VHDL Logical Operators and Signal Assignments for Combinational Logic

In this post, we discuss the VHDL logical operators, when-else statements , with-select statements and instantiation . These basic techniques allow us to model simple digital circuits.

In a previous post in this series, we looked at the way we use the VHDL entity, architecture and library keywords. These are important concepts which provide structure to our code and allow us to define the inputs and outputs of a component.

However, we can't do anything more than define inputs and outputs using this technique. In order to model digital circuits in VHDL, we need to take a closer look at the syntax of the language.

There are two main classes of digital circuit we can model in VHDL – combinational and sequential .

Combinational logic is the simplest of the two, consisting primarily of basic logic gates , such as ANDs, ORs and NOTs. When the circuit input changes, the output changes almost immediately (there is a small delay as signals propagate through the circuit).

Sequential circuits use a clock and require storage elements such as flip flops . As a result, changes in the output are synchronised to the circuit clock and are not immediate. We talk more specifically about modelling combinational logic in this post, whilst sequential logic is discussed in the next post.

Combinational Logic

The simplest elements to model in VHDL are the basic logic gates – AND, OR, NOR, NAND, NOT and XOR.

Each of these type of gates has a corresponding operator which implements their functionality. Collectively, these are known as logical operators in VHDL.

To demonstrate this concept, let us consider a simple two input AND gate such as that shown below.

The VHDL code shown below uses one of the logical operators to implement this basic circuit.

Although this code is simple, there are a couple of important concepts to consider. The first of these is the VHDL assignment operator (<=) which must be used for all signals. This is roughly equivalent to the = operator in most other programming languages.

In addition to signals, we can also define variables which we use inside of processes. In this case, we would have to use a different assignment operator (:=).

It is not important to understand variables in any detail to model combinational logic but we talk about them in the post on the VHDL process block .

The type of signal used is another important consideration. We talked about the most basic and common VHDL data types in a previous post.

As they represent some quantity or number, types such as real, time or integer are known as scalar types. We can't use the VHDL logical operators with these types and we most commonly use them with std_logic or std_logic_vectors.

Despite these considerations, this code example demonstrates how simple it is to model basic logic gates.

We can change the functionality of this circuit by replacing the AND operator with one of the other VHDL logical operators.

As an example, the VHDL code below models a three input XOR gate.

The NOT operator is slightly different to the other VHDL logical operators as it only has one input. The code snippet below shows the basic syntax for a NOT gate.

  • Mixing VHDL Logical Operators

Combinational logic circuits almost always feature more than one type of gate. As a result of this, VHDL allows us to mix logical operators in order to create models of more complex circuits.

To demonstrate this concept, let’s consider a circuit featuring an AND gate and an OR gate. The circuit diagram below shows this circuit.

The code below shows the implementation of this circuit using VHDL.

This code should be easy to understand as it makes use of the logical operators we have already talked about. However, it is important to use brackets when modelling circuits with multiple logic gates, as shown in the above example. Not only does this ensure that the design works as intended, it also makes the intention of the code easier to understand.

  • Reduction Functions

We can also use the logical operators on vector types in order to reduce them to a single bit. This is a useful feature as we can determine when all the bits in a vector are either 1 or 0.

We commonly do this for counters where we may want to know when the count reaches its maximum or minimum value.

The logical reduction functions were only introduced in VHDL-2008. Therefore, we can not use the logical operators to reduce vector types to a single bit when working with earlier standards.

The code snippet below shows the most common use cases for the VHDL reduction functions.

Mulitplexors in VHDL

In addition to logic gates, we often use multiplexors (mux for short) in combinational digital circuits. In VHDL, there are two different concurrent statements which we can use to model a mux.

The VHDL with select statement, also commonly referred to as selected signal assignment, is one of these constructs.

The other method we can use to concurrently model a mux is the VHDL when else statement.

In addition to this, we can also use a case statement to model a mux in VHDL . However, we talk about this in more detail in a later post as this method also requires us to have an understanding of the VHDL process block .

Let's look at the VHDL concurrent statements we can use to model a mux in more detail.

