Health (Nursing, Medicine, Allied Health)

  • Find Articles/Databases
  • Reference Resources
  • Evidence Summaries & Clinical Guidelines
  • Drug Information
  • Health Data & Statistics
  • Patient/Consumer Facing Materials
  • Images and Streaming Video
  • Grey Literature
  • Mobile Apps & "Point of Care" Tools
  • Tests & Measures This link opens in a new window
  • Citing Sources
  • Selecting Databases
  • Framing Research Questions
  • Crafting a Search
  • Narrowing / Filtering a Search
  • Expanding a Search
  • Cited Reference Searching
  • Saving Searches
  • Term Glossary
  • Critical Appraisal Resources
  • What are Literature Reviews?
  • Conducting & Reporting Systematic Reviews
  • Finding Systematic Reviews
  • Tutorials & Tools for Literature Reviews
  • Finding Full Text

Defining the Question: Foreground & Background Questions

In order to most appropriately choose an information resource and craft a search strategy, it is necessary to consider what  kind  of question you are asking: a specific, narrow "foreground" question, or a broader background question that will help give context to your research?

Foreground Questions

A "foreground" question in health research is one that is relatively specific, and is usually best addressed by locating primary research evidence. 

Using a structured question framework can help you clearly define the concepts or variables that make up the specific research question. 

 Across most frameworks, you’ll often be considering:

  • a who (who was studied - a population or sample)
  • a what (what was done or examined - an intervention, an exposure, a policy, a program, a phenomenon)
  • a how ([how] did the [what] affect the [who] - an outcome, an effect). 

PICO is the most common framework for developing a clinical research question, but multiple question frameworks exist.

PICO (Problem/Population, Intervention, Comparison, Outcome)

Appropriate for : clinical questions, often addressing the effect of an intervention/therapy/treatment

Example : For adolescents with type II diabetes (P) does the use of telehealth consultations (I) compared to in-person consultations  (C) improve blood sugar control  (O)?

Framing Different Types of Clinical Questions with PICO

Different types of clinical questions are suited to different syntaxes and phrasings, but all will clearly define the PICO elements.  The definitions and frames below may be helpful for organizing your question:

Intervention/Therapy

Questions addressing how a clinical issue, illness, or disability is treated.

"In__________________(P), how does__________________(I) compared to_________________(C) affect______________(O)?"

Questions that address the causes or origin of disease, the factors which produce or predispose toward a certain disease or disorder.

"Are_________________(P), who have_________________(I) compared with those without_________________(C) at_________________risk for/of_________________(O) over_________________(T)?" 

Questions addressing the act or process of identifying or determining the nature and cause of a disease or injury through evaluation.

In_________________(P) are/is_________________(I) compared with_________________(C) more accurate in diagnosing_________________(O)?

Prognosis/Prediction:

Questions addressing the prediction of the course of a disease.

In_________________(P), how does_________________(I) compared to_________________ (C) influence_________________(O)?

Questions addressing how one experiences a phenomenon or why we need to approach practice differently.

"How do_________________(P) with_________________(I) perceive_________________(O)?" 

Adapted from: Melnyk, B. M., & Fineout-Overholt, E. (2011). Evidence-based practice in nursing & healthcare: A guide to best practice. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins.

Beyond PICO: Other Types of Question Frameworks

PICO is a useful framework for clinical research questions, but may not be appropriate for all kinds of reviews.  Also consider:

PEO (Population, Exposure, Outcome)

Appropriate for : describing association between particular exposures/risk factors and outcomes

Example : How do  preparation programs (E) influence the development of teaching competence  (O) among novice nurse educators  (P)?

SPIDER (Sample, Phenomenon of Interest, Design, Evaluation, Research Type)

Appropriate for : questions of experience or perspectives (questions that may be addressed by qualitative or mixed methods research)

Example : What are the experiences and perspectives (E) of  undergraduate nursing students  (S)  in clinical placements within prison healthcare settings (PI)?

SPICE (Setting, Perspective, Intervention/phenomenon of Interest, Comparison, Evaluation)

Appropriate for : evaluating the outcomes of a service, project, or intervention

Example : What are the impacts and best practices for workplace (S) transition support programs (I) for the retention (E) of newly-hired, new graduate nurses (P)?

PCC (Problem/population, Concept, Context)

Appropriate for : broader (scoping) questions

Example : How do nursing schools  (Context) teach, measure, and maintain nursing students ' (P)  technological literacy  (Concept))throughout their educational programs?

Background Questions

To craft a strong and reasonable foreground research question, it is important to have a firm understanding of the concepts of interest.  As such, it is often necessary to ask background questions, which ask for more general, foundational knowledge about a disorder, disease, patient population, policy issue, etc. 

For example, consider the PICO question outlined above:

"For adolescents with type II diabetes does the use of telehealth consultations compared to in-person consultations  improve blood sugar control ?

To best make sense of the literature that might address this PICO question, you would also need a deep understanding of background questions like:

  • What are the unique barriers or challenges related to blood sugar management in adolescents with TII diabetes?
  • What are the measures of effective blood sugar control?
  • What kinds of interventions would fall under the umbrella of 'telehealth'?
  • What are the qualitative differences in patient experience in telehealth versus in-person interactions with healthcare providers?
  • << Previous: Selecting Databases
  • Next: Crafting a Search >>
  • Last Updated: Apr 18, 2024 3:22 PM
  • URL: https://guides.nyu.edu/health

National Academies Press: OpenBook

The Impact of COVID-19 on the Careers of Women in Academic Sciences, Engineering, and Medicine (2021)

Chapter: 8 major findings and research questions, 8 major findings and research questions, introduction.

The COVID-19 pandemic, which began in late 2019, created unprecedented global disruption and infused a significant level of uncertainty into the lives of individuals, both personally and professionally, around the world throughout 2020. The significant effect on vulnerable populations, such as essential workers and the elderly, is well documented, as is the devastating effect the COVID-19 pandemic had on the economy, particularly brick-and-mortar retail and hospitality and food services. Concurrently, the deaths of unarmed Black people at the hands of law enforcement officers created a heightened awareness of the persistence of structural injustices in U.S. society.

Against the backdrop of this public health crisis, economic upheaval, and amplified social consciousness, an ad hoc committee was appointed to review the potential effects of the COVID-19 pandemic on women in academic science, technology, engineering, mathematics, and medicine (STEMM) during 2020. The committee’s work built on the National Academies of Sciences, Engineering, and Medicine report Promising Practices for Addressing the Underrepresentation of Women in Science, Engineering, and Medicine: Opening Doors (the Promising Practices report), which presents evidence-based recommendations to address the well-established structural barriers that impede the advancement of women in STEMM. However, the committee recognized that none of the actions identified in the Promising Practices report were conceived within the context of a pandemic, an economic downturn, or the emergence of national protests against structural racism. The representation and vitality of academic women in STEMM had already warranted national attention prior to these events, and the COVID-19

pandemic appeared to represent an additional risk to the fragile progress that women had made in some STEMM disciplines. Furthermore, the future will almost certainly hold additional, unforeseen disruptions, which underscores the importance of the committee’s work.

In times of stress, there is a risk that the divide will deepen between those who already have advantages and those who do not. In academia, senior and tenured academics are more likely to have an established reputation, a stable salary commitment, and power within the academic system. They are more likely, before the COVID-19 pandemic began, to have established professional networks, generated data that can be used to write papers, and achieved financial and job security. While those who have these advantages may benefit from a level of stability relative to others during stressful times, those who were previously systemically disadvantaged are more likely to experience additional strain and instability.

As this report has documented, during 2020 the COVID-19 pandemic had overall negative effects on women in academic STEMM in areas such productivity, boundary setting and boundary control, networking and community building, burnout rates, and mental well-being. The excessive expectations of caregiving that often fall on the shoulders of women cut across career timeline and rank (e.g., graduate student, postdoctoral scholar, non-tenure-track and other contingent faculty, tenure-track faculty), institution type, and scientific discipline. Although there have been opportunities for innovation and some potential shifts in expectations, increased caregiving demands associated with the COVID-19 pandemic in 2020, such as remote working, school closures, and childcare and eldercare, had disproportionately negative outcomes for women.

The effects of the COVID-19 pandemic on women in STEMM during 2020 are understood better through an intentionally intersectional lens. Productivity, career, boundary setting, mental well-being, and health are all influenced by the ways in which social identities are defined and cultivated within social and power structures. Race and ethnicity, sexual orientation, gender identity, academic career stage, appointment type, institution type, age, and disability status, among many other factors, can amplify or diminish the effects of the COVID-19 pandemic for a given person. For example, non-cisgender women may be forced to return to home environments where their gender identity is not accepted, increasing their stress and isolation, and decreasing their well-being. Women of Color had a higher likelihood of facing a COVID-19–related death in their family compared with their white, non-Hispanic colleagues. The full extent of the effects of the COVID-19 pandemic for women of various social identities was not fully understood at the end of 2020.

Considering the relative paucity of women in many STEMM fields prior to the COVID-19 pandemic, women are more likely to experience academic isolation, including limited access to mentors, sponsors, and role models that share gender, racial, or ethnic identities. Combining this reality with the physical isolation stipulated by public health responses to the COVID-19 pandemic,

women in STEMM were subject to increasing isolation within their fields, networks, and communities. Explicit attention to the early indicators of how the COVID-19 pandemic affected women in academic STEMM careers during 2020, as well as attention to crisis responses throughout history, may provide opportunities to mitigate some of the long-term effects and potentially develop a more resilient and equitable academic STEMM system.

MAJOR FINDINGS

Given the ongoing nature of the COVID-19 pandemic, it was not possible to fully understand the entirety of the short- or long-term implications of this global disruption on the careers of women in academic STEMM. Having gathered preliminary data and evidence available in 2020, the committee found that significant changes to women’s work-life boundaries and divisions of labor, careers, productivity, advancement, mentoring and networking relationships, and mental health and well-being have been observed. The following findings represent those aspects that the committee agreed have been substantiated by the preliminary data, evidence, and information gathered by the end of 2020. They are presented either as Established Research and Experiences from Previous Events or Impacts of the COVID-19 Pandemic during 2020 that parallel the topics as presented in the report.

Established Research and Experiences from Previous Events

___________________

1 This finding is primarily based on research on cisgender women and men.

Impacts of the COVID-19 Pandemic during 2020

Research questions.

While this report compiled much of the research, data, and evidence available in 2020 on the effects of the COVID-19 pandemic, future research is still needed to understand all the potential effects, especially any long-term implications. The research questions represent areas the committee identified for future research, rather than specific recommendations. They are presented in six categories that parallel the chapters of the report: Cross-Cutting Themes; Academic Productivity and Institutional Responses; Work-Life Boundaries and Gendered Divisions of Labor; Collaboration, Networking, and Professional Societies; Academic Leadership and Decision-Making; and Mental Health and Well-being. The committee hopes the report will be used as a basis for continued understanding of the impact of the COVID-19 pandemic in its entirety and as a reference for mitigating impacts of future disruptions that affect women in academic STEMM. The committee also hopes that these research questions may enable academic STEMM to emerge from the pandemic era a stronger, more equitable place for women. Therefore, the committee identifies two types of research questions in each category; listed first are those questions aimed at understanding the impacts of the disruptions from the COVID-19 pandemic, followed by those questions exploring the opportunities to help support the full participation of women in the future.

Cross-Cutting Themes

  • What are the short- and long-term effects of the COVID-19 pandemic on the career trajectories, job stability, and leadership roles of women, particularly of Black women and other Women of Color? How do these effects vary across institutional characteristics, 2 discipline, and career stage?

2 Institutional characteristics include different institutional types (e.g., research university, liberal arts college, community college), locales (e.g., urban, rural), missions (e.g., Historically Black Colleges and Universities, Hispanic-Serving Institutions, Asian American/Native American/Pacific Islander-Serving Institutions, Tribal Colleges and Universities), and levels of resources.

  • How did the confluence of structural racism, economic hardships, and environmental disruptions affect Women of Color during the COVID-19 pandemic? Specifically, how did the murder of George Floyd, Breonna Taylor, and other Black citizens impact Black women academics’ safety, ability to be productive, and mental health?
  • How has the inclusion of women in leadership and other roles in the academy influenced the ability of institutions to respond to the confluence of major social crises during the COVID-19 pandemic?
  • How can institutions build on the involvement women had across STEMM disciplines during the COVID-19 pandemic to increase the participation of women in STEMM and/or elevate and support women in their current STEMM-related positions?
  • How can institutions adapt, leverage, and learn from approaches developed during 2020 to attend to challenges experienced by Women of Color in STEMM in the future?

Academic Productivity and Institutional Responses

  • How did the institutional responses (e.g., policies, practices) that were outlined in the Major Findings impact women faculty across institutional characteristics and disciplines?
  • What are the short- and long-term effects of faculty evaluation practices and extension policies implemented during the COVID-19 pandemic on the productivity and career trajectories of members of the academic STEMM workforce by gender?
  • What adaptations did women use during the transition to online and hybrid teaching modes? How did these techniques and adaptations vary as a function of career stage and institutional characteristics?
  • What are examples of institutional changes implemented in response to the COVID-19 pandemic that have the potential to reduce systemic barriers to participation and advancement that have historically been faced by academic women in STEMM, specifically Women of Color and other marginalized women in STEMM? How might positive institutional responses be leveraged to create a more resilient and responsive higher education ecosystem?
  • How can or should funding arrangements be altered (e.g., changes in funding for research and/or mentorship programs) to support new ways of interaction for women in STEMM during times of disruption, such as the COVID-19 pandemic?

Work-Life Boundaries and Gendered Divisions of Labor

  • How do different social identities (e.g., racial; socioeconomic status; culturally, ethnically, sexually, or gender diverse; immigration status; parents of young children and other caregivers; women without partners) influence the management of work-nonwork boundaries? How did this change during the COVID-19 pandemic?
  • How have COVID-19 pandemic-related disruptions affected progress toward reducing the gender gap in academic STEMM labor-force participation? How does this differ for Women of Color or women with caregiving responsibilities?
  • How can institutions account for the unique challenges of women faculty with parenthood and caregiving responsibilities when developing effective and equitable policies, practices, or programs?
  • How might insights gained about work-life boundaries during the COVID-19 pandemic inform how institutions develop and implement supportive resources (e.g., reductions in workload, on-site childcare, flexible working options)?

Collaboration, Networking, and Professional Societies

  • What were the short- and long-term effects of the COVID-19 pandemic-prompted switch from in-person conferences to virtual conferences on conference culture and climate, especially for women in STEMM?
  • How will the increase in virtual conferences specifically affect women’s advancement and career trajectories? How will it affect women’s collaborations?
  • How has the shift away from attending conferences and in-person networking changed longer-term mentoring and sponsoring relationships, particularly in terms of gender dynamics?
  • How can institutions maximize the benefits of digitization and the increased use of technology observed during the COVID-19 pandemic to continue supporting women, especially marginalized women, by increasing accessibility, collaborations, mentorship, and learning?
  • How can organizations that support, host, or facilitate online and virtual conferences and networking events (1) ensure open and fair access to participants who face different funding and time constraints; (2) foster virtual connections among peers, mentors, and sponsors; and (3) maintain an inclusive environment to scientists of all backgrounds?
  • What policies, practices, or programs can be developed to help women in STEMM maintain a sense of support, structure, and stability during and after periods of disruption?

