A-Level AQA Psychology Questions by Topic

Filter by paper, core content, 1. social influence, 3. attachment, 4 . psychopathology, 5 . approaches in psychology, 6. biopsychology, 7 . research methods, 8. issues and debates in psychology, 9. relationships, 11. cognition and development, 12. schizophrenia, 13. eating behaviour, 15. aggression, 16. forensic psychology, 17. addiction.

Providing a study guide and revision resources for students and psychology teaching resources for teachers.

Aims And Hypotheses, Directional And Non-Directional

March 7, 2021 - paper 2 psychology in context | research methods.

  • Back to Paper 2 - Research Methods

In Psychology, hypotheses are predictions made by the researcher about the outcome of a study. The research can chose to make a specific prediction about what they feel will happen in their research (a directional hypothesis) or they can make a ‘general,’ ‘less specific’ prediction about the outcome of their research (a non-directional hypothesis). The type of prediction that a researcher makes is usually dependent on whether or not any previous research has also investigated their research aim.

Variables Recap:

The  independent variable  (IV)  is the variable that psychologists  manipulate/change  to see if changing this variable has an effect on the  depen dent variable  (DV).

The  dependent variable (DV)  is the variable that the psychologists  measures  (to see if the IV has had an effect).

It is important that the only variable that is changed in research is the  independent variable (IV),   all other variables have to be kept constant across the control condition and the experimental conditions. Only then will researchers be able to observe the true effects of  just  the independent variable (IV) on the dependent variable (DV).

Research/Experimental Aim(S):

Aim

An aim is a clear and precise statement of the purpose of the study. It is a statement of why a research study is taking place. This should include what is being studied and what the study is trying to achieve. (e.g. “This study aims to investigate the effects of alcohol on reaction times”.

It is important that aims created in research are realistic and ethical.

Hypotheses:

This is a testable statement that predicts what the researcher expects to happen in their research. The research study itself is therefore a means of testing whether or not the hypothesis is supported by the findings. If the findings do support the hypothesis then the hypothesis can be retained (i.e., accepted), but if not, then it must be rejected.

Three Different Hypotheses:

Bitcoin-Price-Prediction-300x201

We're not around right now. But you can send us an email and we'll get back to you, asap.

Start typing and press Enter to search

Cookie Policy - Terms and Conditions - Privacy Policy

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis exam questions psychology

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis exam questions psychology

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

AQA A-Level Psychology Past Papers With Answers

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

AQA A-Level Psychology (7182) and AS-Level Psychology (7181) past exam papers and marking schemes. The past papers are free to download for you to use as practice for your exams.

November 2021 (Labelled as June 2021)

  • Download Past Paper : A-Level (7182)
  • Download Mark Scheme : A-Level (7182)

November 2020 (Labelled as June 2020)

  • Download Past Paper : AS (7181)
  • Download Mark Scheme : AS (7181)
  • Download Past Paper: A-Level (7182)
  • Download Past Paper: AS (7181)
  • Download Mark Scheme: A-Level (7182)
  • Download Past Paper
  • Download Mark Scheme

Print Friendly, PDF & Email

hypothesis exam questions psychology

Final dates! Join the tutor2u subject teams in London for a day of exam technique and revision at the cinema. Learn more →

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

  • Study Notes

Aims and Hypotheses

Last updated 22 Mar 2021

  • Share on Facebook
  • Share on Twitter
  • Share by Email

Observations of events or behaviour in our surroundings provoke questions as to why they occur. In turn, one or multiple theories might attempt to explain a phenomenon, and investigations are consequently conducted to test them. One observation could be that athletes tend to perform better when they have a training partner, and a theory might propose that this is because athletes are more motivated with peers around them.

The aim of an investigation, driven by a theory to explain a given observation, states the intent of the study in general terms. Continuing the above example, the consequent aim might be “to investigate the effect of having a training partner on athletes’ motivation levels”.

The theory attempting to explain an observation will help to inform hypotheses - predictions of an investigation’s outcome that make specific reference to the independent variables (IVs) manipulated and dependent variables (DVs) measured by the researchers.