VHDL With Select Statement

When we use the with select statement in a VHDL design, we can assign different values to a signal based on the value of some other signal in our design.

The with select statement is probably the most intuitive way of modelling a mux in VHDL.

The code snippet below shows the basic syntax for the with select statement in VHDL.

When we use the VHDL with select statement, the <mux_out> field is assigned data based on the value of the <address> field.

When the <address> field is equal to <address1> then the <mux_out> signal is assigned to <a>, for example.

We use the the others clause at the end of the statement to capture instance when the address is a value other than those explicitly listed.

We can exclude the others clause if we explicitly list all of the possible input combinations.

  • With Select Mux Example

Let’s consider a simple four to one multiplexer to give a practical example of the with select statement. The output Q is set to one of the four inputs (A,B, C or D) depending on the value of the addr input signal.

The circuit diagram below shows this circuit.

This circuit is simple to implement using the VHDL with select statement, as shown in the code snippet below.

VHDL When Else Statements

We use the when statement in VHDL to assign different values to a signal based on boolean expressions .

In this case, we actually write a different expression for each of the values which could be assigned to a signal. When one of these conditions evaluates as true, the signal is assigned the value associated with this condition.

The code snippet below shows the basic syntax for the VHDL when else statement.

When we use the when else statement in VHDL, the boolean expression is written after the when keyword. If this condition evaluates as true, then the <mux_out> field is assigned to the value stated before the relevant when keyword.

For example, if the <address> field in the above example is equal to <address1> then the value of <a> is assigned to <mux_out>.

When this condition evaluates as false, the next condition in the sequence is evaluated.

We use the else keyword to separate the different conditions and assignments in our code.

The final else statement captures the instances when the address is a value other than those explicitly listed. We only use this if we haven't explicitly listed all possible combinations of the <address> field.

  • When Else Mux Example

Let’s consider the simple four to one multiplexer again in order to give a practical example of the when else statement in VHDL. The output Q is set to one of the four inputs (A,B, C or D) based on the value of the addr signal. This is exactly the same as the previous example we used for the with select statement.

The VHDL code shown below implements this circuit using the when else statement.

  • Comparison of Mux Modelling Techniques in VHDL

When we write VHDL code, the with select and when else statements perform the same function. In addition, we will get the same synthesis results from both statements in almost all cases.

In a purely technical sense, there is no major advantage to using one over the other. The choice of which one to use is often a purely stylistic choice.

When we use the with select statement, we can only use a single signal to determine which data will get assigned.

This is in contrast to the when else statements which can also include logical descriptors.

This means we can often write more succinct VHDL code by using the when else statement. This is especially true when we need to use a logic circuit to drive the address bits.

Let's consider the circuit shown below as an example.

To model this using a using a with select statement in VHDL, we would need to write code which specifically models the AND gate.

We must then include the output of this code in the with select statement which models the multiplexer.

The code snippet below shows this implementation.

Although this code would function as needed, using a when else statement would give us more succinct code. Whilst this will have no impact on the way the device works, it is good practice to write clear code. This help to make the design more maintainable for anyone who has to modify it in the future.

The VHDL code snippet below shows the same circuit implemented with a when else statement.

Instantiating Components in VHDL

Up until this point, we have shown how we can use the VHDL language to describe the behavior of circuits.

However, we can also connect a number of previously defined VHDL entity architecture pairs in order to build a more complex circuit.

This is similar to connecting electronic components in a physical circuit.

There are two methods we can use for this in VHDL – component instantiation and direct entity instantiation .

  • VHDL Component Instantiation

When using component instantiation in VHDL, we must define a component before it is used.

We can either do this before the main code, in the same way we would declare a signal, or in a separate package.

VHDL packages are similar to headers or libraries in other programming languages and we discuss these in a later post.

When writing VHDL, we declare a component using the syntax shown below. The component name and the ports must match the names in the original entity.

After declaring our component, we can instantiate it within an architecture using the syntax shown below. The <instance_name> must be unique for every instantiation within an architecture.

In VHDL, we use a port map to connect the ports of our component to signals in our architecture.