Academic Leadership and Decision-Making

  • What specific interventions did colleges and universities initiate or prioritize to ensure that women were included in decision-making processes during responses to the COVID-19 pandemic?
  • How effective were colleges and universities that prioritized equity-minded leadership, shared leadership, and crisis leadership styles at mitigating emerging and potential negative effects of the COVID-19 pandemic on women in their communities?
  • What specific aspects of different leadership models translated to more effective strategies to advance women in STEMM, particularly during the COVID-19 pandemic?
  • How can examples of intentional inclusion of women in decision-making processes during the COVID-19 pandemic be leveraged to develop the engagement of women as leaders at all levels of academic institutions?
  • What are potential “top-down” structural changes in academia that can be implemented to mitigate the adverse effects of the COVID-19 pandemic or other disruptions?
  • How can academic leadership, at all levels, more effectively support the mental health needs of women in STEMM?

Mental Health and Well-being

  • What is the impact of the COVID-19 pandemic and institutional responses on the mental health and well-being of members of the academic STEMM workforce as a function of gender, race, and career stage?
  • How are tools and diagnostic tests to measure aspects of wellbeing, including burnout and insomnia, used in academic settings? How does this change during times of increased stress, such as the COVID-19 pandemic?
  • How might insights gained about mental health during the COVID-19 pandemic be used to inform preparedness for future disruptions?
  • How can programs that focus on changes in biomarkers of stress and mood dysregulation, such as levels of sleep, activity, and texting patterns, be developed and implemented to better engage women in addressing their mental health?
  • What are effective interventions to address the health of women academics in STEMM that specifically account for the effects of stress on women? What are effective interventions to mitigate the excessive levels of stress for Women of Color?

This page intentionally left blank.

The spring of 2020 marked a change in how almost everyone conducted their personal and professional lives, both within science, technology, engineering, mathematics, and medicine (STEMM) and beyond. The COVID-19 pandemic disrupted global scientific conferences and individual laboratories and required people to find space in their homes from which to work. It blurred the boundaries between work and non-work, infusing ambiguity into everyday activities. While adaptations that allowed people to connect became more common, the evidence available at the end of 2020 suggests that the disruptions caused by the COVID-19 pandemic endangered the engagement, experience, and retention of women in academic STEMM, and may roll back some of the achievement gains made by women in the academy to date.

The Impact of COVID-19 on the Careers of Women in Academic Sciences, Engineering, and Medicine identifies, names, and documents how the COVID-19 pandemic disrupted the careers of women in academic STEMM during the initial 9-month period since March 2020 and considers how these disruptions - both positive and negative - might shape future progress for women. This publication builds on the 2020 report Promising Practices for Addressing the Underrepresentation of Women in Science, Engineering, and Medicine to develop a comprehensive understanding of the nuanced ways these disruptions have manifested. The Impact of COVID-19 on the Careers of Women in Academic Sciences, Engineering, and Medicine will inform the academic community as it emerges from the pandemic to mitigate any long-term negative consequences for the continued advancement of women in the academic STEMM workforce and build on the adaptations and opportunities that have emerged.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Grad Coach

Research Topics & Ideas: Public Health

50 Topic Ideas To Kickstart Your Research Project

Public health-related research topics and ideas

If you’re just starting out exploring public health and/or epidemiology-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research by providing a hearty list of research ideas , including examples from recent studies in public health and epidemiology.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . These topic ideas provided here are intentionally broad and generic , so keep in mind that you will need to develop them further. Nevertheless, they should inspire some ideas for your project.

To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan to fill that gap. If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, consider our 1-on-1 coaching service .

Research topic idea mega list

Public Health-Related Research Topics

  • Evaluating the impact of community-based obesity prevention programs in urban areas.
  • Analyzing the effectiveness of public smoking bans on respiratory health outcomes.
  • Investigating the role of health education in reducing the prevalence of HIV/AIDS in sub-Saharan Africa.
  • The impact of air pollution on asthma rates in industrial cities.
  • Evaluating the effectiveness of school nutrition programs on childhood obesity rates.
  • The role of public health policies in addressing mental health stigma.
  • Analyzing the impact of clean water access on infectious disease rates in rural communities.
  • The effectiveness of needle exchange programs in reducing the spread of hepatitis C.
  • Investigating the impact of social determinants on maternal and child health in low-income neighborhoods.
  • The role of digital health interventions in managing chronic diseases.
  • Analyzing the effectiveness of workplace wellness programs on employee health and productivity.
  • The impact of urban green spaces on community mental health.
  • Evaluating the effectiveness of vaccination campaigns in preventing outbreaks of infectious diseases.
  • The role of public health initiatives in reducing alcohol-related harm.
  • Analyzing the impact of aging populations on healthcare systems.
  • Analyzing the impact of urbanization on mental health disorders in metropolitan areas.
  • The effectiveness of telemedicine services in improving healthcare access in remote regions.
  • Investigating the health impacts of electronic waste recycling practices.
  • The role of health literacy in managing non-communicable diseases in aging populations.
  • Evaluating the public health response to opioid addiction in rural communities.
  • Analyzing the relationship between housing quality and respiratory illnesses.
  • The effectiveness of community engagement in improving reproductive health services.
  • Investigating the health effects of long-term exposure to low-level environmental radiation.
  • The role of public health campaigns in reducing the prevalence of tobacco use among teenagers.
  • Analyzing the impact of food deserts on nutritional outcomes in urban communities.

Research topic evaluator

Epidemiology Research Ideas (Continued)

  • Investigating the epidemiology of antibiotic-resistant infections in hospital settings.
  • The impact of climate change on the spread of vector-borne diseases.
  • Evaluating the factors contributing to the rise in type 2 diabetes prevalence.
  • Analyzing the epidemiology of mental health disorders in conflict zones.
  • The role of epidemiological surveillance in pandemic preparedness and response.
  • Investigating the link between environmental exposures and the incidence of childhood cancers.
  • The impact of dietary patterns on the prevalence of cardiovascular diseases.
  • Evaluating the effectiveness of intervention strategies in controlling obesity epidemics.
  • Analyzing the spread and control of zoonotic diseases in rural communities.
  • The role of genetic factors in the epidemiology of autoimmune diseases.
  • Investigating the socio-economic disparities in cancer incidence and outcomes.
  • The impact of urbanization on the epidemiology of infectious diseases.
  • Evaluating the public health consequences of occupational exposures to hazardous substances.
  • Analyzing the trends and determinants of mental health disorders among adolescents.
  • The role of lifestyle factors in the epidemiology of neurodegenerative diseases.
  • Investigating the patterns of mental health service utilization during economic recessions.
  • The epidemiology of sports-related concussions in youth athletics.
  • Evaluating the effectiveness of public health interventions in reducing the spread of tuberculosis in high-risk populations.
  • Analyzing the geographic distribution of Lyme disease in relation to climate change.
  • The role of international travel in the spread of emerging infectious diseases.
  • Investigating the demographic predictors of chronic kidney disease in population-based studies.
  • The epidemiological impact of air pollution on asthma and other respiratory conditions.
  • Evaluating the long-term health effects of exposure to endocrine-disrupting chemicals.
  • Analyzing the incidence and risk factors of post-traumatic stress disorder in first responders.
  • The role of socioeconomic status in the prevalence and management of diabetes.

Recent Studies: Public Health & Epidemiology

While the ideas we’ve presented above are a decent starting point for finding a research topic, they are fairly generic and non-specific. So, it helps to look at actual studies in the public health and epidemiology space to see how this all comes together in practice.

Below, we’ve included a selection of recent studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • Tutorials in population neuroimaging: Using epidemiology in neuroimaging research (Godina et al., 2022)
  • Application of Big Data in Digital Epidemiology (Naaz & Siddiqui, 2022)
  • Response to comment on: Incidence of ocular and systemic disease affecting visual function among state bus drivers (Kohli et al., 2022)
  • Why epidemiology is incomplete without qualitative and mixed methods (Lane-Fall, 2023)
  • Teaching epidemiology: An overview of strategies and considerations (Hossain, 2022)
  • Social Epidemiology: Past, Present, and Future (Roux, 2022)
  • Population health assessment project: An innovative strategy for teaching principles of epidemiology (Keen et al., 2022)
  • The functions of veterinary epidemiology in public health (Shaffi, 2023)
  • Readying the Applied Epidemiology Workforce for Emerging Areas of
  • Public Health Practice (Daly et al., 2022)
  • Some Social Epidemiologic Lessons from the COVID-19 Pandemic (Schnake-Mahl & Bilal, 2023)
  • The Filth Disease: Typhoid Fever and the Practices of Epidemiology in Victorian England by Jacob Steere-Williams (review) (Steere-Williams et al., 2022)
  • Epidemiology of Adult Obesity, Measurements, Global Prevalence and Risk Factors (Orukwowu, 2022).
  • Which disciplines form digital public health, and how do they relate to each other? (Pan, 2022)
  • Information Flow and Data Gaps in COVID-19 Recording and Reporting at National and Provincial Levels in Indonesia (Barsasella et al., 2022). Epidemiology Blog of Neal D. Goldstein, PhD, MBI (Goldstein, 2023)
  • Sensitivity analysis of SEIR epidemic model of Covid 19 spread in Indonesia (Rangkuti et al., 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Mental health-related research topics for dissertations and theses

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Banner

  • Queen's University Library
  • Research Guides

Public Health

  • Defining the Question
  • Evidence-Informed Decision Making

Introduction

Identifying key concepts and search terms, frameworks for question formulation.

  • Grey Literature
  • Appraising Sources
  • Writing Literature Reviews

Whether you are practicing evidence-informed decision making or conducting research (e.g. a systematic review), the first step of the process is to clearly define the question or problem in a searchable and answerable format. This step of the process helps you answer the questions:  

  • “Who is my target group?
  • What is the issue we are dealing with?
  • What specifically are we trying to change?”

Source: NCCMT .

Using a framework to develop your question can help to identify the main concepts of your review topic (see further down the page). Whether you use a framework or not, the goal is to identify the main concepts of your question and the synonyms / similar terms that might be used to describe each of those concepts:

research questions examples on health

Combining search terms with AND or OR:

  • Use AND to combine different  main concepts of your search: childhood AND obesity. Narrows results
  • Use OR to include similar terms / synonyms (and sometimes antonyms) for a concept: childhood OR adolescence. Fertility OR infertility. Broadens results

research questions examples on health

Considerations for searching:

It is not always necessary to include all of your main concepts in the search. In some PICO questions, the outcome (O) is implied and does not need to be included. In other cases, any and all outcomes might of interest and so the search strategy can leave this out to keep it open.

Example for the research question: In seniors with dementia, does a falls prevention program, compared to no falls prevention program, result in decreased falls?

  • In the following PICO question, the comparator (C) can be left out of the search strategy as there is no great way to search for "not" having the intervention (in contrast to when there is a placebo or an alternate intervention as a comparison)
  • Also, the intervention (I) somewhat implies the outcome (O), so the outcome (decreased falls) can be left out of the search strategy
  • The main concepts that should be included in this particular search are: seniors (P1), dementia (P2), and falls prevention (I). Keep in mind though that there are different ways of describing these three concepts and so synonyms / similar terms are important to include in the search as well

Applying a framework when developing a question can help to identify the key concepts and determine inclusion and exclusion criteria.

Example: PICO Question

Example: spice question.

Example from: Booth, A., Noyes, J., Flemming, K., Moore, G., Tunçalp, Ö., & Shakibazadeh, E. (2019).  Formulating questions to explore complex interventions within qualitative evidence synthesis . BMJ Global Health, 4(Suppl 1), e001107.

  • << Previous: Evidence-Informed Decision Making
  • Next: Searching Databases >>
  • Last Updated: Mar 1, 2024 9:56 AM
  • Subjects: Health Sciences , Public Health Sciences
  • Tags: public health

Library buildings are open for UniSA staff and students via UniSA ID swipe cards.   Please contact us on Ask the Library for any assistance. Find out about other changes to Library services .

Develop your research question

  • Search for your assignment
  • Find books and journal articles
  • Find evidence (Government and organisation information)
  • Data and Statistics
  • Health Services MGT
  • Mental Health Resources: 0-65 Years
  • Forgotten Australians
  • Aboriginal peoples
  • Migrants & refugees
  • Rural and remote
  • Evidence-Based Practice
  • Finding resources for your assignment
  • Master of Health Services Management
  • HLTH 1029: Foundations of Health
  • HLTH 1036: Global and National Health
  • UniSA Online - HLTH 1053: Foundations of Health and Physical Activity - Assessment 2
  • UniSA Online - HLTH 2031: Professional Communication to Work in the Health Industry – A2
  • UniSA Online - HLTH 3065: Project Management for Health and Wellness
  • SAIBT HLTH 1063 : Aboriginal Health : Culture, Community and Country

STEP 1: Understand your research objective

Before you start developing your research question, think about your research objectives:

  • What are you trying to do? (compare, analyse)
  • What do you need to know about the topic?
  • What type of research are you doing?
  • What types of information/studies do you need? (e.g. randomised controlled trial, case study, guideline, protocol?)
  • Does the information need to be current?

Watch the following video (6:26) to get you started:

Key points from the video

  • All good academic research starts with a research question.
  • A research question is an actual question you want to answer about a particular topic.
  • Developing a question helps you focus on an aspect of your topic, which will streamline your research and writing.
  • Pick a topic you are interested in.
  • Narrow the topic to a particular aspect.
  • Brainstorm some questions around your topic aspect.
  • Select a question to work with.
  • Focus the question by making it more specific. Make sure your question clearly states who, what, when, where, and why.
  • A good research question focuses on one issue only and requires analysis.
  • Your search for information should be directed by your research question.
  • Your thesis or hypothesis should be a direct answer to your research question, summarised into one sentence.

STEP 2: Search before you research

The benefits of doing a background search :

  • You can gather more background knowledge on a subject
  • explore different aspects of your topic
  • identify additional keywords and terminology

STEP 3: Choose a topic

Image of turning your interest to a topics: first step, explore the different aspect of your interest

The resources linked below are a good place to start: 

  • UpToDate It covers thousands of clinical topics grouped into specialties with links to articles, drugs and drug interaction databases, medical calculators and guidelines.
  • An@tomedia This online anatomy resource features images, videos, and slides together with interactive, educational text and quiz questions.
  • Anatomy.tv Find 3D anatomical images; functional anatomy animations and videos, and MRI, anatomy, and clinical slides. Test your knowledge through interactive activities and quizzes.

STEP 4: Brainstorm your questions

Now you have explored different aspects of your topic, you may construct more focused questions (you can create a few questions and pick one later).

construct more focused questions (you may create a few questions and pick one later on)

Learn more: 

  • Clear and present questions: formulating questions for evidence based practice (Booth 2006) This article provides an overview of thinking in relation to the theory and practice of formulating answerable research questions.

STEP 5: Pick a question and focus

Once you have a few questions to choose from, pick one and refine it even further.

STEP 4: pick a question and focus

Are you required to use "PICO"?

  • PICO worksheet
  • Other frameworks

The PICO framework (or other variations) can be useful for developing an answerable clinical question. 

The example question used in this guide is a PICO question:   How does speech therapy compare to cognitive behavioural therapy in improving speech fluency in adolescents?

Use the interactive PICO worksheet to get started with your question, or you can download the worksheet document.

  • Building your question with PICO

Here are some different frameworks you may want to use:

There are a number of PICO variations which can be used for different types of questions, such as qualitative, and background and foreground questions. Visit the Evidence-Based Practice (EBP) Guide to learn more:

  • Evidence Based Practice guide
  • << Previous: Plan your search
  • Next: Search for your assignment >>
  • Last Updated: Apr 18, 2024 10:51 AM
  • URL: https://guides.library.unisa.edu.au/Health

The text within this Guide is licensed CC BY 4.0 . Image licenses can be found within the image attributions document on the last page of the Guide. Ask the Library for information about reuse rights for other content within this Guide.