There are two types of hypothesis:

  • - H 1 – Research hypothesis
  • - H 0 – Null hypothesis

H 1 – The Research Hypothesis

This predicts a statistically significant effect of an IV on a DV (i.e. an experiment), or a significant relationship between variables (i.e. a correlation study), e.g.

  • In an experiment: “Athletes who have a training partner are likely to score higher on a questionnaire measuring motivation levels than athletes who train alone.”
  • In a correlation study: ‘There will be a significant positive correlation between athletes’ motivation questionnaire scores and the number of partners athletes train with.”

The research hypothesis will be directional (one-tailed) if theory or existing evidence argues a particular ‘direction’ of the predicted results, as demonstrated in the two hypothesis examples above.

Non-directional (two-tailed) research hypotheses do not predict a direction, so here would simply predict “a significant difference” between questionnaire scores in athletes who train alone and with a training partner (in an experiment), or “a significant relationship” between questionnaire scores and number of training partners (in a correlation study).

H 0 – The Null Hypothesis

This predicts that a statistically significant effect or relationship will not be found, e.g.

  • In an experiment: “There will be no significant difference in motivation questionnaire scores between athletes who train with and without a training partner.”
  • In a correlation study: “There will be no significant relationship between motivation questionnaire scores and the number of partners athletes train with.”

When the investigation concludes, analysis of results will suggest that either the research hypothesis or null hypothesis can be retained, with the other rejected. Ultimately this will either provide evidence to support of refute the theory driving a hypothesis, and may lead to further research in the field.

You might also like

A level psychology topic quiz - research methods.

Quizzes & Activities

Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

Topic Videos

Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)

Exam Support

Our subjects

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

Logo for Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Overview of the Scientific Method

Learning Objectives

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.3  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

hypothesis exam questions psychology

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation.  Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

A coherent explanation or interpretation of one or more phenomena.

A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.

A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.

The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

6 Hypothesis Examples in Psychology

The hypothesis is one of the most important steps of psychological research. Hypothesis refers to an assumption or the temporary statement made by the researcher before the execution of the experiment, regarding the possible outcome of that experiment. A hypothesis can be tested through various scientific and statistical tools. It is a logical guess based on previous knowledge and investigations related to the problem under investigation. In this article, we’ll learn about the significance of the hypothesis, the sources of the hypothesis, and the various examples of the hypothesis.

Sources of Hypothesis

The formulation of a good hypothesis is not an easy task. One needs to take care of the various crucial steps to get an accurate hypothesis. The hypothesis formulation demands both the creativity of the researcher and his/her years of experience. The researcher needs to use critical thinking to avoid committing any errors such as choosing the wrong hypothesis. Although the hypothesis is considered the first step before further investigations such as data collection for the experiment, the hypothesis formulation also requires some amount of data collection. The data collection for the hypothesis formulation refers to the review of literature related to the concerned topic, and understanding of the previous research on the related topic. Following are some of the main sources of the hypothesis that may help the researcher to formulate a good hypothesis.

  • Reviewing the similar studies and literature related to a similar problem.
  • Examining the available data concerned with the problem.
  • Discussing the problem with the colleagues, or the professional researchers about the problem under investigation.
  • Thorough research and investigation by conducting field interviews or surveys on the people that are directly concerned with the problem under investigation.
  • Sometimes ‘institution’ of the well known and experienced researcher is also considered as a good source of the hypothesis formulation.

Real Life Hypothesis Examples

1. null hypothesis and alternative hypothesis examples.

Every research problem-solving procedure begins with the formulation of the null hypothesis and the alternative hypothesis. The alternative hypothesis assumes the existence of the relationship between the variables under study, while the null hypothesis denies the relationship between the variables under study. Following are examples of the null hypothesis and the alternative hypothesis based on the research problem.

Research Problem: What is the benefit of eating an apple daily on your health?

Alternative Hypothesis: Eating an apple daily reduces the chances of visiting the doctor.

Null Hypothesis : Eating an apple daily does not impact the frequency of visiting the doctor.

Research Problem: What is the impact of spending a lot of time on mobiles on the attention span of teenagers.

Alternative Problem: Spending time on the mobiles and attention span have a negative correlation.

Null Hypothesis: There does not exist any correlation between the use of mobile by teenagers on their attention span.