The signals which we use in our VHDL port map, such as <signal_name1> in the example above, must be declared before they can be used.

As VHDL is a strongly typed language, the signals we use in the port map must also match the type of the port they connect to.

When we write VHDL code, we may also wish to leave some ports unconnected.

For example, we may have a component which models the behaviour of a JK flip flop . However, we only need to use the inverted output in our design meaning. Therefore, we do not want to connect the non-inverted output to a signal in our architecture.

We can use the open keyword to indicate that we don't make a connection to one of the ports.

However, we can only use the open VHDL keyword for outputs.

If we attempt to leave inputs to our components open, our VHDL compiler will raise an error.

  • VHDL Direct Entity Instantiation

The second instantiation technique is known as direct entity instantiation.

Using this method we can directly connect the entity in a new design without declaring a component first.

The code snippet below shows how we use direct entity instantiation in VHDL.

As with the component instantiation technique, <instance_name> must be unique for each instantiation in an architecture.

There are two extra requirements for this type of instantiation. We must explicitly state the name of both the library and the architecture which we want to use. This is shown in the example above by the <library_name> and <architecture_name> labels.

Once the component is instantiated within a VHDL architecture, we use a port map to connect signals to the ports. We use the VHDL port map in the same way for both direct entity and component instantiation.

Which types can not be used with the VHDL logical operators?

Scalar types such as integer and real.

Write the code for a 4 input NAND gate

We can use two different types of statement to model multiplexors in VHDL, what are they?

The with select statement and the when else statement

Write the code for an 8 input multiplexor using both types of statement

Write the code to instantiate a two input AND component using both direct entity and component instantiation. Assume that the AND gate is compiled in the work library and the architecture is named rtl.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Table of Contents

Sign up free for exclusive content.

Don't Miss Out

We are about to launch exclusive video content. Sign up to hear about it first.

what is a signal assignment statement

  • Product Manual
  • Release Notes
  • Screencasts
  • Tech Articles

Signal Assignments in VHDL: with/select, when/else and case

Sometimes, there is more than one way to do something in VHDL. OK, most of the time , you can do things in many ways in VHDL. Let’s look at the situation where you want to assign different values to a signal, based on the value of another signal.

With / Select

The most specific way to do this is with as selected signal assignment. Based on several possible values of a , you assign a value to b . No redundancy in the code here. The official name for this VHDL with/select assignment is the selected signal assignment .

When / Else Assignment

The construct of a conditional signal assignment is a little more general. For each option, you have to give a condition. This means that you could write any boolean expression as a condition, which give you more freedom than equality checking. While this construct would give you more freedom, there is a bit more redundancy too. We had to write the equality check ( a = ) on every line. If you use a signal with a long name, this will make your code bulkier. Also, the separator that’s used in the selected signal assignment was a comma. In the conditional signal assignment, you need the else keyword. More code for the same functionality. Official name for this VHDL when/else assignment is the conditional signal assignment

Combinational Process with Case Statement

The most generally usable construct is a process. Inside this process, you can write a case statement, or a cascade of if statements. There is even more redundancy here. You the skeleton code for a process (begin, end) and the sensitivity list. That’s not a big effort, but while I was drafting this, I had put b in the sensitivity list instead of a . Easy to make a small misstake. You also need to specify what happens in the other cases. Of course, you could do the same thing with a bunch of IF-statements, either consecutive or nested, but a case statement looks so much nicer.

While this last code snippet is the largest and perhaps most error-prone, it is probably also the most common. It uses two familiar and often-used constructs: the process and the case statements.

Hard to remember

The problem with the selected and conditional signal assignments is that there is no logic in their syntax. The meaning is almost identical, but the syntax is just different enough to throw you off. I know many engineers who permanenty have a copy of the Doulos Golden Reference Guide to VHDL lying on their desks. Which is good for Doulos, because their name gets mentioned all the time. But most people just memorize one way of getting the job done and stick with it.