NAU Cline Library logo

HS 390W: Current Health Issues

  • Library Guide for HS 390w
  • Choosing a topic and developing a research question
  • Keywords & Background vs. Foreground Information
  • Health Resources (Databases at Cline Library)
  • Health Resources (U.S. Government)
  • Scholarly/Peer Reviewed
  • Key Components of Research Articles
  • Requesting an Item the Library Doesn't Have

Current Health Issues, Topics and Trends

Choosing a topic:

There are many places to look for information about current health issues, from newspapers and news stories to scholarly articles, as well as government and non-profit organization websites. Try these websites to look at current health trends:

Government Websites

  • American Public Health Association: Topics & Issues
  • Health Topics (MedlinePlus)
  • Health Topics A to Z (Healthfinder.gov)
  • HHS Blog (Department of Health and Human Services) Be sure to look at the categories on the left hand side as well as the most recent tweets .
  • Minority Health Topics
  • Women's Health: Health Issues
  • New York Times: Health Topics

The Who and What of your Question

  • Health professionals, religious organization, news outlets
  • Who is the author’s desired audience?
  • Are they credible?
  • Does the author have a bias or agenda?
  • What is your topic?
  • Is it controversial?
  • Is it currently in the news?
  • Is there federal policy around it?
  • Best practices
  • What are the geographic parameters?

Formulating a question

Once you've decided on a topic, think about what questions you want to ask about that topic.  What would you like to know more about?  Thinking about this will help you develop a research question. 

Examples of research questions:

  • Does improved nutrition in children impact academic achievement?
  • Are teenage drivers more likely to be involved in automobile accidents? 
  • Do early intervention programs prevent smoking among teenagers who live in rural areas within the United States?
  • Do bicycle seats effect reproductive health in professional cyclists? 
  • Are pregnant women from lower socioeconomic backgrounds less likely to use prenatal vitamins?

After you have formulated a research question, you'll want to search a variety of health resource to make sure that there is enough information about your topic for you to complete the assignments. 

Factors to consider when formulating a research question:

  • What is the health issue (is it looking at the prevention of a health condition, is it about the treatment of a health condition, etc.?)
  • Who is your audience: is it a population, or is it an individual, such as a patient?
  • How is the information going to be used by a population or a patient?
  • What types of resources should be consulted to answer the complexity of your question? Evidence-based? Peer-reviewed?
  • How many resources might be necessary in order to adequately research the topic?
  • Searching Worksheet
  • << Previous: Library Guide for HS 390w
  • Next: Keywords & Background vs. Foreground Information >>
  • Last Updated: Nov 9, 2023 12:38 PM
  • URL: https://libraryguides.nau.edu/hs390w-current-health-issues

Qualitative Research Questions: Gain Powerful Insights + 25 Examples

We review the basics of qualitative research questions, including their key components, how to craft them effectively, & 25 example questions.

Einstein was many things—a physicist, a philosopher, and, undoubtedly, a mastermind. He also had an incredible way with words. His quote, "Everything that can be counted does not necessarily count; everything that counts cannot necessarily be counted," is particularly poignant when it comes to research. 

Some inquiries call for a quantitative approach, for counting and measuring data in order to arrive at general conclusions. Other investigations, like qualitative research, rely on deep exploration and understanding of individual cases in order to develop a greater understanding of the whole. That’s what we’re going to focus on today.

Qualitative research questions focus on the "how" and "why" of things, rather than the "what". They ask about people's experiences and perceptions , and can be used to explore a wide range of topics.

The following article will discuss the basics of qualitative research questions, including their key components, and how to craft them effectively. You'll also find 25 examples of effective qualitative research questions you can use as inspiration for your own studies.

Let’s get started!

What are qualitative research questions, and when are they used?

When researchers set out to conduct a study on a certain topic, their research is chiefly directed by an overarching question . This question provides focus for the study and helps determine what kind of data will be collected.

By starting with a question, we gain parameters and objectives for our line of research. What are we studying? For what purpose? How will we know when we’ve achieved our goals?

Of course, some of these questions can be described as quantitative in nature. When a research question is quantitative, it usually seeks to measure or calculate something in a systematic way.

For example:

  • How many people in our town use the library?
  • What is the average income of families in our city?
  • How much does the average person weigh?

Other research questions, however—and the ones we will be focusing on in this article—are qualitative in nature. Qualitative research questions are open-ended and seek to explore a given topic in-depth.

According to the Australian & New Zealand Journal of Psychiatry , “Qualitative research aims to address questions concerned with developing an understanding of the meaning and experience dimensions of humans’ lives and social worlds.”

This type of research can be used to gain a better understanding of people’s thoughts, feelings and experiences by “addressing questions beyond ‘what works’, towards ‘what works for whom when, how and why, and focusing on intervention improvement rather than accreditation,” states one paper in Neurological Research and Practice .

Qualitative questions often produce rich data that can help researchers develop hypotheses for further quantitative study.

  • What are people’s thoughts on the new library?
  • How does it feel to be a first-generation student at our school?
  • How do people feel about the changes taking place in our town?

As stated by a paper in Human Reproduction , “...‘qualitative’ methods are used to answer questions about experience, meaning, and perspective, most often from the standpoint of the participant. These data are usually not amenable to counting or measuring.”

Both quantitative and qualitative questions have their uses; in fact, they often complement each other. A well-designed research study will include a mix of both types of questions in order to gain a fuller understanding of the topic at hand.

If you would like to recruit unlimited participants for qualitative research for free and only pay for the interview you conduct, try using Respondent  today. 

Crafting qualitative research questions for powerful insights

Now that we have a basic understanding of what qualitative research questions are and when they are used, let’s take a look at how you can begin crafting your own.

According to a study in the International Journal of Qualitative Studies in Education, there is a certain process researchers should follow when crafting their questions, which we’ll explore in more depth.

1. Beginning the process 

Start with a point of interest or curiosity, and pose a draft question or ‘self-question’. What do you want to know about the topic at hand? What is your specific curiosity? You may find it helpful to begin by writing several questions.

For example, if you’re interested in understanding how your customer base feels about a recent change to your product, you might ask: 

  • What made you decide to try the new product?
  • How do you feel about the change?
  • What do you think of the new design/functionality?
  • What benefits do you see in the change?

2. Create one overarching, guiding question 

At this point, narrow down the draft questions into one specific question. “Sometimes, these broader research questions are not stated as questions, but rather as goals for the study.”

As an example of this, you might narrow down these three questions: 

into the following question: 

  • What are our customers’ thoughts on the recent change to our product?

3. Theoretical framing 

As you read the relevant literature and apply theory to your research, the question should be altered to achieve better outcomes. Experts agree that pursuing a qualitative line of inquiry should open up the possibility for questioning your original theories and altering the conceptual framework with which the research began.

If we continue with the current example, it’s possible you may uncover new data that informs your research and changes your question. For instance, you may discover that customers’ feelings about the change are not just a reaction to the change itself, but also to how it was implemented. In this case, your question would need to reflect this new information: 

  • How did customers react to the process of the change, as well as the change itself?

4. Ethical considerations 

A study in the International Journal of Qualitative Studies in Education stresses that ethics are “a central issue when a researcher proposes to study the lives of others, especially marginalized populations.” Consider how your question or inquiry will affect the people it relates to—their lives and their safety. Shape your question to avoid physical, emotional, or mental upset for the focus group.

In analyzing your question from this perspective, if you feel that it may cause harm, you should consider changing the question or ending your research project. Perhaps you’ve discovered that your question encourages harmful or invasive questioning, in which case you should reformulate it.

5. Writing the question 

The actual process of writing the question comes only after considering the above points. The purpose of crafting your research questions is to delve into what your study is specifically about” Remember that qualitative research questions are not trying to find the cause of an effect, but rather to explore the effect itself.

Your questions should be clear, concise, and understandable to those outside of your field. In addition, they should generate rich data. The questions you choose will also depend on the type of research you are conducting: 

  • If you’re doing a phenomenological study, your questions might be open-ended, in order to allow participants to share their experiences in their own words.
  • If you’re doing a grounded-theory study, your questions might be focused on generating a list of categories or themes.
  • If you’re doing ethnography, your questions might be about understanding the culture you’re studying.

Whenyou have well-written questions, it is much easier to develop your research design and collect data that accurately reflects your inquiry.

In writing your questions, it may help you to refer to this simple flowchart process for constructing questions:

research questions examples on health

Download Free E-Book 

25 examples of expertly crafted qualitative research questions

It's easy enough to cover the theory of writing a qualitative research question, but sometimes it's best if you can see the process in practice. In this section, we'll list 25 examples of B2B and B2C-related qualitative questions.

Let's begin with five questions. We'll show you the question, explain why it's considered qualitative, and then give you an example of how it can be used in research.

1. What is the customer's perception of our company's brand?

Qualitative research questions are often open-ended and invite respondents to share their thoughts and feelings on a subject. This question is qualitative because it seeks customer feedback on the company's brand. 

This question can be used in research to understand how customers feel about the company's branding, what they like and don't like about it, and whether they would recommend it to others.

2. Why do customers buy our product?

This question is also qualitative because it seeks to understand the customer's motivations for purchasing a product. It can be used in research to identify the reasons  customers buy a certain product, what needs or desires the product fulfills for them, and how they feel about the purchase after using the product.

3. How do our customers interact with our products?

Again, this question is qualitative because it seeks to understand customer behavior. In this case, it can be used in research to see how customers use the product, how they interact with it, and what emotions or thoughts the product evokes in them.

4. What are our customers' biggest frustrations with our products?

By seeking to understand customer frustrations, this question is qualitative and can provide valuable insights. It can be used in research to help identify areas in which the company needs to make improvements with its products.

5. How do our customers feel about our customer service?

Rather than asking why customers like or dislike something, this question asks how they feel. This qualitative question can provide insights into customer satisfaction or dissatisfaction with a company. 

This type of question can be used in research to understand what customers think of the company's customer service and whether they feel it meets their needs.

20 more examples to refer to when writing your question

Now that you’re aware of what makes certain questions qualitative, let's move into 20 more examples of qualitative research questions:

  • How do your customers react when updates are made to your app interface?
  • How do customers feel when they complete their purchase through your ecommerce site?
  • What are your customers' main frustrations with your service?
  • How do people feel about the quality of your products compared to those of your competitors?
  • What motivates customers to refer their friends and family members to your product or service?
  • What are the main benefits your customers receive from using your product or service?
  • How do people feel when they finish a purchase on your website?
  • What are the main motivations behind customer loyalty to your brand?
  • How does your app make people feel emotionally?
  • For younger generations using your app, how does it make them feel about themselves?
  • What reputation do people associate with your brand?
  • How inclusive do people find your app?
  • In what ways are your customers' experiences unique to them?
  • What are the main areas of improvement your customers would like to see in your product or service?
  • How do people feel about their interactions with your tech team?
  • What are the top five reasons people use your online marketplace?
  • How does using your app make people feel in terms of connectedness?
  • What emotions do people experience when they're using your product or service?
  • Aside from the features of your product, what else about it attracts customers?
  • How does your company culture make people feel?

As you can see, these kinds of questions are completely open-ended. In a way, they allow the research and discoveries made along the way to direct the research. The questions are merely a starting point from which to explore.

This video offers tips on how to write good qualitative research questions, produced by Qualitative Research Expert, Kimberly Baker.

Wrap-up: crafting your own qualitative research questions.

Over the course of this article, we've explored what qualitative research questions are, why they matter, and how they should be written. Hopefully you now have a clear understanding of how to craft your own.

Remember, qualitative research questions should always be designed to explore a certain experience or phenomena in-depth, in order to generate powerful insights. As you write your questions, be sure to keep the following in mind:

  • Are you being inclusive of all relevant perspectives?
  • Are your questions specific enough to generate clear answers?
  • Will your questions allow for an in-depth exploration of the topic at hand?
  • Do the questions reflect your research goals and objectives?

If you can answer "yes" to all of the questions above, and you've followed the tips for writing qualitative research questions we shared in this article, then you're well on your way to crafting powerful queries that will yield valuable insights.

Download Free E-Book

Respondent_100+Questions_Banners_1200x644 (1)

Asking the right questions in the right way is the key to research success. That’s true for not just the discussion guide but for every step of a research project. Following are 100+ questions that will take you from defining your research objective through  screening and participant discussions.

Fill out the form below to access free e-book! 

Recommend Resources:

  • How to Recruit Participants for Qualitative Research
  • The Best UX Research Tools of 2022
  • 10 Smart Tips for Conducting Better User Interviews
  • 50 Powerful Questions You Should Ask In Your Next User Interview
  • How To Find Participants For User Research: 13 Ways To Make It Happen
  • UX Diary Study: 5 Essential Tips For Conducing Better Studies
  • User Testing Recruitment: 10 Smart Tips To Find Participants Fast
  • Qualitative Research Questions: Gain Powerful Insights + 25
  • How To Successfully Recruit Participants for A Study (2022 Edition)
  • How To Properly Recruit Focus Group Participants (2022 Edition)
  • The Best Unmoderated Usability Testing Tools of 2022

50 Powerful User Interview Questions You Should Consider Asking

We researched the best user interview questions you can use for your qualitative research studies. Use these 50 sample questions for your next...

How To ​​Unleash Your Extra Income Potential With Respondent

The number one question we get from new participants is “how can I get invited to participate in more projects.” In this article, we’ll discuss a few...

Understanding Why High-Quality Research Needs High-Quality Participants

Why are high-quality participants essential to your research? Read here to find out who they are, why you need them, and how to find them.

  • Library databases
  • Library website

Evidence-Based Research: Phrasing Research Questions

The researchable question.

The first step in doing evidence-based practice research is forming a researchable question. Questions that are too broad or too narrow can make your research difficult, if not impossible.

Clinical example:

  • This topic is so broad that you'd have difficulty wading through all of the results.
  • This question is so specific that there probably hasn't been anything published on that specific location regarding that specific population.
  • Just right : In the NICU, what is the effect of hand washing on infection control compared with hand sanitizers, over 6 months?

Non-clinical example:

  • This topic is so broad that you'd have difficulty wading through all of the results.  Also the wording in the question has to be more specific (use synonyms to include all possible versions).  For instance, heart disease is better known in the literature as cardiovascular disease, so search both ways. 
  • This question is so specific that there probably hasn't been anything published on that specific location regarding that specific population. It can be only be determined by accessing the electronic medical records in the hospital and finding the rate.
  • This question is just right because the variable name like “cardiovascular mortality” are descriptive and reflective of what is found in the literature.  Additionally, there are some control variables included to make sure that even if each group of race had individuals with different ages or different incomes, this would not explain away the differences in cardiovascular mortality impacted by race.

PICOT and other models

PICOT is a mnemonic that helps you remember the key components of a well-focused question. It stands for:

  • P = Patient, Population or Problem
  • I = Intervention, Prognostic Factor, or Exposure
  • C = Comparison (optional)
  • O = Outcome

PICOT examples:

Intervention/therapy

In _______(P), what is the effect of _______(I) on ______(O) compared with _______(C) within ________ (T)? 

In the aged population, what is the effect of exercise programs on accidental falls, as compared with no exercise?  

Are ____ (P) who have _______ (I) at ___ (Increased/decreased) risk for/of_______ (O) compared with ______ (P) with/without ______ (C) over _____ (T)?

Are adult smokers with a history of childhood asthma at increased risk of COPD compared to adult smokers with no history of asthma?  

Diagnosis or diagnostic test

Are (is) _________ (I) more accurate in diagnosing ________ (P) compared with ______ (C) for _______ (O)? 

Is the Hemoglobin A1C test more accurate in diagnosing diabetes as compared with fasting blood sugar levels?  

For ________ (P) does the use of ______ (I) reduce the future risk of ________ (O) compared with _________ (C)? 

