration, teaching, direction, vision, and problem-solving. But true leaders distinguish themselves on the input side, the ability to take in information ...