Research Problem: What is the impact of providing flexible working hours to the employees on the job satisfaction level.

Alternative Hypothesis : Employees who get the option of flexible working hours have better job satisfaction than the employees who don’t get the option of flexible working hours.

Null Hypothesis: There is no association between providing flexible working hours and job satisfaction.

2. Simple Hypothesis Examples

The hypothesis that includes only one independent variable (predictor variable) and one dependent variable (outcome variable) is termed the simple hypothesis. For example, the children are more likely to get clinical depression if their parents had also suffered from the clinical depression. Here, the independent variable is the parents suffering from clinical depression and the dependent or the outcome variable is the clinical depression observed in their child/children. Other examples of the simple hypothesis are given below,

  • If the management provides the official snack breaks to the employees, the employees are less likely to take the off-site breaks. Here, providing snack breaks is the independent variable and the employees are less likely to take the off-site break is the dependent variable.

3. Complex Hypothesis Examples

If the hypothesis includes more than one independent (predictor variable) or more than one dependent variable (outcome variable) it is known as the complex hypothesis. For example, clinical depression in children is associated with a family clinical depression history and a stressful and hectic lifestyle. In this case, there are two independent variables, i.e., family history of clinical depression and hectic and stressful lifestyle, and one dependent variable, i.e., clinical depression. Following are some more examples of the complex hypothesis,

4. Logical Hypothesis Examples

If there are not many pieces of evidence and studies related to the concerned problem, then the researcher can take the help of the general logic to formulate the hypothesis. The logical hypothesis is proved true through various logic. For example, if the researcher wants to prove that the animal needs water for its survival, then this can be logically verified through the logic that ‘living beings can not survive without the water.’ Following are some more examples of logical hypotheses,

  • Tia is not good at maths, hence she will not choose the accounting sector as her career.
  • If there is a correlation between skin cancer and ultraviolet rays, then the people who are more exposed to the ultraviolet rays are more prone to skin cancer.
  • The beings belonging to the different planets can not breathe in the earth’s atmosphere.
  • The creatures living in the sea use anaerobic respiration as those living outside the sea use aerobic respiration.

5. Empirical Hypothesis Examples

The empirical hypothesis comes into existence when the statement is being tested by conducting various experiments. This hypothesis is not just an idea or notion, instead, it refers to the statement that undergoes various trials and errors, and various extraneous variables can impact the result. The trials and errors provide a set of results that can be testable over time. Following are the examples of the empirical hypothesis,

  • The hungry cat will quickly reach the endpoint through the maze, if food is placed at the endpoint then the cat is not hungry.
  • The people who consume vitamin c have more glowing skin than the people who consume vitamin E.
  • Hair growth is faster after the consumption of Vitamin E than vitamin K.
  • Plants will grow faster with fertilizer X than with fertilizer Y.

6. Statistical Hypothesis Examples

The statements that can be proven true by using the various statistical tools are considered the statistical hypothesis. The researcher uses statistical data about an area or the group in the analysis of the statistical hypothesis. For example, if you study the IQ level of the women belonging to nation X, it would be practically impossible to measure the IQ level of each woman belonging to nation X. Here, statistical methods come to the rescue. The researcher can choose the sample population, i.e., women belonging to the different states or provinces of the nation X, and conduct the statistical tests on this sample population to get the average IQ of the women belonging to the nation X. Following are the examples of the statistical hypothesis.

  • 30 per cent of the women belonging to the nation X are working.
  • 50 per cent of the people living in the savannah are above the age of 70 years.
  • 45 per cent of the poor people in the United States are uneducated.

Significance of Hypothesis

A hypothesis is very crucial in experimental research as it aims to predict any particular outcome of the experiment. Hypothesis plays an important role in guiding the researchers to focus on the concerned area of research only. However, the hypothesis is not required by all researchers. The type of research that seeks for finding facts, i.e., historical research, does not need the formulation of the hypothesis. In the historical research, the researchers look for the pieces of evidence related to the human life, the history of a particular area, or the occurrence of any event, this means that the researcher does not have a strong basis to make an assumption in these types of researches, hence hypothesis is not needed in this case. As stated by Hillway (1964)

When fact-finding alone is the aim of the study, a hypothesis is not required.”