For people with type 2 diabetes, does zinc supplementation reduce the future risk of foot ulcers compared with placebo?  

Prognosis/Predictions 

Does __________ (I) influence ________ (O) in patients who have _______ (P) over ______ (T)? 

In adults with osteoarthritis, does low vitamin D levels in the bloodstream predict the rate of future hip fractures?  

Meaning 

How do ________ (P) diagnosed with _______ (I) perceive ______ (O) during _____ (T)? 

How do cancer patients diagnosed with alopecia perceive their self-esteem during and after chemotherapy?

Public Health:

PICO(T) is commonly used to formulate research questions, sometimes referred to as ‘PI/ECO’ (Population/participants, Intervention/Exposure, Comparison, Outcome). The PI/ECO structure can be readily amended for different question types ( NHMRC Guidelines, 2019 ). A simple example might be:   

  • Population / participants: Non-institutionalized civilian residents of the United States   
  • Intervention (or Exposure): Hypertension (or Low Socioeconomic Status)  
  • Comparison: Respondents without hypertension   
  • Outcomes: Cardiovascular disease or cardiovascular mortality   
  • Types of studies: Cross-sectional, Longitudinal

Alternate Models:

  • PECO  – Population | Environment | Comparison | Outcome Very similar to PICO but looking at the effect of exposure to something e.g. smoky atmosphere
  • SPICE  - Setting | Population | Intervention | Comparison | Evaluation Another variant of PICO but this time including the setting (where? in what context?)
  • ECLIPSE  - Expectation | Client group | Location | Impact | Professionals | Service Recommended for health policy/management searches
  • SPIDER  – Sample | Phenomenon of Interest | Design | Evaluation | Research Type Developed to create effective search strategies of qualitative and mixed-methods research - more specific than PICO/PECO

Search terms

Once you've developed your question, it's time to find keywords or search terms that you can use in the Library databases to find articles relevant to your question. Remember that each article does not necessarily need to address ALL the aspects of your question.

To learn more about selecting and combining appropriate search terms, please see our guides:

  • Keyword Searching: Keyword Search Strategy
  • Guide: Keyword Searching: Boolean
  • Previous Page: Overview
  • Next Page: Levels of Evidence Pyramid
  • Office of Student Disability Services

Walden Resources

Departments.

  • Academic Residencies
  • Academic Skills
  • Career Planning and Development
  • Customer Care Team
  • Field Experience
  • Military Services
  • Student Success Advising
  • Writing Skills

Centers and Offices

  • Center for Social Change
  • Office of Academic Support and Instructional Services
  • Office of Degree Acceleration
  • Office of Research and Doctoral Services
  • Office of Student Affairs

Student Resources

  • Doctoral Writing Assessment
  • Form & Style Review
  • Quick Answers
  • ScholarWorks
  • SKIL Courses and Workshops
  • Walden Bookstore
  • Walden Catalog & Student Handbook
  • Student Safety/Title IX
  • Legal & Consumer Information
  • Website Terms and Conditions
  • Cookie Policy
  • Accessibility
  • Accreditation
  • State Authorization
  • Net Price Calculator
  • Contact Walden

Walden University is a member of Adtalem Global Education, Inc. www.adtalem.com Walden University is certified to operate by SCHEV © 2024 Walden University LLC. All rights reserved.

Banner

Writing for Healthcare Professionals: Creating a Research Question

  • Finding Sources
  • Creating a Research Question
  • Search Terms
  • Search Strategies
  • Recording Your Research
  • Journal Articles
  • Books & Other Sources
  • Online Help
  • Publisher URL

Choosing a Topic

Sometimes the most difficult part of the research process is choosing a topic.  Here are some tips for selecting a research question that you will enjoy learning about and will ultimately lead to a good grade.

  • Read through your assignment.   Professors design an assignment outline for a reason.  Make sure your topic can and will adhere to their requirements and guidelines.
  • Choose a topic you are interested in.   If you don't like what you're researching, chances are you won't learn a whole lot or enjoy the process.  And really, what's the point of that?  
  • Browse resources that relate to your course work.  Look through a newspaper, magazine, or database for current events or hot topics.  Browsing can spark a lot of great ideas and can help you refine your topic.
  • Ask for help!   There is nothing wrong with asking your professor or a librarian to help you brainstorm ideas.

Where to Start

The links below are great places to start in developing a research question.  Browsing current events and hot topics can spark your interest and inspire a topic.

  • Alvernia's "Opposing Viewpoints" Collection
  • Alvernia's Reference Collection
  • Anatomy & Physiology
  • Athletic Training Websites
  • Google Trends
  • Health & Medicine
  • Hot Paper Topics
  • Hot Topics for Research Papers
  • MedLinePlus This link opens in a new window
  • National Library of Medicine
  • Opposing Viewpoints in Context This link opens in a new window
  • Human Diseases
  • New York Times
  • NPR Research News
  • Pew Research Center
  • Public Agenda's Programs and Reports

How to Formulate an Answerable Clinical Question

P opulation/patients

I ntervention/indicator

C omparator/control

  • P I C O: Formulate an Answerable Question
  • Formulating Answerable Clinical Questions

Developing your Research Question

Try asking yourself these questions to help develop a research question:

Topic:  Obesity

Who?  teenagers

What?  consumption of high fat foods

Where?  school cafeterias

Question :  How does the consumption of high fat foods in school cafeterias contribute to teenager obesity?

Topic: Smoke Exposure

Who?   children exposed to smoke

What?   developmental abilities

Question :  How does smoke exposure alter the developmental abilities of children?

Below is worksheet which will help illustrate how a research question develops from a broad topic to a focused question.  This could be a helpful resource for you during the process of creating your research question.

  • Creating a Research Question Helps you to write a narrow, focused research question.

Subject Terms to Consider

Below is a list of subjects that often  relate to nursing issues .  Considering these subject terms can help you  develop a topic  or  focus your search .

  • Nursing research
  • Evidence-based nursing

Helpful Tools

  • bubbl.us - Brainstorming Made Simple
  • Critical Thinking Model
  • << Previous: Research Help
  • Next: Search Terms >>
  • Last Updated: Jan 18, 2024 1:19 PM
  • URL: https://alvernia.libguides.com/writingforhealthcare

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Cell Biosci

Logo of cellbio

SARS-CoV-2 and COVID-19: The most important research questions

Kit-san yuen.

1 School of Biomedical Sciences, The University of Hong Kong, 3/F Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong

2 Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong

Sin-Yee Fung

Chi-ping chan, dong-yan jin, associated data.

Not applicable.

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing global health emergency. Here we highlight nine most important research questions concerning virus transmission, asymptomatic and presymptomatic virus shedding, diagnosis, treatment, vaccine development, origin of virus and viral pathogenesis.

The 2019-nCoV causes an ongoing outbreak of lower respiratory tract disease called novel coronavirus pneumonia (NCP) by the Chinese government initially. The disease name was subsequently recommended as COVID-19 by the World Health Organization. Meanwhile, 2019-nCoV was renamed SARS-CoV-2 by the International Committee on Taxonomy of Viruses. As of February 24, 2020, more than 80,000 confirmed cases including more than 2,700 deaths have been reported worldwide, affecting at least 37 countries. The WHO has declared this a global health emergency at the end of January 2020. The epicenter of this ongoing outbreak is in the city of Wuhan in Hubei Province of central China and the Huanan seafood wholesale market was thought to be at least one of the places where SARS-CoV-2 from an unknown animal source might have crossed the species barrier to infect humans.

A pioneering study conducted in the city of Shenzhen near Hong Kong by a group of clinicians and scientists from the University of Hong Kong has provided the first concrete evidence for human-to-human transmission of SARS-CoV-2 [ 1 ]. This is an excellent example of how a high-quality clinical study can make a major difference in policy setting. Several important clinical features of COVID-19 have also been documented in this study. First, an attack rate of 83% within the family context is alarmingly high, indicating the high transmissibility of SARS-CoV-2. Second, the clinical manifestations of COVID-19 in this family range from mild to moderate, with more systematic symptoms and more severe radiological abnormalities seen in older patients. Generally, COVID-19 appears to be less severe than SARS. Third, an asymptomatic child was found to have ground-glass opacities in his lung and SARS-CoV-2 RNA in his sputum sample. This finding of asymptomatic virus shedding raises the possibility for transmission of SARS-CoV-2 from asymptomatic carriers to others, which is later confirmed by others [ 2 ]. Finally, the presentation of diarrhea in two young adults from the same family also suggests the possibility for gastrointestinal involvement in SARS-CoV-2 infection and fecal–oral transmission. The study has set the stage for the control and management of COVID-19 [ 1 ]. The work was completed timely and the investigators showed great courage and leadership in a very difficult time when the Chinese authority failed to recognize widespread person-to-person transmission of SARS-CoV-2 before January 20, 2020.

Several interesting papers on SARS-CoV-2 and COVID-19 have been published in the past few weeks to report on the evolutionary reservoir [ 3 ], possible intermediate host [ 4 ] and genomic sequence [ 5 ] of SARS-CoV-2 as well as clinical characteristics of COVID-19 [ 6 , 7 ]. In view of these findings and the urgent needs in the prevention and control of SARS-CoV-2 and COVID-19, in this commentary we highlight the most important research questions in the field from our personal perspectives.

The first question concerns how SARS-CoV-2 is transmitted currently in the epicenter of Wuhan. In order to minimize the spreading of SARS-CoV-2, China has locked down Wuhan and nearby cities since January 23, 2020. The unprecedented control measures including suspension of all urban transportation have apparently been successful in preventing further spreading of SARS-CoV-2 to other cities. However, the number of confirmed cases in Wuhan continued to rise. It is therefore crucial to determine whether the rise is due to a large number of infected individuals before the lock down and/or failure in the prevention of widespread intra-familial, nosocomial or community transmission. Based on the number of exported cases from Wuhan to cities outside of mainland China, it was predicted that there might be more than 70,000 individuals infected with SARS-CoV-2 on January 25, 2020 in Wuhan [ 8 ]. This should be determined experimentally in Wuhan as discussed below and it will reveal whether the real numbers of infected people and asymptomatic carriers are indeed underestimated severely. In addition to viral RNA detection, measurement of IgM and IgG antibodies as well as antigens would be very helpful. Several representative residential areas should be selected for detailed analysis so that a big picture can be deduced. The analysis should include all healthy and diseased individuals within the area with the aim of identifying people who have recovered from an infection or are having an active infection. The ratio of asymptomatic carriers should also be determined. The analysis should also be extended to detect RNA and antigen of influenza viruses. The activity of seasonal flu in Wuhan also reached a peak at the beginning of 2020. It will be of interest to see whether the flu season had ended and how many people having a fever now are actually infected with influenza virus. Precision control measures for SARS-CoV-2 should be tailor-designed for high-risk groups based on the results of this analysis. Differentiating people having a flu and preventing them from infecting with SARS-CoV-2 in a hospital setting might also be critical.

The second question is how transmissible and pathogenic is SARS-CoV-2 in tertiary and quaternary spreading within humans. Continued transmission of SARS-CoV-2 in Wuhan suggests that tertiary and quaternary spreading has occurred. Compared to the primary and secondary spreading during which SARS-CoV-2 was transmitted from animal to human and from human to human, has the transmission rate increased and has the pathogenicity decreased? Alternatively, is the virus less transmissible after several passages in humans? Retrospective analysis of all confirmed cases in Wuhan should be very informative. The answers to the above questions hold the key to the outcome of the outbreak. If the transmission is weakened, the outbreak may ultimately come to an end at which SARS-CoV-2 is eradicated from humans. On the contrary, if effective transmission can be sustained, the chance is increased that SARS-CoV-2 will become another community-acquired human coronavirus just like the other four human coronaviruses (229E, OC43, HKU1 and NL63) causing common cold only. The basic reproductive number (R 0 ) of SARS-CoV-2 has been estimated to be 2.68, resulting in an epidemic doubling time of about 6.4 days [ 8 ]. Other estimates of R 0 could go up to 4, higher than that of SARS-CoV, which is lower than 2. Determining the real R 0 will shed light on whether and to what extent infection control measures are effective.

The third question relates to the importance of asymptomatic and presymptomatic virus shedding in SARS-CoV-2 transmission. Asymptomatic and presymptomatic virus shedding posts a big challenge to infection control [ 1 , 2 ]. In addition, patients with mild and unspecific symptoms are also difficult to identify and quarantine. Notably, the absence of fever in SARS-CoV-2 infection (12.1%) is more frequent than in SARS-CoV (1%) and Middle East respiratory syndrome coronavirus (MERS-CoV; 2%) infection [ 6 ]. In light of this, the effectiveness of using fever detection as the surveillance method should be reviewed. However, based on previous studies of influenza viruses and community-acquired human coronaviruses, the viral loads in asymptomatic carriers are relatively low [ 9 ]. If this is also the case for SARS-CoV-2, the risk should remain low. Studies on the natural history of SARS-CoV-2 infection in humans are urgently needed. Identifying a cohort of asymptomatic carriers in Wuhan and following their viral loads, clinical presentations and antibody titers over a time course will provide clues as to how many of the subjects have symptoms in a later phase, whether virus shedding from the subjects is indeed less robust, and how often they might transmit SARS-CoV-2 to others.

The fourth question relates to the importance of fecal–oral route in SARS-CoV-2 transmission. In addition to transmission via droplets and close contact, fecal–oral transmission of SARS-CoV has been shown to be important in certain circumstances. Gastrointestinal involvement of SARS-CoV-2 infection and isolation of SARS-CoV-2 from fecal samples of patients are in support of the importance of fecal–oral route in SARS-CoV-2 transmission. Although diarrhea was rarely seen in studies with large cohorts [ 6 , 7 ], the possibility of SARS-CoV-2 transmission via sewage, waste, contaminated water, air condition system and aerosols cannot be underestimated, particularly in cases such as the Diamond Princess cruise ship with 3,700 people, among whom at least 742 have been confirmed to be infected with SARS-CoV-2 plausibly as the result of a superspreading event. Further investigations are required to determine the role of fecal–oral transmission in these cases and within the representative residential areas selected for detailed epidemiological studies in Wuhan as discussed earlier.

The fifth question concerns how COVID-19 should be diagnosed and what diagnostic reagents should be made available. RT-PCR-based SARS-CoV-2 RNA detection in respiratory samples provides the only specific diagnostic test at the initial phase of the outbreak. It has played a very critical role in early detection of patients infected with SARS-CoV-2 outside of Wuhan, implicating that widespread infection of the virus had occurred in Wuhan at least as early as the beginning of 2020. This has also pushed the Chinese authority to acknowledge the severity of the situation. Due to difficulties in sampling and other technical issues in this test, at one point in early February clinically diagnosed patients with typical ground glass lung opacities in chest CT were also counted as confirmed cases in order to have the patients identified and quarantined as early as possible. ELISA kits for detection of IgM and IgG antibodies against N and other SARS-CoV-2 proteins have also been available more recently. This has made specific diagnosis of ongoing and past infection possible. Particularly, seroconversion for IgM antibodies normally occurs a few days earlier than that of IgG. ELISA reagents for detection of SARS-CoV-2 antigens such as S and N are still in urgent need, and would provide another test highly complementary to viral RNA detection.