  • VHDL Pragmas (blog post)
  • Records in VHDL: Initialization and Constraining unconstrained fields (blog post)
  • Finite State Machine (FSM) encoding in VHDL: binary, one-hot, and others (blog post)
  • "Use" and "Library" in VHDL (blog post)
  • The scope of VHDL use clauses and VHDL library clauses (blog post)

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL by

Get full access to Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL and 60K+ other titles, with a free 10-day trial of O'Reilly.

There are also live events, courses curated by job role, and more.

4.9 VHDL SIGNAL AND GENERATE STATEMENTS

4.9.1 signal statement.

Signal is a VHDL keyword. It declares a signal of specified data type. A signal declaration is used to represent internal signals within an architecture declaration.

images

Figure 4.20 Logic Circuit with Internal Signals

Unlike entity ports, internal signals do not have a direction. Signal assignment statements execute only when the associated signals (appearing on the right-hand side of the assignment statement) change values. In VHDL, the order of concurrent statements in VHDL code does not affect the order in which the statements are executed. Signal assignments are concurrent and could execute in parallel fashion. Consider the logic circuit in Figure 4.20 where the internal signals are identified. Notice, that from the point of view of an entity declaration, the signals Sig 1 , Sig 2 , and Sig 3 are internal signals. They are neither input ports nor output ports, and therefore do not have a direction.

The VHDL program in Figure 4.21 implements the logic circuit in Figure 4.20 . The entity declaration is similar to that in the VHDL program of Figure 4.6 . The architecture declaration has been modified to include the internal signals. The logic function of the circuit is described in an indirect way using the internal signals. Both VHDL implementations ( Figures 4.6 and 4.21 ) have the same logic function and should yield the same ...

Get Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

Don’t leave empty-handed

Get Mark Richards’s Software Architecture Patterns ebook to better understand how to design components—and how they should interact.

It’s yours, free.

Cover of Software Architecture Patterns

Check it out now on O’Reilly

Dive in for free with a 10-day trial of the O’Reilly learning platform—then explore all the other resources our members count on to build skills and solve problems every day.

what is a signal assignment statement

Signals & Signal Assignments

Cite this chapter.

what is a signal assignment statement

  • Stanley Mazor 2 &
  • Patricia Langstraat 2  

334 Accesses

This chapter discusses the use of signals for component interconnection and process communication. It contains the following sections:

• Structural Netlisting

• Process Communication

• Signal Declaration

• Entity Signal Port Declarations

• Signal Assignment in a Process

• Signal Delay

• Sequential Signal Assignment

• Simulation Cycle

• Simulation and WAIT

• Sensitivity List

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Author information

Authors and affiliations.

Synopsys, Inc., USA

Stanley Mazor & Patricia Langstraat

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Mazor, S., Langstraat, P. (1993). Signals & Signal Assignments. In: A Guide to VHDL. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3216-3_5

Download citation

DOI : https://doi.org/10.1007/978-1-4615-3216-3_5

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4613-6412-2

Online ISBN : 978-1-4615-3216-3

eBook Packages : Springer Book Archive

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

A signal assignment statement modifies the target signal

Description:

A Signal assignment statement can appear inside a process (sequential statement) or directly in an architecture (concurrent statement). The target signal can be either a name (simple, selected, indexed, or slice) or an aggregate .

A signal assignment with no delay (or zero delay) will cause an event after delta delay, which means that the event happens only when all of the currently active processes have finished executing (i.e. after one simulation cycle).

The default delay mode ( inertial ) means that pulses shorter than the delay (or the reject period if specified) are ignored. Transport means that the assignment acts as a pure delay line.

VHDL'93 defines the keyword unaffected which indicates a choice where the signal is not given a new assignment. This is roughly equivalent to the use of the null statement within case (see Examples).

  • Delays are usually ignored by synthesis tool.

Aggregate , Concurrent statement , Sequential statement , Signal , Variable assignment

GitHub

Select Statement – VHDL Example

Assigning signals using selected signal assignment.

Select statements are used to assign signals in VHDL. They can only be used in combinational code outside of a process . A selected signal assignment is a clear way of assigning a signal based on a specific list of combinations for one input signal. The syntax is demonstrated in the example below. The signal name after with is the signal whose values are used to assign the output signal. The when others clause should always be used to avoid creating a latch by accident.