The hypothesis may not be an important part of the descriptive or historical studies, but it is a crucial part for the experimental researchers. Following are some of the points that show the importance of formulating a hypothesis before conducting the experiment.

  • Hypothesis provides a tentative statement about the outcome of the experiment that can be validated and tested. It helps the researcher to directly focus on the problem under investigation by collecting the relevant data according to the variables mentioned in the hypothesis.
  • Hypothesis facilitates a direction to the experimental research. It helps the researcher in analysing what is relevant for the study and what’s not. It prevents the researcher’s time as he does not need to waste time on reviewing the irrelevant research and literature, and also prevents the researcher from collecting the irrelevant data.
  • Hypothesis helps the researcher in choosing the appropriate sample, statistical tests to conduct, variables to be studied and the research methodology. The hypothesis also helps the study from being generalised as it focuses on the limited and exact problem under investigation.
  • Hypothesis act as a framework for deducing the outcomes of the experiment. The researcher can easily test the different hypotheses for understanding the interaction among the various variables involved in the study. On this basis of the results obtained from the testing of various hypotheses, the researcher can formulate the final meaningful report.

Related Posts

Psychology: Definition, Types, Perspectives

Psychology: Definition, Types, Perspectives

7 Real Life Examples Of Deontology

7 Real Life Examples Of Deontology

18 Bias Examples in Real Life

18 Bias Examples in Real Life

8 Placebo Effect Examples in Real Life

8 Placebo Effect Examples in Real Life

5 Everyday Life Examples Of Schemas

5 Everyday Life Examples Of Schemas

8 Bystander Effect Examples in Real Life

8 Bystander Effect Examples in Real Life

Add comment cancel reply.

IMAGES

  1. Quiz & Worksheet

    hypothesis exam questions psychology

  2. The Scientific Method

    hypothesis exam questions psychology

  3. How to Write a Strong Hypothesis in 6 Simple Steps

    hypothesis exam questions psychology

  4. Best Example of How to Write a Hypothesis 2024

    hypothesis exam questions psychology

  5. PPT

    hypothesis exam questions psychology

  6. AQA A-level Psychology Hypothesis Writing Frame

    hypothesis exam questions psychology

VIDEO

  1. Hypothesis Testing

  2. Unit-2 Understanding Basics of Research- Types of Variables, Hypothesis-NET/JRF Psychology

  3. Hypothesis Testing in Psychological Research

  4. What is the F-test in Hypothesis Testing

  5. Research Methods Q2: Hypothesis Writing

  6. YouTube psychology question 🙀⁉️#youtubeshorts #shorts #youtube #education #shortsfeed #shortvideo

COMMENTS

  1. A-Level AQA Psychology Questions by Topic

    15. Aggression. 16. Forensic Psychology. 17. Addiction. A-Level Psychology past paper questions by topic for AQA. Also offering past papers and videos for Edexcel and OCR.

  2. Quiz & Worksheet

    Skills Practiced. This quiz and worksheet allow students to test the following skills: Reading comprehension - ensure that you draw the most important information from the related hypotheses ...

  3. PSY 111 (Exam 1)

    The cognitive revolution created an impetus for psychologist to focus their attention on better understanding ______________. a. The mind and mental process that underlie behavior. b. Genetics and the evolutionary adaptions that underline behavior. c. Emotions and cultural norms that underline responses. d.

  4. Research Hypothesis In Psychology: Types, & Examples

    Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  5. A Level Psychology Past Papers & Questions by Topic

    A Level Psychology. Our extensive collection of resources is the perfect tool for students aiming to ace their exams and for teachers seeking reliable resources to support their students' learning journey. Here, you'll find an array of revision notes, topic questions, fully explained model answers, past exam papers and more, meticulously ...

  6. AQA psychology a level

    What is a hypothesis? is a testable statement of what the researchers predict will be the outcome of the study. This usually involves proposing a possible relationship between two variables: the independent variable (what the researcher changes) and the dependent variable (what the research measures). alternative hypothesis.

  7. PDF Chapter 4 Developing Research Questions: Hypotheses and Variables

    For those that do have a hypothesis, the hypothesis should derive logically from previous findings or the predictions of a particular theory. Hypotheses should not be based simply on what the student believes should happen. A clear rationale is necessary. An examination of publications by student researchers provides several examples of hypotheses.