The sixth question concerns how COVID-19 should be treated and what treatment options should be made available. COVID-19 is a self-limiting disease in more than 80% of patients. Severe pneumonia occurred in about 15% of cases as revealed in studies with large cohorts of patients. The gross case fatality is 3.4% worldwide as of February 25, 2020. This rate is 4.4% for patients in Wuhan, 4.0% for patients in Hubei and 0.92% for patients outside of Hubei. The exceedingly high fatality in Wuhan might be explained by the collapse of hospitals, a large number of undiagnosed patients, suboptimal treatment or a combination of these. Up to date, we still do not have any specific anti-SARS-CoV-2 agents but an anti-Ebola drug, remdesivir, may hold the promise. As a nucleotide analog, remdesivir was shown to be effective in preventing MERS-CoV replication in monkeys. Severity of disease, viral replication, and lung damage were reduced when the drug was administered either before or after infection with MERS-CoV [ 10 ]. These results provide the basis for a rapid test of the beneficial effects of remdesivir in COVID-19. Other antiviral agents worthy of further clinical investigations include ribavirin, protease inhibitors lopinavir and ritonavir, interferon α2b, interferon β, chloroquine phosphate, and Arbidol. However, we should also bear in mind the side effects of these antiviral agents. For example, type I interferons including interferon α2b and interferon β are well known for their antiviral activity. Their beneficial effects at an early phase of infection are well expected. However, administration at a later stage carries the risk that they might worsen the cytokine storm and exacerbate inflammation. Notably, steroids have been experimentally used widely in the treatment of SARS and are still preferred by some Chinese physicians in the treatment of COVID-19. It is said to be capable of stopping the cytokine storm and preventing lung fibrosis. However, the window in which steroids might be beneficial to patients with COVID-19 is very narrow. In other words, steroids can only be used when SARS-CoV-2 has already been eliminated by human immune response. Otherwise, SARS-CoV-2 replication will be boosted leading to exacerbation of symptoms, substantial virus shedding, as well as increased risk for nosocomial transmission and secondary infection. In this regard, it will be of interest to determine whether the report of fungal infection in the lungs of some patients in Wuhan might be linked to misuse of steroids. Nevertheless, the screening of new pharmaceuticals, small-molecule compounds and other agents that have potent anti-SARS-CoV-2 effects will successfully derive new and better lead compounds and agents that might prove useful in the treatment of COVID-19.

The seventh question is whether inactivated vaccines are a viable option for SARS-CoV-2. The chance that SARS-CoV-2 will become endemic in some areas or even pandemic has increased in view of its high transmissibility, asymptomatic and presymptomatic virus shedding, high number of patients with mild symptoms, as well as the evidence for superspreading events. Thus, vaccine development becomes necessary for prevention and ultimate eradication of SARS-CoV-2. Inactivated vaccines are one major type of conventional vaccines that could be easily produced and quickly developed. In this approach, SARS-CoV-2 virions can be chemically and/or physically inactivated to elicit neutralizing antibodies. In the case of SARS-CoV and MERS-CoV, neutralizing antibodies were successfully and robustly induced by an inactivated vaccine in all types of animal experiments, but there are concerns about antibody-dependent enhancement of viral infection and other safety issues. While inactivated vaccines should still be tested, alternative approaches include live attenuated vaccines, subunit vaccines and vectored vaccines. All of these merit further investigations and tests in animals.

The eighth question relates to the origins of SARS-CoV-2 and COVID-19. To make a long story short, two parental viruses of SARS-CoV-2 have now been identified. The first one is bat coronavirus RaTG13 found in Rhinolophus affinis from Yunnan Province and it shares 96.2% overall genome sequence identity with SARS-CoV-2 [ 3 ]. However, RaTG13 might not be the immediate ancestor of SARS-CoV-2 because it is not predicted to use the same ACE2 receptor used by SARS-CoV-2 due to sequence divergence in the receptor-binding domain sharing 89% identity in amino acid sequence with that of SARS-CoV-2. The second one is a group of betacoronaviruses found in the endangered species of small mammals known as pangolins [ 4 ], which are often consumed as a source of meat in southern China. They share about 90% overall nucleotide sequence identity with SARS-CoV-2 but carries a receptor-binding domain predicted to interact with ACE2 and sharing 97.4% identity in amino acid sequence with that of SARS-CoV-2. They are closely related to both SARS-CoV-2 and RaTG13, but apparently they are unlikely the immediate ancestor of SARS-CoV-2 in view of the sequence divergence over the whole genome. Many hypotheses involving recombination, convergence and adaptation have been put forward to suggest a probable evolutionary pathway for SARS-CoV-2, but none is supported by direct evidence. The jury is still out as to what animals might serve as reservoir and intermediate hosts of SARS-CoV-2. Although Huanan seafood wholesale market was suggested as the original source of SARS-CoV-2 and COVID-19, there is evidence for the involvement of other wild animal markets in Wuhan. In addition, the possibility for a human superspreader in the Huanan market has not been excluded. Further investigations are required to shed light on the origins of SARS-CoV-2 and COVID-19.

The ninth question concerns why SARS-CoV-2 is less pathogenic. If the reduced pathogenicity of SARS-CoV-2 is the result of adaptation to humans, it will be of great importance to identify the molecular basis of this adaptation. The induction of a cytokine storm is the root cause of pathogenic inflammation both in SARS and COVID-19. SARS-CoV is known to be exceedingly potent in the suppression of antiviral immunity and the activation of proinflammatory response. It is therefore intriguing to see how SARS-CoV-2 might be different from SARS-CoV in interferon-antagonizing and inflammasome-activating properties. It is noteworthy that some interferon antagonists and inflammasome activators encoded by SARS-CoV are not conserved in SARS-CoV-2. Particularly, ORF3 and ORF8 in SARS-CoV-2 are highly divergent from ORF3a and ORF8b in SARS-CoV that are known to induce NLRP3 inflammasome activation. ORF3 of SARS-CoV-2 is also significantly different from the interferon antagonist ORF3b of SARS-CoV. Thus, these viral proteins of SARS-CoV and SARS-CoV-2 should be compared for their abilities to modulate antiviral and proinflammatory responses. The hypothesis that SARS-CoV-2 might be less efficient in the suppression of antiviral response and the activation of NLRP3 inflammasome should be tested experimentally.

Much progress has been made in the surveillance and control of infectious diseases in China after the outbreak of SARS-CoV in 2003. Meanwhile, virological research in the country has also been strengthened. The new disease report and surveillance system did function relatively well during the 2009 pandemic of swine flu. New viral pathogens such as avian influenza virus H7N9 and severe-fever-with-thrombocytopenia syndrome bunyavirus have also been discovered in recent years [ 11 , 12 ], indicating the strength and vigor of Chinese infectious disease surveillance and virological research. However, the ongoing outbreak of SARS-CoV-2 has not only caused significant morbidity and mortality in China, but also revealed major systematic problems in control and prevention of infectious diseases there. Unfortunately, many of the lessons from the 2003 outbreak have not been learned. Importantly, disease control professionals, practicing physicians and scientists are disconnected in the fight against SARS-CoV-2 and COVID-19. In addition, important decisions were not made by experts in the field. Hopefully, these issues will be dealt with swiftly and decisively during and after the outbreak.

Above we have discussed the two possibilities that this outbreak will unfold. If SARS-CoV-2 is not eliminated from humans through quarantine and other measures, it can still be eradicated by vaccination. If it attenuates to become another community-acquired human coronavirus causing mild respiratory tract disease resembling the other four human coronaviruses associated with common cold, it will not be a disaster either. Before SARS-CoV-2 attenuates further to a much less virulent form, early diagnosis and improved treatment of severe cases hold the key to reduce mortality. We should remain vigilant, but there are grounds for guarded optimism. Redoubling our research efforts on SARS-CoV-2 and COVID-19 will solidify the scientific basis on which important decisions are made.

Acknowledgements

We thank Pearl Chan, Hinson Cheung, Terence Lee and Kam-Leung Siu for critical reading of the manuscript.

Authors’ contributions

KSY and DYJ wrote the manuscript with inputs from ZWY, SYF and CPC. All authors read and approved the final manuscript.

Coronavirus research in our laboratory was funded by the Hong Kong Health and Medical Research Fund (HKM-15-M01) and Hong Kong Research Grants Council (T11-707/15-R).

Availability of data and materials

Ethics approval and consent to participate, consent for publication, competing interests.

No potential conflict of interest was reported by the authors.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • UNC Libraries
  • HSL Subject Research
  • Forming Focused Questions with PICO
  • PICO Examples

Forming Focused Questions with PICO: PICO Examples

Created by health science librarians.

HSL Logo

  • PICO's Limitations

Practice Your Skills

Cancer care and peer support, cultural awareness and nursing care, labor & delivery, infection control, nurse educator, nurse practitioner, public health, school nursing.

  • Other Question Frameworks

Practice writing out PICO components and then forming a focused question about one of the case studies below. Choose one or several that interest you.

You have read that peer support interventions help individuals and families affected by cancer across the care continuum from prevention through survivorship and end-of-life care. You wonder about the characteristics of peer support programs and how peer support programs have been used to reduce disparities and barriers to care.

Open to check your PICO analysis of the scenario for cancer care.

Nurses in oncology units interact frequently with adults with cancer who do not speak English as their primary language. You are curious whether cultural awareness among nurses improves these patients’ care and participation in the decision-making process.

Open to check your PICO analysis of the scenario for nursing care.

You’re a new nurse on a labor and delivery unit. You’ve noticed that most women give birth in the lithotomy position at the encouragement of their doctors. However, you’re sure you heard in nursing school that other positions are less likely to lead to deliveries with forceps or a vacuum.. or did you? You want to find some literature to back up your claim.

Open to check your PICO analysis of the scenario for labor and delivery.

You work in the Big City Hospital ICU. Your mechanically ventilated patients sometimes contract nosocomial pneumonia, which leads to costly complications. You want to know if raising the head of the bed lowers the chance of the patient contracting pneumonia compared to letting the patient lie flat on their back.

Open to check your PICO analysis of the scenario for the ICU..

In the past few years, your hospital has installed antibacterial foam dispensers on all the nursing units. You’ve had nurses asking you if the foam is just as effective as washing their hands with water and soap.

Open to check your PICO analysis of the scenario for infection control.

Shift change on your busy med-surg unit can be frustrating for you and your coworkers. Report at the nursing station takes up to 30 minutes, by the end of which you’re anxious to see your patients. You read something in a recent ANA newsletter about other hospitals switching to a bedside shift report, and you want to find out if staff liked that style of shift change better.

Open to check your PICO analysis of the scenario in med-surg.

Open to check your pico analysis of the scenario in the nicu..

It’s the last semester of your BSN students’ time in school and they’re excited.. and anxious! They’ve been asking you if they should take the NCLEX right after they graduate or wait for a while after graduation so they can relax and study.

Open to check your PICO analysis of the scenario for nurse educators.

It’s winter at your family practice, and you have a lot of patients coming in with runny noses and general malaise. Brenda, a 35 year old working mother in for a checkup states, "I’m so busy between work and home that I definitely don’t have time to get sick! Can those vitamin C or zinc pills prevent colds?"

Open to check your PICO analysis of the scenario for nurse practitioners.

The main concern for most of your patients coming out of anesthesia in your PACU is pain. You want to explore nursing interventions you can use on top of medication administration to decrease pain. One coworker mentions trying to make the PACU feel less clinical by playing soft music to relax patients.

Open to check your PICO analysis of the scenario for PACU.

You work in a pediatrician’s office and give patients their routine vaccinations. The younger children are often fearful of needles, and some of the staff use toys to distract the patients. You want to know if this technique actually has an effect on the children's pain response.

Open to check your PICO analysis of the scenario for pediatrics.

You work on an inpatient psychiatric unit. One of your patients with chronic schizophrenia, Joe, normally mumbles to himself, but will occasionally speak to others when residents play games together. Noticing this, you say to a coworker that maybe social skills group training sessions would bring out Joe’s conversational skills. Your coworker shakes her head and says "I don’t think so. Joe is in and out of this hospital, he’s a lost cause."

Open to check your PICO analysis of the scenario for psychiatry.

You coordinate health education programs and have been holding seminars for teenagers about STI prevention. You’ve been found that they’re hesitant to open up to you during classes to ask you questions. You’re wondering if recruiting peer educators closer to their age will encourage them to actively participate and get more satisfaction out of the classes.

Open to check your PICO analysis of the scenario for public health.

On your pulmonary unit, many of your COPD patients receive injections of heparin to prevent pulmonary emboli, and patients find the bruises associated with heparin injections unsightly. You’ve had nursing students shadowing you lately, so you’ve been particularly concerned with injection technique. You want to find out if the duration of injection has any effect on the extent of bruising.

Open to check your PICO analysis of the scenario for pulmonary.

You’re a school nurse and one aspect of your job is counseling pregnant teens with the aim of enabling them to complete high school. You’ve even been conducting home visits on top of your normal in-school meetings as part of their preparation-for-motherhood counseling. You want sources to backup the effectiveness of these home visits.

Open to check your PICO analysis of the scenario for school nursing.

A diabetic patient from a nursing home has recently been admitted with a stage III pressure ulcers on his heels. The unit nurses have called you in for a wound consult. You have to choose between standard moist wound therapy and using a wound vac.

Open to check your PICO analysis of the scenario for wound care.

  • << Previous: Case Study
  • Next: Other Question Frameworks >>
  • Last Updated: Feb 6, 2024 9:51 AM
  • URL: https://guides.lib.unc.edu/pico

Search & Find

  • E-Research by Discipline
  • More Search & Find

Places & Spaces

  • Places to Study
  • Book a Study Room
  • Printers, Scanners, & Computers
  • More Places & Spaces
  • Borrowing & Circulation
  • Request a Title for Purchase
  • Schedule Instruction Session
  • More Services

Support & Guides

  • Course Reserves
  • Research Guides
  • Citing & Writing
  • More Support & Guides
  • Mission Statement
  • Diversity Statement
  • Staff Directory
  • Job Opportunities
  • Give to the Libraries
  • News & Exhibits
  • Reckoning Initiative
  • More About Us

UNC University Libraries Logo

  • Search This Site
  • Privacy Policy
  • Accessibility
  • Give Us Your Feedback
  • 208 Raleigh Street CB #3916
  • Chapel Hill, NC 27515-8890
  • 919-962-1053
  • Dean's Message
  • Mission Statement
  • Diversity At VUSN
  • Our History
  • Faculty Fellows & Honors
  • Accreditation
  • Privacy Policy
  • Academic Programs
  • Master of Science in Nursing
  • Master of Nursing
  • Doctor of Nursing Practice
  • PhD in Nursing Science
  • Post-Master's Certificate
  • Postdoctoral Program
  • Special (Non-Degree) Students
  • Admissions Information
  • Admissions Requirements
  • MSN Admissions
  • MN Admissions
  • DNP Admissions
  • PhD Admissions
  • Post-Master's Certificates
  • Postdoctoral Admissions
  • Center for Research Development and Scholarship (CRDS)
  • Signature Areas
  • CRDS Behavorial Labs
  • Research Resources
  • Faculty Scholarship Program
  • Research Faculty
  • Preparing For Practice
  • Faculty Practice Network
  • Credentialing Process
  • Faculty Practice History
  • Vanderbilt Nurse-Midwifery Faculty Practice
  • What is Advanced Practice Nursing?
  • Preceptor Resources
  • The Vanderbilt Advantage
  • Making A Difference
  • Informatics
  • Global Health
  • Organizations
  • Veterans/Military

Examples of Research Questions

Phd in nursing science program, examples of broad clinical research questions include:.

  • Does the administration of pain medication at time of surgical incision reduce the need for pain medication twenty-four hours after surgery?
  • What maternal factors are associated with obesity in toddlers?
  • What elements of a peer support intervention prevent suicide in high school females?
  • What is the most accurate and comprehensive way to determine men’s experience of physical assault?
  • Is yoga as effective as traditional physical therapy in reducing lymphedema in patients who have had head and neck cancer treatment?
  • In the third stage of labor, what is the effect of cord cutting within the first three minutes on placenta separation?
  • Do teenagers with Type 1 diabetes who receive phone tweet reminders maintain lower blood sugars than those who do not?
  • Do the elderly diagnosed with dementia experience pain?
  •  How can siblings’ risk of depression be predicted after the death of a child?
  •  How can cachexia be prevented in cancer patients receiving aggressive protocols involving radiation and chemotherapy?