Note that if you try to put a select statement inside a process, you will get the error: Illegal sequential statement.

Learn Verilog

Leave A Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

IMAGES

  1. Signal Assignment Statements

    what is a signal assignment statement

  2. Signal Assignment Statements

    what is a signal assignment statement

  3. Solved Assignment #1 Selected Signal Assignment with select

    what is a signal assignment statement

  4. (i) Write a Verilog HDL conditional signal assignment

    what is a signal assignment statement

  5. The VHDL program in Figure1 is a 4-line multiplexer implemented with selected signal assig

    what is a signal assignment statement

  6. VHDL Signal Assignment and Resolved Signals Signal Assignment Statement

    what is a signal assignment statement

VIDEO

  1. DIFFERENCES BETWEEN CONCURRENT AND SEQUENTIAL STATEMENTS

  2. Digital Signal Processing nptel assignment 3 (2023)

  3. Assignment 03 Digital Signal Processing

  4. video assignment for signal and system

  5. Conditional and selected signal assignment statements

  6. ADL 5.5

COMMENTS

  1. Signal Assignment Statements

    The conditional signal assignment statement is very general in that any readable signals or inputs may be tested to determine the value to be assigned to the target. Note that the simple concurrent signal assignment statement (e.g. A <= B;) is simply the degenerate case of a conditional signal assignment statement. The selected signal ...

  2. PDF Concurrent Statements

    Concurrent Statements - Signal Assignment. Signal assignment. We have seen the simple signal assignment statement sig_a <= input_a AND input_b; VHDL provides both a concurrent and a sequential signal assignment statement. The two statements can have the same syntax, but they differ in how they execute. Singal Assignment 2.

  3. VHDL Logical Operators and Signal Assignments for Combinational Logic

    The VHDL code shown below uses one of the logical operators to implement this basic circuit. and_out <= a and b; Although this code is simple, there are a couple of important concepts to consider. The first of these is the VHDL assignment operator (<=) which must be used for all signals.

  4. PDF 6. Sequential and Concurrent Statements in The Vhdl Language

    This statement is the concurrent version of the sequential signal assignment statement and has the same form with this. As the sequential version, the concurrent assignment defines a new driver for the assigned signal. A concurrent assignment statement appears outside a process, within an architecture.

  5. How does signal assignment work in a process?

    The signal x is updated as the first statement. This does not still change the value of x, this change is put in a queue to be executed after the process ends. ... A signal assignment inside a process will disregard other signal assignments made in the same process "instantiation". Also, for the same signal, only the last assignment will be ...

  6. Signal Assignments in VHDL: with/select, when/else and case

    With / Select. The most specific way to do this is with as selected signal assignment. Based on several possible values of a, you assign a value to b. No redundancy in the code here. The official name for this VHDL with/select assignment is the selected signal assignment. with a select b <= "1000" when "00", "0100" when "01", "0010" when "10 ...

  7. 4.9 VHDL Signal and Generate Statements

    A signal declaration is used to represent internal signals within an architecture declaration. Figure 4.20 Logic Circuit with Internal Signals. Unlike entity ports, internal signals do not have a direction. Signal assignment statements execute only when the associated signals (appearing on the right-hand side of the assignment statement) change ...

  8. PDF 5 Signals & Signal Assignments

    Signal assignment statements can schedule a number of values at different time points. This capability is useful for describing clocks and other repetitive signal waveforms. For example: S <= '1' after 4 ns, '0' after 7 ns; T <= 1 after 1 ns, 3 after 2 ns, 6 after 8 ns; Figure 5-8 Note: Within a process a signal should have only one single ...

  9. Signal Assignment Statements

    Signal Assignment Statements. Slide 24 of 53. Notes: In this section, signal assignment statements are revisited paying special attention to both the similarities and the differences between concurrent and sequential signal assignment statements. The delay_mechanism construct is common to both concurrent and sequential signal assignment statements.