  8. Aims And Hypotheses, Directional And Non-Directional

    (3) A Null Hypothesis: states that the IV will have no significant effect on the DV, for example, 'eating smarties will have no effect in an individuals dancing ability.' Exam Tip: One of the questions that you may get asked in the exam is 'when would a psychologist decide to use a directional hypothesis?' In general, psychologists use a directional hypothesis when there has been ...

  9. 7.2.2 Hypothesis

    Her passion (apart from Psychology of course) is roller skating and when she is not working (or watching 'Coronation Street') she can be found busting some impressive moves on her local roller rink. Revision notes on 7.2.2 Hypothesis for the AQA A Level Psychology syllabus, written by the Psychology experts at Save My Exams.

  10. Hypothesis

    The hypothesis should always contain the independent variable (IV) and the dependent variable (DV). A hypothesis can be directional (one-tailed) or non-directional (two-tailed). ... MCQ Revision Test 1 for AQA A Level Psychology ... Exam Support. Example Answer for Question 14 Paper 2: AS Psychology, June 2017 (AQA) Exam Support. A Level ...

  11. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  12. PDF Task 4

    A hypothesis is a testable statement predicted by a psychologist based on a set of previous observations and/or theories. The wording should allow a precise test to be made to see if the prediction is correct. Hypothesis testing is one of the key features of science.

  13. AQA A-Level Psychology Past Papers With Answers

    AQA A-Level Psychology (7182) and AS-Level Psychology (7181) past exam papers and marking schemes. The past papers are free to download for you to use as practice for your exams. Paper 1: Introductory Topics. Paper 2: Psychology in Context. Paper 3: Issues and Options.

  14. Aims and Hypotheses

    Aims and Hypotheses. Observations of events or behaviour in our surroundings provoke questions as to why they occur. In turn, one or multiple theories might attempt to explain a phenomenon, and investigations are consequently conducted to test them. One observation could be that athletes tend to perform better when they have a training partner ...

  15. Psychology Exam 1 Practice questions Flashcards

    Study with Quizlet and memorize flashcards containing terms like A hypothesis is a(n): a. observable relationship between specific independent and dependent variables b. testable prediction that gives direction to research c. set of principles that organizes and explains newly discovered facts d. unprovable assumption about the unobservable processes that underlie psychological functioning ...

  16. Developing a Hypothesis

    The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with ...

  17. PDF AQA Psychology A-level Topic 7: Research Methods

    The usual level of significant in psychology is 0.05. Therefore the p value is usually equal to or less than 0.05 (5%) which means that the probability of the difference in the study's findings being due to chance is 5% or less so researchers have a 95% confidence level in their results.

  18. Quiz & Worksheet

    The quiz will help you practice the following skills: Reading comprehension - ensure that you draw the most important information from the related research and null hypotheses lesson. Making ...

  19. Research questions and hypotheses.

    In this chapter, we examine the principal types of research questions or problems, give examples of each, and review the design expectations that each type of question establishes. Then we address the complex matter of causation and raise issues that must be resolved whenever the research question involves a causal relationship. Finally, we discuss the importance of defining the terms involved ...

  20. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  21. 6 Hypothesis Examples in Psychology

    The people who consume vitamin c have more glowing skin than the people who consume vitamin E. Hair growth is faster after the consumption of Vitamin E than vitamin K. Plants will grow faster with fertilizer X than with fertilizer Y. 6. Statistical Hypothesis Examples.

  22. GCSE Psychology Past Papers & Questions by Topic

    GCSE Psychology. Our extensive collection of resources is the perfect tool for students aiming to ace their exams and for teachers seeking reliable resources to support their students' learning journey. Here, you'll find an array of revision notes, topic questions, fully explained model answers, past exam papers and more, meticulously organized ...

  23. Psychology Final Exam: Practice Questions Flashcards

    Psychology Final Exam: Practice Questions. Stacy suggests that because children are more impulsive than adults, they will have more difficult controlling their anger. Stacy's prediction regarding anger management is an example of a (n) ____________. Click the card to flip 👆. Hypothesis.