Examples of some general health services research questions are:

  • Does the organization of renal transplant nurse coordinators’ responsibilities influence live donor rates?
  • What activities of nurse managers are associated with nurse turnover?  30 day readmission rates?
  • What effect does the Nurse Faculty Loan program have on the nurse researcher workforce?  What effect would a 20% decrease in funds have?
  • How do psychiatric hospital unit designs influence the incidence of patients’ aggression?
  • What are Native American patient preferences regarding the timing, location and costs for weight management counseling and how will meeting these preferences influence participation?
  •  What predicts registered nurse retention in the US Army?
  • How, if at all, are the timing and location of suicide prevention appointments linked to veterans‘ suicide rates?
  • What predicts the sustainability of quality improvement programs in operating rooms?
  • Do integrated computerized nursing records across points of care improve patient outcomes?
  • How many nurse practitioners will the US need in 2020?

PhD Resources

Twitter

  • REQUEST INFO
  • CAREER SERVICES
  • PRIVACY POLICY
  • VANDERBILT UNIVERSITY
  • VANDERBILT UNIVERSITY MEDICAL CENTER

DISTINCTIONS

NLN logo

77 interesting medical research topics for 2024

Last updated

25 November 2023

Reviewed by

Brittany Ferri, PhD, OTR/L

Medical research is the gateway to improved patient care and expanding our available treatment options. However, finding a relevant and compelling research topic can be challenging.

Use this article as a jumping-off point to select an interesting medical research topic for your next paper or clinical study.

  • How to choose a medical research topic

When choosing a research topic , it’s essential to consider a couple of things. What topics interest you? What unanswered questions do you want to address? 

During the decision-making and brainstorming process, here are a few helpful tips to help you pick the right medical research topic:

Focus on a particular field of study

The best medical research is specific to a particular area. Generalized studies are often too broad to produce meaningful results, so we advise picking a specific niche early in the process. 

Maybe a certain topic interests you, or your industry knowledge reveals areas of need.

Look into commonly researched topics

Once you’ve chosen your research field, do some preliminary research. What have other academics done in their papers and projects? 

From this list, you can focus on specific topics that interest you without accidentally creating a copycat project. This groundwork will also help you uncover any literature gaps—those may be beneficial areas for research.

Get curious and ask questions

Now you can get curious. Ask questions that start with why, how, or what. These questions are the starting point of your project design and will act as your guiding light throughout the process. 

For example: 

What impact does pollution have on children’s lung function in inner-city neighborhoods? 

Why is pollution-based asthma on the rise? 

How can we address pollution-induced asthma in young children? 

  • 77 medical research topics worth exploring in 2023

Need some research inspiration for your upcoming paper or clinical study? We’ve compiled a list of 77 topical and in-demand medical research ideas. Let’s take a look. 

  • Exciting new medical research topics

If you want to study cutting-edge topics, here are some exciting options:

COVID-19 and long COVID symptoms

Since 2020, COVID-19 has been a hot-button topic in medicine, along with the long-term symptoms in those with a history of COVID-19. 

Examples of COVID-19-related research topics worth exploring include:

The long-term impact of COVID-19 on cardiac and respiratory health

COVID-19 vaccination rates

The evolution of COVID-19 symptoms over time

New variants and strains of the COVID-19 virus

Changes in social behavior and public health regulations amid COVID-19

Vaccinations

Finding ways to cure or reduce the disease burden of chronic infectious diseases is a crucial research area. Vaccination is a powerful option and a great topic to research. 

Examples of vaccination-related research topics include:

mRNA vaccines for viral infections

Biomaterial vaccination capabilities

Vaccination rates based on location, ethnicity, or age

Public opinion about vaccination safety 

Artificial tissues fabrication

With the need for donor organs increasing, finding ways to fabricate artificial bioactive tissues (and possibly organs) is a popular research area. 

Examples of artificial tissue-related research topics you can study include:

The viability of artificially printed tissues

Tissue substrate and building block material studies

The ethics and efficacy of artificial tissue creation

  • Medical research topics for medical students

For many medical students, research is a big driver for entering healthcare. If you’re a medical student looking for a research topic, here are some great ideas to work from:

Sleep disorders

Poor sleep quality is a growing problem, and it can significantly impact a person’s overall health. 

Examples of sleep disorder-related research topics include:

How stress affects sleep quality

The prevalence and impact of insomnia on patients with mental health conditions

Possible triggers for sleep disorder development

The impact of poor sleep quality on psychological and physical health

How melatonin supplements impact sleep quality

Alzheimer’s and dementia 

Cognitive conditions like dementia and Alzheimer’s disease are on the rise worldwide. They currently have no cure. As a result, research about these topics is in high demand. 

Examples of dementia-related research topics you could explore include:

The prevalence of Alzheimer’s disease in a chosen population

Early onset symptoms of dementia

Possible triggers or causes of cognitive decline with age

Treatment options for dementia-like conditions

The mental and physical burden of caregiving for patients with dementia

  • Lifestyle habits and public health

Modern lifestyles have profoundly impacted the average person’s daily habits, and plenty of interesting topics explore its effects. 

Examples of lifestyle and public health-related research topics include:

The nutritional intake of college students

The impact of chronic work stress on overall health

The rise of upper back and neck pain from laptop use

Prevalence and cause of repetitive strain injuries (RSI)

  • Controversial medical research paper topics

Medical research is a hotbed of controversial topics, content, and areas of study. 

If you want to explore a more niche (and attention-grabbing) concept, here are some controversial medical research topics worth looking into:

The benefits and risks of medical cannabis

Depending on where you live, the legalization and use of cannabis for medical conditions is controversial for the general public and healthcare providers.

Examples of medical cannabis-related research topics that might grab your attention include:

The legalization process of medical cannabis

The impact of cannabis use on developmental milestones in youth users

Cannabis and mental health diagnoses

CBD’s impact on chronic pain

Prevalence of cannabis use in young people

The impact of maternal cannabis use on fetal development 

Understanding how THC impacts cognitive function

Human genetics

The Human Genome Project identified, mapped, and sequenced all human DNA genes. Its completion in 2003 opened up a world of exciting and controversial studies in human genetics.

Examples of human genetics-related research topics worth delving into include:

Medical genetics and the incidence of genetic-based health disorders

Behavioral genetics differences between identical twins

Genetic risk factors for neurodegenerative disorders

Machine learning technologies for genetic research

Sexual health studies

Human sexuality and sexual health are important (yet often stigmatized) medical topics that need new research and analysis.

As a diverse field ranging from sexual orientation studies to sexual pathophysiology, examples of sexual health-related research topics include:

The incidence of sexually transmitted infections within a chosen population

Mental health conditions within the LGBTQIA+ community

The impact of untreated sexually transmitted infections

Access to safe sex resources (condoms, dental dams, etc.) in rural areas

  • Health and wellness research topics

Human wellness and health are trendy topics in modern medicine as more people are interested in finding natural ways to live healthier lifestyles. 

If this field of study interests you, here are some big topics in the wellness space:

Gluten sensitivity

Gluten allergies and intolerances have risen over the past few decades. If you’re interested in exploring this topic, your options range in severity from mild gastrointestinal symptoms to full-blown anaphylaxis. 

Some examples of gluten sensitivity-related research topics include:

The pathophysiology and incidence of Celiac disease

Early onset symptoms of gluten intolerance

The prevalence of gluten allergies within a set population

Gluten allergies and the incidence of other gastrointestinal health conditions

Pollution and lung health

Living in large urban cities means regular exposure to high levels of pollutants. 

As more people become interested in protecting their lung health, examples of impactful lung health and pollution-related research topics include:

The extent of pollution in densely packed urban areas

The prevalence of pollution-based asthma in a set population

Lung capacity and function in young people

The benefits and risks of steroid therapy for asthma

Pollution risks based on geographical location

Plant-based diets

Plant-based diets like vegan and paleo diets are emerging trends in healthcare due to their limited supporting research. 

If you’re interested in learning more about the potential benefits or risks of holistic, diet-based medicine, examples of plant-based diet research topics to explore include:

Vegan and plant-based diets as part of disease management

Potential risks and benefits of specific plant-based diets

Plant-based diets and their impact on body mass index

The effect of diet and lifestyle on chronic disease management

Health supplements

Supplements are a multi-billion dollar industry. Many health-conscious people take supplements, including vitamins, minerals, herbal medicine, and more. 

Examples of health supplement-related research topics worth investigating include:

Omega-3 fish oil safety and efficacy for cardiac patients

The benefits and risks of regular vitamin D supplementation

Health supplementation regulation and product quality

The impact of social influencer marketing on consumer supplement practices

Analyzing added ingredients in protein powders

  • Healthcare research topics

Working within the healthcare industry means you have insider knowledge and opportunity. Maybe you’d like to research the overall system, administration, and inherent biases that disrupt access to quality care. 

While these topics are essential to explore, it is important to note that these studies usually require approval and oversight from an Institutional Review Board (IRB). This ensures the study is ethical and does not harm any subjects. 

For this reason, the IRB sets protocols that require additional planning, so consider this when mapping out your study’s timeline. 

Here are some examples of trending healthcare research areas worth pursuing:

The pros and cons of electronic health records

The rise of electronic healthcare charting and records has forever changed how medical professionals and patients interact with their health data. 

Examples of electronic health record-related research topics include:

The number of medication errors reported during a software switch

Nurse sentiment analysis of electronic charting practices

Ethical and legal studies into encrypting and storing personal health data

Inequities within healthcare access

Many barriers inhibit people from accessing the quality medical care they need. These issues result in health disparities and injustices. 

Examples of research topics about health inequities include:

The impact of social determinants of health in a set population

Early and late-stage cancer stage diagnosis in urban vs. rural populations

Affordability of life-saving medications

Health insurance limitations and their impact on overall health

Diagnostic and treatment rates across ethnicities

People who belong to an ethnic minority are more likely to experience barriers and restrictions when trying to receive quality medical care. This is due to systemic healthcare racism and bias. 

As a result, diagnostic and treatment rates in minority populations are a hot-button field of research. Examples of ethnicity-based research topics include:

Cancer biopsy rates in BIPOC women

The prevalence of diabetes in Indigenous communities

Access inequalities in women’s health preventative screenings

The prevalence of undiagnosed hypertension in Black populations

  • Pharmaceutical research topics

Large pharmaceutical companies are incredibly interested in investing in research to learn more about potential cures and treatments for diseases. 

If you’re interested in building a career in pharmaceutical research, here are a few examples of in-demand research topics:

Cancer treatment options

Clinical research is in high demand as pharmaceutical companies explore novel cancer treatment options outside of chemotherapy and radiation. 

Examples of cancer treatment-related research topics include:

Stem cell therapy for cancer

Oncogenic gene dysregulation and its impact on disease

Cancer-causing viral agents and their risks

Treatment efficacy based on early vs. late-stage cancer diagnosis

Cancer vaccines and targeted therapies

Immunotherapy for cancer

Pain medication alternatives

Historically, opioid medications were the primary treatment for short- and long-term pain. But, with the opioid epidemic getting worse, the need for alternative pain medications has never been more urgent. 

Examples of pain medication-related research topics include:

Opioid withdrawal symptoms and risks

Early signs of pain medication misuse

Anti-inflammatory medications for pain control

  • Identify trends in your medical research with Dovetail

Are you interested in contributing life-changing research? Today’s medical research is part of the future of clinical patient care. 

As your go-to resource for speedy and accurate data analysis , we are proud to partner with healthcare researchers to innovate and improve the future of healthcare.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 25 November 2023

Last updated: 12 May 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 18 May 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

April 25, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

written by researcher(s)

Do implicit bias trainings on race improve health care?

by Nao Hagiwara, The Conversation

health care worker

There is increasing evidence that implicit bias—non-conscious attitudes toward specific groups—is a source of racial inequities in certain aspects of health care, and lawmakers are taking note.

Since the tragic murder of George Floyd in May 2020, wherein a Black man was killed by police, several U.S. federal and state legislators have introduced proposals declaring racism as a public health crisis . In March 2024, four U.S. senators led a resolution calling out the "implicit racial and ethnic biases within the health care system , which have an explicit impact on the quality of care experienced by members of racial and ethnic minority groups."

Following this reasoning, states like California and Massachusetts have enacted legislation mandating implicit bias training for health care providers. Health institutions have also focused on addressing implicit bias among the next generation of providers. For example, the American Medical Association's guidelines to address systemic racism in medicine includes requiring training that covers various forms of racial bias.

But is implicit bias training improving care quality for Black patients? We are a social and health psychologist and a health economist who are investigating the role that provider implicit bias plays in racial health care disparities. Our ongoing review of the existing evidence suggests the answer is: not yet.

What is implicit bias?

The first thing to understand is that implicit bias isn't just one thing. It involves multiple interconnected components that govern how someone interacts with specific groups or its members: affect, behavior and cognition.

Psychologists sometimes refer to those components as the ABCs.

The affective component of bias, also known as prejudice, is defined as having negative feelings towards a group or its members. The behavioral component of bias, or discrimination, involves negative or harmful actions towards a group or its members. Lastly, the cognitive component of bias, also known as stereotyping, refers to expectations and beliefs about a group.

One common misunderstanding is that implicit bias is inherently unconscious and people are unaware of their own negative feelings, beliefs and behaviors. In fact, research suggests that people are remarkably accurate in perceiving their own levels of implicit bias.

Each component of bias can operate at implicit and explicit levels. At the implicit level, the ABCs arise spontaneously and effortlessly, while ABCs operating at the explicit level are intentional and effortful. For example, the unease someone may feel when encountering a large Black man at night is an emotion triggered at the implicit level. Actively making an effort to replace those feelings of unease with neutral or positive feelings are emotions activated at the explicit level.

Why does implicit bias matter in health care?

Black and white people experience stark differences in treatment during medical interactions. A December 2023 survey from the Kaiser Family Foundation found that nearly 1 in 5 Black people reported experiencing unfair or disrespectful treatment from their health care providers in the past three years because of their race. Only 3% of white respondents reported similar treatment. Researchers have seen similar health inequities across race and ethnicity .

Extensive research over the past two decades indicates racial inequities in patient-provider communication stem largely from implicit prejudice among health care providers . This implicit prejudice manifests during medical interactions with Black patients through a wide range of communication behaviors . These include nonverbal behaviors, or how people move their bodies—such as eye contact and hand movements—and paraverbal behaviors, or how people deliver speech—such as their tone and volume. Both of these behaviors typically occur spontaneously.

For example, providers with higher levels of implicit prejudice tend to talk more and spend less time evaluating Black patients. They also display less positive and more negative affect and more frequently use anxiety-related words like "worry," "afraid" and "nervous."

Importantly, Black patients are adept at discerning these subtle negative communication behaviors. "It's petty, little things," a Black patient told the Kaiser Family Foundation. "When they call the nurse, they rush to come see the white people. They don't rush to see the Black people. I think it's racist." Consequently, Black patients report lower levels of satisfaction after interacting with providers with higher levels of implicit prejudice.

A common misconception is that implicit prejudice is a key driver of racial disparities in medical treatment. However, current research does not support the idea that providers with higher levels of implicit prejudice treat Black patients worse than white patients. Additionally, more research is needed to determine whether implicit stereotyping from providers—such as automatically associating the idea of being "medically uncooperative" with Black people—would also lead to negative communication behaviors or sub-optimal treatment decisions for Black patients.

What's wrong with implicit bias training?