  10. PDF Variable assignment statement Signal assignment

    A signal assignment statement updates the signal driver. The new value of the signal is updated when the process is suspended. Signal assignment statement 3. Variables are cheaper to implement in VHDL simulation since the evaluation of drivers is not needed. They require less memory. 4. Signals communicate among concurrent statements.

  11. Signal Assignment

    A Signal assignment statement can appear inside a process (sequential statement) or directly in an architecture (concurrent statement). The target signal can be either a name (simple, selected, indexed, or slice) or an aggregate. A signal assignment with no delay (or zero delay) will cause an event after delta delay, which means that the event ...

  12. Variables vs. Signals in VHDL

    Variables are assigned using the := assignment symbol. Signals are assigned using the <= assignment symbol. Variables that are assigned immediately take the value of the assignment. Signals depend on if it's combinational or sequential code to know when the signal takes the value of the assignment.

  13. PDF Concurrent Signal Assignment Statements concurrent signal assignment

    The boolean_expr_i return true or false and are each evaluated from top-to-bottom until one is found to be true When this occurs, the value_expr_i is assigned to the signal_name signal. This type of statement can be represented by a multiplexer circuit. This is the truth table for an 8-bit, 4-to-1 multiplexer.

  14. PDF VHDL Syntax Reference

    2. Concurrent Statements Any statement placed in architecture body is concurrent. Only one type of conditional statements is allowed as concurrent which are shown here. 2.1 Conditional Signal Assignment Syntax: signal_name <= value_expr_1 when Boolean_expr_1 else value_expr_2 when Boolean_expr_2 else value_expr_3 when Boolean_expr_3 else ….

  15. Signal Assignment Statements

    Recalling the previous presentation of VHDL BLOCKs and GUARDs, the target of a concurrent signal assignment statement containing the keyword GUARDED and appearing within a BLOCK statement is a guarded target. The use of BLOCKs and GUARDs allows guarded targets to have their signal drivers disconnected (i.e. turned off) so that another ...

  16. Concurrent Conditional and Selected Signal Assignment in VHDL

    Conditional Signal Assignment or the "When/Else" Statement. The "when/else" statement is another way to describe the concurrent signal assignments similar to those in Examples 1 and 2. Since the syntax of this type of signal assignment is quite descriptive, let's first see the VHDL code of a one-bit 4-to-1 multiplexer using the ...

  17. PDF Conditional Concurrent Signal Assignment

    The PORT MAP statement describes the connections between pins of the cell and the signals. The connections are described by the format: pin_on_module => signal_name, The first name is the module pin name, the second is the name of the signal the pin is to be connected to. This format is called named association.

  18. Signal Assignment

    The statements within it can read the signal value, include it in sensitivity lists in wait statements, query its attributes and schedule transactions using signal assignment statements. A final point to note about signal parameters relates to procedures declared immediately within an architecture body.

  19. PDF Concurrent Signal Assignment Statements From VHDL Essentials I, we

    The outputs include a 2-bit signal (code), which is the binary code of the highest priority request and a 1-bit signal active that indicates if there is an active request. has the highest priority, i.e., when asserted, the other three requests are ignored and the code signal becomes "11". When r(3) is not asserted, the second highest request, r ...

  20. Signal Assignment Statements

    In this section, signal assignment statements are revisited paying special attention to both the similarities and the differences between concurrent and sequential signal assignment statements. The delay_mechanism construct is common to both concurrent and sequential signal assignment statements. It provides flexibility in determining the ...

  21. concurrent and conditional signal assignment (VHDL)

    Signal assignments and procedure calls that are done in the architecture are concurrent. Sequential statements (other than wait) run when the code around it also runs. Interesting note, while a process is concurrent (because it runs independently of other processes and concurrent assignments), it contains sequential statements.

  22. Select Signal Assignment

    Select statements are used to assign signals in VHDL. They can only be used in combinational code outside of a process. A selected signal assignment is a clear way of assigning a signal based on a specific list of combinations for one input signal. The syntax is demonstrated in the example below. The signal name after with is the signal whose ...