Many researchers and clinicians see implicit bias training as an essential component of medical education. However, current programs have shortcomings that undermine their effectiveness.

To understand what typical implicit bias training is like, our ongoing systematic review looks at 77 studies on implicit bias training programs in U.S. health care institutions. Although the majority of the programs were designed to address implicit racial bias, a significant number also addressed other forms of bias including gender identity, sexual orientation and socioeconomic status. Most programs aim to educate health care workers and trainees on implicit bias and how it may affect their patient care, as well as increase awareness about their own biases. Most are single sessions that last about 5.5 hours on average.

However, the design of these training programs does not align with current scientific knowledge about implicit bias.

First, while awareness of one's biases is a necessary first step to mitigating implicit bias, it alone is not sufficient . Providers must also be personally invested in and have the mental capacity to address their biases.

Second, mitigating implicit bias requires repeated and consistent practice . Implicit bias is like a habit: it is deeply ingrained and operates without intentional control, making it challenging to recognize and change.

Third, training effectiveness is more accurately assessed through patient outcomes, such as care satisfaction, rather than self-reflection or implicit bias scores. Because providers may be concerned about how program facilitators will judge them , they may not provide honest feedback. Furthermore, changes in implicit bias scores do not necessarily result in decreased discriminatory behaviors, making it unclear how these programs can change the quality of care that Black patients experience.

How can health care systems better address implicit bias?

Developing and implementing effective implicit bias training in health care is a scientific endeavor that requires a strong supporting structure.

For example, the clinical and translational science, or CTS, framework , originally designed to help translate discoveries in the lab into treatments in the clinic, could also be applied to implicit bias training. This framework guides scientific progress across incremental stages, starting from confirming the mechanism behind an illness to developing and testing a new treatment for use in the broader community.

This framework is particularly relevant to the development and implementation of evidence-based implicit bias training. Researchers first focus on confirming the mechanisms that underlie implicit bias. Then, after developing and testing implicit bias training programs, they examine its effectiveness across institutions and among diverse health care professionals.

Applying a rigorous scientific process to the development of implicit bias training requires an institution's long-term commitment, robust support and substantial resources. We believe this investment is a small price to pay for the invaluable progress it promises in reshaping health care for the better for everyone.

Explore further

Feedback to editors

research questions examples on health

Treatment for deadly superbug C. diff may be weakening

4 minutes ago

research questions examples on health

Blocking gene may halt growth of breast cancer cells

19 minutes ago

research questions examples on health

Study finds RNA modification is responsible for disruption of mitochondrial protein synthesis in Alzheimer's disease

25 minutes ago

research questions examples on health

Nanomaterial that mimics proteins could be basis for new neurodegenerative disease treatments

29 minutes ago

research questions examples on health

How immune cells communicate to fight viruses: New mouse model enables identification of chemokine producers and sensors

research questions examples on health

Differentiating cerebral cortical neurons to decipher molecular mechanisms of neurodegeneration

research questions examples on health

National trial safely scales back prescribing of a powerful antipsychotic for the elderly

research questions examples on health

With hybrid brains, these mice smell like a rat

research questions examples on health

Premature mortality higher among sexual minority women, study finds

research questions examples on health

Creatine found to improve cognitive performance during sleep deprivation

Related stories.

research questions examples on health

Most implicit bias training in health care lacks proper foundation, research finds

May 20, 2020

research questions examples on health

New research reveals historic migration's link to present-day implicit racial bias

Jul 27, 2023

research questions examples on health

Research questions link between unconscious bias and behavior

Jul 1, 2019

research questions examples on health

Implicit bias from providers inhibits hepatitis C treatment in people with HIV, study finds

Nov 30, 2023

research questions examples on health

Health care professionals exhibit gender bias

Jul 11, 2019

research questions examples on health

Test of police implicit bias training shows modest improvements

Oct 18, 2023

Recommended for you

research questions examples on health

COVID-19 pandemic alters view that doctors are obligated to provide care: Study

21 hours ago

research questions examples on health

Artificial sweetener has potential to damage gut, finds study

22 hours ago

research questions examples on health

Vaccines saved at least 154 million lives in 50 years: WHO

Apr 24, 2024

research questions examples on health

Study finds X's (formerly Twitter's) community notes provide accurate, credible answers to vaccine misinformation

research questions examples on health

Study suggests that living near green spaces reduces the risk of depression and anxiety

Apr 23, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Writing Survey Questions

Perhaps the most important part of the survey process is the creation of questions that accurately measure the opinions, experiences and behaviors of the public. Accurate random sampling will be wasted if the information gathered is built on a shaky foundation of ambiguous or biased questions. Creating good measures involves both writing good questions and organizing them to form the questionnaire.

Questionnaire design is a multistage process that requires attention to many details at once. Designing the questionnaire is complicated because surveys can ask about topics in varying degrees of detail, questions can be asked in different ways, and questions asked earlier in a survey may influence how people respond to later questions. Researchers are also often interested in measuring change over time and therefore must be attentive to how opinions or behaviors have been measured in prior surveys.

Surveyors may conduct pilot tests or focus groups in the early stages of questionnaire development in order to better understand how people think about an issue or comprehend a question. Pretesting a survey is an essential step in the questionnaire design process to evaluate how people respond to the overall questionnaire and specific questions, especially when questions are being introduced for the first time.

For many years, surveyors approached questionnaire design as an art, but substantial research over the past forty years has demonstrated that there is a lot of science involved in crafting a good survey questionnaire. Here, we discuss the pitfalls and best practices of designing questionnaires.

Question development

There are several steps involved in developing a survey questionnaire. The first is identifying what topics will be covered in the survey. For Pew Research Center surveys, this involves thinking about what is happening in our nation and the world and what will be relevant to the public, policymakers and the media. We also track opinion on a variety of issues over time so we often ensure that we update these trends on a regular basis to better understand whether people’s opinions are changing.

At Pew Research Center, questionnaire development is a collaborative and iterative process where staff meet to discuss drafts of the questionnaire several times over the course of its development. We frequently test new survey questions ahead of time through qualitative research methods such as  focus groups , cognitive interviews, pretesting (often using an  online, opt-in sample ), or a combination of these approaches. Researchers use insights from this testing to refine questions before they are asked in a production survey, such as on the ATP.

Measuring change over time

Many surveyors want to track changes over time in people’s attitudes, opinions and behaviors. To measure change, questions are asked at two or more points in time. A cross-sectional design surveys different people in the same population at multiple points in time. A panel, such as the ATP, surveys the same people over time. However, it is common for the set of people in survey panels to change over time as new panelists are added and some prior panelists drop out. Many of the questions in Pew Research Center surveys have been asked in prior polls. Asking the same questions at different points in time allows us to report on changes in the overall views of the general public (or a subset of the public, such as registered voters, men or Black Americans), or what we call “trending the data”.

When measuring change over time, it is important to use the same question wording and to be sensitive to where the question is asked in the questionnaire to maintain a similar context as when the question was asked previously (see  question wording  and  question order  for further information). All of our survey reports include a topline questionnaire that provides the exact question wording and sequencing, along with results from the current survey and previous surveys in which we asked the question.

The Center’s transition from conducting U.S. surveys by live telephone interviewing to an online panel (around 2014 to 2020) complicated some opinion trends, but not others. Opinion trends that ask about sensitive topics (e.g., personal finances or attending religious services ) or that elicited volunteered answers (e.g., “neither” or “don’t know”) over the phone tended to show larger differences than other trends when shifting from phone polls to the online ATP. The Center adopted several strategies for coping with changes to data trends that may be related to this change in methodology. If there is evidence suggesting that a change in a trend stems from switching from phone to online measurement, Center reports flag that possibility for readers to try to head off confusion or erroneous conclusions.

Open- and closed-ended questions

One of the most significant decisions that can affect how people answer questions is whether the question is posed as an open-ended question, where respondents provide a response in their own words, or a closed-ended question, where they are asked to choose from a list of answer choices.

For example, in a poll conducted after the 2008 presidential election, people responded very differently to two versions of the question: “What one issue mattered most to you in deciding how you voted for president?” One was closed-ended and the other open-ended. In the closed-ended version, respondents were provided five options and could volunteer an option not on the list.

When explicitly offered the economy as a response, more than half of respondents (58%) chose this answer; only 35% of those who responded to the open-ended version volunteered the economy. Moreover, among those asked the closed-ended version, fewer than one-in-ten (8%) provided a response other than the five they were read. By contrast, fully 43% of those asked the open-ended version provided a response not listed in the closed-ended version of the question. All of the other issues were chosen at least slightly more often when explicitly offered in the closed-ended version than in the open-ended version. (Also see  “High Marks for the Campaign, a High Bar for Obama”  for more information.)

research questions examples on health

Researchers will sometimes conduct a pilot study using open-ended questions to discover which answers are most common. They will then develop closed-ended questions based off that pilot study that include the most common responses as answer choices. In this way, the questions may better reflect what the public is thinking, how they view a particular issue, or bring certain issues to light that the researchers may not have been aware of.

When asking closed-ended questions, the choice of options provided, how each option is described, the number of response options offered, and the order in which options are read can all influence how people respond. One example of the impact of how categories are defined can be found in a Pew Research Center poll conducted in January 2002. When half of the sample was asked whether it was “more important for President Bush to focus on domestic policy or foreign policy,” 52% chose domestic policy while only 34% said foreign policy. When the category “foreign policy” was narrowed to a specific aspect – “the war on terrorism” – far more people chose it; only 33% chose domestic policy while 52% chose the war on terrorism.

In most circumstances, the number of answer choices should be kept to a relatively small number – just four or perhaps five at most – especially in telephone surveys. Psychological research indicates that people have a hard time keeping more than this number of choices in mind at one time. When the question is asking about an objective fact and/or demographics, such as the religious affiliation of the respondent, more categories can be used. In fact, they are encouraged to ensure inclusivity. For example, Pew Research Center’s standard religion questions include more than 12 different categories, beginning with the most common affiliations (Protestant and Catholic). Most respondents have no trouble with this question because they can expect to see their religious group within that list in a self-administered survey.

In addition to the number and choice of response options offered, the order of answer categories can influence how people respond to closed-ended questions. Research suggests that in telephone surveys respondents more frequently choose items heard later in a list (a “recency effect”), and in self-administered surveys, they tend to choose items at the top of the list (a “primacy” effect).

Because of concerns about the effects of category order on responses to closed-ended questions, many sets of response options in Pew Research Center’s surveys are programmed to be randomized to ensure that the options are not asked in the same order for each respondent. Rotating or randomizing means that questions or items in a list are not asked in the same order to each respondent. Answers to questions are sometimes affected by questions that precede them. By presenting questions in a different order to each respondent, we ensure that each question gets asked in the same context as every other question the same number of times (e.g., first, last or any position in between). This does not eliminate the potential impact of previous questions on the current question, but it does ensure that this bias is spread randomly across all of the questions or items in the list. For instance, in the example discussed above about what issue mattered most in people’s vote, the order of the five issues in the closed-ended version of the question was randomized so that no one issue appeared early or late in the list for all respondents. Randomization of response items does not eliminate order effects, but it does ensure that this type of bias is spread randomly.

Questions with ordinal response categories – those with an underlying order (e.g., excellent, good, only fair, poor OR very favorable, mostly favorable, mostly unfavorable, very unfavorable) – are generally not randomized because the order of the categories conveys important information to help respondents answer the question. Generally, these types of scales should be presented in order so respondents can easily place their responses along the continuum, but the order can be reversed for some respondents. For example, in one of Pew Research Center’s questions about abortion, half of the sample is asked whether abortion should be “legal in all cases, legal in most cases, illegal in most cases, illegal in all cases,” while the other half of the sample is asked the same question with the response categories read in reverse order, starting with “illegal in all cases.” Again, reversing the order does not eliminate the recency effect but distributes it randomly across the population.

Question wording

The choice of words and phrases in a question is critical in expressing the meaning and intent of the question to the respondent and ensuring that all respondents interpret the question the same way. Even small wording differences can substantially affect the answers people provide.

[View more Methods 101 Videos ]

An example of a wording difference that had a significant impact on responses comes from a January 2003 Pew Research Center survey. When people were asked whether they would “favor or oppose taking military action in Iraq to end Saddam Hussein’s rule,” 68% said they favored military action while 25% said they opposed military action. However, when asked whether they would “favor or oppose taking military action in Iraq to end Saddam Hussein’s rule  even if it meant that U.S. forces might suffer thousands of casualties, ” responses were dramatically different; only 43% said they favored military action, while 48% said they opposed it. The introduction of U.S. casualties altered the context of the question and influenced whether people favored or opposed military action in Iraq.

There has been a substantial amount of research to gauge the impact of different ways of asking questions and how to minimize differences in the way respondents interpret what is being asked. The issues related to question wording are more numerous than can be treated adequately in this short space, but below are a few of the important things to consider:

First, it is important to ask questions that are clear and specific and that each respondent will be able to answer. If a question is open-ended, it should be evident to respondents that they can answer in their own words and what type of response they should provide (an issue or problem, a month, number of days, etc.). Closed-ended questions should include all reasonable responses (i.e., the list of options is exhaustive) and the response categories should not overlap (i.e., response options should be mutually exclusive). Further, it is important to discern when it is best to use forced-choice close-ended questions (often denoted with a radio button in online surveys) versus “select-all-that-apply” lists (or check-all boxes). A 2019 Center study found that forced-choice questions tend to yield more accurate responses, especially for sensitive questions.  Based on that research, the Center generally avoids using select-all-that-apply questions.

It is also important to ask only one question at a time. Questions that ask respondents to evaluate more than one concept (known as double-barreled questions) – such as “How much confidence do you have in President Obama to handle domestic and foreign policy?” – are difficult for respondents to answer and often lead to responses that are difficult to interpret. In this example, it would be more effective to ask two separate questions, one about domestic policy and another about foreign policy.

In general, questions that use simple and concrete language are more easily understood by respondents. It is especially important to consider the education level of the survey population when thinking about how easy it will be for respondents to interpret and answer a question. Double negatives (e.g., do you favor or oppose  not  allowing gays and lesbians to legally marry) or unfamiliar abbreviations or jargon (e.g., ANWR instead of Arctic National Wildlife Refuge) can result in respondent confusion and should be avoided.

Similarly, it is important to consider whether certain words may be viewed as biased or potentially offensive to some respondents, as well as the emotional reaction that some words may provoke. For example, in a 2005 Pew Research Center survey, 51% of respondents said they favored “making it legal for doctors to give terminally ill patients the means to end their lives,” but only 44% said they favored “making it legal for doctors to assist terminally ill patients in committing suicide.” Although both versions of the question are asking about the same thing, the reaction of respondents was different. In another example, respondents have reacted differently to questions using the word “welfare” as opposed to the more generic “assistance to the poor.” Several experiments have shown that there is much greater public support for expanding “assistance to the poor” than for expanding “welfare.”

We often write two versions of a question and ask half of the survey sample one version of the question and the other half the second version. Thus, we say we have two  forms  of the questionnaire. Respondents are assigned randomly to receive either form, so we can assume that the two groups of respondents are essentially identical. On questions where two versions are used, significant differences in the answers between the two forms tell us that the difference is a result of the way we worded the two versions.

research questions examples on health

One of the most common formats used in survey questions is the “agree-disagree” format. In this type of question, respondents are asked whether they agree or disagree with a particular statement. Research has shown that, compared with the better educated and better informed, less educated and less informed respondents have a greater tendency to agree with such statements. This is sometimes called an “acquiescence bias” (since some kinds of respondents are more likely to acquiesce to the assertion than are others). This behavior is even more pronounced when there’s an interviewer present, rather than when the survey is self-administered. A better practice is to offer respondents a choice between alternative statements. A Pew Research Center experiment with one of its routinely asked values questions illustrates the difference that question format can make. Not only does the forced choice format yield a very different result overall from the agree-disagree format, but the pattern of answers between respondents with more or less formal education also tends to be very different.

One other challenge in developing questionnaires is what is called “social desirability bias.” People have a natural tendency to want to be accepted and liked, and this may lead people to provide inaccurate answers to questions that deal with sensitive subjects. Research has shown that respondents understate alcohol and drug use, tax evasion and racial bias. They also may overstate church attendance, charitable contributions and the likelihood that they will vote in an election. Researchers attempt to account for this potential bias in crafting questions about these topics. For instance, when Pew Research Center surveys ask about past voting behavior, it is important to note that circumstances may have prevented the respondent from voting: “In the 2012 presidential election between Barack Obama and Mitt Romney, did things come up that kept you from voting, or did you happen to vote?” The choice of response options can also make it easier for people to be honest. For example, a question about church attendance might include three of six response options that indicate infrequent attendance. Research has also shown that social desirability bias can be greater when an interviewer is present (e.g., telephone and face-to-face surveys) than when respondents complete the survey themselves (e.g., paper and web surveys).

Lastly, because slight modifications in question wording can affect responses, identical question wording should be used when the intention is to compare results to those from earlier surveys. Similarly, because question wording and responses can vary based on the mode used to survey respondents, researchers should carefully evaluate the likely effects on trend measurements if a different survey mode will be used to assess change in opinion over time.

Question order

Once the survey questions are developed, particular attention should be paid to how they are ordered in the questionnaire. Surveyors must be attentive to how questions early in a questionnaire may have unintended effects on how respondents answer subsequent questions. Researchers have demonstrated that the order in which questions are asked can influence how people respond; earlier questions can unintentionally provide context for the questions that follow (these effects are called “order effects”).

One kind of order effect can be seen in responses to open-ended questions. Pew Research Center surveys generally ask open-ended questions about national problems, opinions about leaders and similar topics near the beginning of the questionnaire. If closed-ended questions that relate to the topic are placed before the open-ended question, respondents are much more likely to mention concepts or considerations raised in those earlier questions when responding to the open-ended question.

For closed-ended opinion questions, there are two main types of order effects: contrast effects ( where the order results in greater differences in responses), and assimilation effects (where responses are more similar as a result of their order).

research questions examples on health

An example of a contrast effect can be seen in a Pew Research Center poll conducted in October 2003, a dozen years before same-sex marriage was legalized in the U.S. That poll found that people were more likely to favor allowing gays and lesbians to enter into legal agreements that give them the same rights as married couples when this question was asked after one about whether they favored or opposed allowing gays and lesbians to marry (45% favored legal agreements when asked after the marriage question, but 37% favored legal agreements without the immediate preceding context of a question about same-sex marriage). Responses to the question about same-sex marriage, meanwhile, were not significantly affected by its placement before or after the legal agreements question.

research questions examples on health

Another experiment embedded in a December 2008 Pew Research Center poll also resulted in a contrast effect. When people were asked “All in all, are you satisfied or dissatisfied with the way things are going in this country today?” immediately after having been asked “Do you approve or disapprove of the way George W. Bush is handling his job as president?”; 88% said they were dissatisfied, compared with only 78% without the context of the prior question.

Responses to presidential approval remained relatively unchanged whether national satisfaction was asked before or after it. A similar finding occurred in December 2004 when both satisfaction and presidential approval were much higher (57% were dissatisfied when Bush approval was asked first vs. 51% when general satisfaction was asked first).

Several studies also have shown that asking a more specific question before a more general question (e.g., asking about happiness with one’s marriage before asking about one’s overall happiness) can result in a contrast effect. Although some exceptions have been found, people tend to avoid redundancy by excluding the more specific question from the general rating.

Assimilation effects occur when responses to two questions are more consistent or closer together because of their placement in the questionnaire. We found an example of an assimilation effect in a Pew Research Center poll conducted in November 2008 when we asked whether Republican leaders should work with Obama or stand up to him on important issues and whether Democratic leaders should work with Republican leaders or stand up to them on important issues. People were more likely to say that Republican leaders should work with Obama when the question was preceded by the one asking what Democratic leaders should do in working with Republican leaders (81% vs. 66%). However, when people were first asked about Republican leaders working with Obama, fewer said that Democratic leaders should work with Republican leaders (71% vs. 82%).

The order questions are asked is of particular importance when tracking trends over time. As a result, care should be taken to ensure that the context is similar each time a question is asked. Modifying the context of the question could call into question any observed changes over time (see  measuring change over time  for more information).

A questionnaire, like a conversation, should be grouped by topic and unfold in a logical order. It is often helpful to begin the survey with simple questions that respondents will find interesting and engaging. Throughout the survey, an effort should be made to keep the survey interesting and not overburden respondents with several difficult questions right after one another. Demographic questions such as income, education or age should not be asked near the beginning of a survey unless they are needed to determine eligibility for the survey or for routing respondents through particular sections of the questionnaire. Even then, it is best to precede such items with more interesting and engaging questions. One virtue of survey panels like the ATP is that demographic questions usually only need to be asked once a year, not in each survey.

U.S. Surveys

Other research methods, sign up for our weekly newsletter.

Fresh data delivered Saturday mornings

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

3 Questions: A shared vocabulary for how infectious diseases spread

Press contact :, media download.

MIT Associate Professor Lydia Bourouiba describes how her fluid dynamics research influenced new guidance from the World Health Organization, which will shape how health agencies respond to infectious diseases.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Lydia Bourouiba stands near a full bookshelf and chalk board.

Previous image Next image

On April 18, the World Health Organization (WHO) released new guidance on airborne disease transmission that seeks to create a consensus around the terminology used to describe the transmission of infectious pathogens through the air.

Lydia Bourouiba, the director of the MIT Fluid Dynamics of Disease Transmission Laboratory and the Fluids and Health Network, an associate professor in the MIT departments of Civil and Environmental Engineering and Mechanical Engineering, and a core member of the Institute for Medical Engineering and Science, served on the WHO expert team that developed the guidance. For more than a decade, Bourouiba’s laboratory has been researching fundamental physical processes underlying how infectious diseases spread from person to person.

The new WHO guidance puts forth new definitions of key terminology pertaining to respiratory infectious disease transmission. This reflects a new, shared understanding of how respiratory infectious pathogens move from one person to the next: through the exhalations of turbulent “puff clouds” that carry infectious contaminants in a continuum of droplet sizes and can lead to exposure at a range of distances.

Bourouiba’s lab has pioneered this physical picture and worked closely with a range of stakeholders over the years to ensure that public health guidance incorporates the latest science, improving preparedness for emerging respiratory pathogens. Bourouiba spoke with MIT News about the new WHO guidance.

Q: How did you become involved in creating these new guidelines?

A: I have been researching exhalation emissions for more than a decade. After the first SARS outbreak in 2003, I realized that the mechanisms by which respiratory pathogens are transmitted from one host to the next were essentially considered too random and too brief to be amenable to systematic investigation. Hence, the physical act of pathogen transmission was relegated to a black box. However, I also realized the fundamental importance of understanding these events mechanistically, to ultimately be able to mitigate such transmission events in a rational and principled manner. For this, we needed to understand the fluid physics and biophysics of respiratory emissions.

In the Fluid Dynamics of Disease Transmission Laboratory at MIT, we have been investigating these respiratory emissions. Our work showed that prior guidelines — specifically, the dichotomy of “large” versus “small” drops and isolated droplet emissions (essentially from spray bottles) — were not at all what we actually see and quantify when investigating respiratory emissions. We focused on establishing the full physics of such processes, from emission physiology to the fluid dynamics and biophysics of the exhalation flows and the interaction of the exhaled turbulent multiphase flow with the conditions of the ambient environment (air currents, temperature, and humidity).

Since 2015, I have also been working with the MIT Policy Lab at the Center for International Studies to disseminate our findings to public health officials and various agencies. We organized multiple conferences where we brought in scientists, clinicians, virologists, epidemiologists, microbiologists, and representatives from the U.S. Centers for Disease Control and Prevention and other groups, both before and during the pandemic.

In 2022, I was asked to serve on the World Health Organization’s technical consultation expert team, which was tasked with reaching a consensus on a new framework on respiratory infectious disease transmission. That process lasted about two years and culminated so far in the publication of the new guidelines. The process was obviously accelerated by the Covid-19 pandemic and the issues it brought to the fore regarding the inadequate old definitions. The goal of convening the consultation group was to bring together leading experts from around the globe and from very diverse fields — ranging from fluid physics to clinical medicine and epidemiology — to think through how best to redefine terms related to respiratory infectious disease transmission in light of the latest science. These new guidelines are very much a first step in a series of important consultations and efforts.

Q: How did your research change the WHO’s description of how diseases are transmitted through the air?

A: Our research established that these isolated droplets are not just exhaled as isolated droplets moving semiballistically [that will settle out of the air relatively near to the person who released them]. Instead, they are part of a multiphase turbulent puff gas cloud that contains a continuum of droplet sizes, where the cloud provides a comparatively warm and moist — and hence protective — environment for these droplets and the pathogens they contain, with respect to ambient air. One of our first papers establishing this concept was published in 2014. And we have showed since that models that do not include the proper physics of these turbulent puff clouds can dramatically underestimate the ranges of propagation and also completely shift estimates of risk and pathogen persistence in an indoor space.

These turbulent puff clouds are inhomogeneous, with potential for highly concentrated pathogen-bearing droplet load regions that can persist for a comparatively long time while moving very quickly across an indoor space in some of the most violent exhalations. Their dynamics enable potential effective inhalation exposure at a range of distances, long and short. This continuum and physical picture of concentrated packets of droplets and their impact on persistence of pathogen infectivity and exposure are in complete contrast with the notion of homogeneous mixing indoors, and the prior false dichotomy of “large” droplets that fall ballistically and “small” droplets that essentially evaporate immediately to form aerosols assumed to be deactivated. The prior picture led to the belief that only very few infectious diseases are airborne or requiring air management. This dichotomy, with other misconceptions, rooted in science from the 1930s, has surprisingly persisted in guidelines for decades.

The new guideline is a major milestone, not only because these guidelines do not change very often — every 10 or 15 years at best — but also because in addition to the WHO, five national or transnational health agencies have already endorsed the findings, including the U.S. Centers for Disease Control and Prevention, which also acknowledged the importance of the shift. 

Q: What are the biggest implications of these changes?

A: An agreed-upon common terminology is critical in infectious disease research and mitigation. The new guidelines set the foundation for such a common understanding and process. One might think it is just semantics or a small, incremental change in our understanding. However, risk calculations actually vary tremendously based on the framework one uses. We used mathematical models and physical experiments and found that the physical picture change has dramatic implications on risk estimations.

Another major implication was discussed in one of our publications from the very early stages of the pandemic, which stressed the urgent need for health care workers to have N95 masks because of these cloud dynamics and the associated importance of paying attention to indoor air management. Here again, risk calculations without the puff cloud dynamics would suggest that a typical hospital room or emergency department would dilute sufficiently the pathogen load so as to not pose a high risk. But with the puff cloud and dynamic of the droplets of a continuum of sizes within it, and coupled with it, it becomes clear that health care workers could still be exposed via inhalation to significant viral loads. Thus, they should have been provided N95 masks, in most conditions, when entering the space hosting a Covid-19 patient, even if they were not in their immediate vicinity. That article was the first to call attention to the importance of masking of health care workers due to the actual exhalation puff cloud and continuum of droplet sizes, shaping airborne transmission.

It took public health agencies more than six months to start considering shifting their masking guidelines during Covid-19. But this WHO document is broader than Covid-19. It redefines the basic definitions surrounding all respiratory infectious diseases — those that we know and those yet to come. That means there will be a different risk assessment and thereby different decision trees and policies, trickling down to different choices of protective equipment and mitigation protocols, and different parts of health agencies or facilities that might be activated or deployed.

The new guidelines are also a major acknowledgement that infectious disease transmission is truly an interdisciplinary area where scientists, clinicians, and public health officials of different backgrounds need to communicate with each other efficiently and clearly and share their insights, be it fundamental physics or clinical infectious diseases.  So, it is not just the content of these guidelines, but also the way this update unfolded. Hopefully it changes the mindset for responding to such public health threats.

Share this news article on:

Related links.

  • WHO Report: “Global technical consultation report on proposed terminology for pathogens that transmit through the air”
  • Lydia Bourouiba
  • Fluids and Health Network
  • Department of Civil and Environmental Engineering
  • Department of Mechanical Engineering
  • Institute for Medical Engineering and Science

Related Topics

  • Public health
  • Civil and environmental engineering
  • Mechanical engineering
  • Fluid dynamics
  • Health care
  • Institute for Medical Engineering and Science (IMES)

Related Articles

Illustration shows a group of historical scientists behind a framed artwork that shows science images like skeleton bones, beakers, a plant releasing spores, and vapors and droplets spreading. In the foreground corner, two people look in amazement.

Turning history of science into a comic adventure

Close up shot of flowers blooming on a tree branch in springtime with MIT columns in the background.

School of Engineering second quarter 2023 awards

A humidifier humidifies the air with white mist

Keeping indoor humidity levels at a “sweet spot” may reduce spread of Covid-19

False-color image showing particles and gases emanating from a person's mouth

Slowing the spread of Covid-19

Previous item Next item

More MIT News

Drone photo of Killian court and the MIT campus.

Seven from MIT elected to American Academy of Arts and Sciences for 2024

Read full story →

Dramatic lighting highlights a futuristic computer chip on a stylized circuit board.

Two MIT teams selected for NSF sustainable materials grants

In a white room, six individuals in orange jumpsuits are smiling and holding certificates of achievement. They are accompanied by three individuals dressed in casual and professional attire.

Study demonstrates efficacy of MIT-led Brave Behind Bars program

Anna Russo sits in a red armchair with her legs crossed, smiling at the camera

Bringing an investigator’s eye to complex social challenges

Headshot photos of Iwnetim Abate, Yoel Fink, Andrew Babbin, and Skylar Tibbits

MIT announces 2024 Bose Grants

A large clock is in the middle, and medication pills float around it. In the background is a grid of circles, and each has liver molecules inside.

Circadian rhythms can influence drugs’ effectiveness

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Research: More People Use Mental Health Benefits When They Hear That Colleagues Use Them Too

  • Laura M. Giurge,
  • Lauren C. Howe,
  • Zsofia Belovai,
  • Guusje Lindemann,
  • Sharon O’Connor

research questions examples on health

A study of 2,400 Novartis employees around the world found that simply hearing about others’ struggles can normalize accessing support at work.

Novartis has trained more than 1,000 employees as Mental Health First Aiders to offer peer-to-peer support for their colleagues. While employees were eager for the training, uptake of the program remains low. To understand why, a team of researchers conducted a randomized controlled trial with 2,400 Novartis employees who worked in the UK, Ireland, India, and Malaysia. Employees were shown one of six framings that were designed to overcome two key barriers: privacy concerns and usage concerns. They found that employees who read a story about their colleague using the service were more likely to sign up to learn more about the program, and that emphasizing the anonymity of the program did not seem to have an impact. Their findings suggest that one way to encourage employees to make use of existing mental health resources is by creating a supportive culture that embraces sharing about mental health challenges at work.

“I almost scheduled an appointment about a dozen times. But no, in the end I never went. I just wasn’t sure if my problems were big enough to warrant help and I didn’t want to take up someone else’s time unnecessarily.”

research questions examples on health

  • Laura M. Giurge is an assistant professor at the London School of Economics, and a faculty affiliate at London Business School. Her research focuses on time and boundaries in organizations, workplace well-being, and the future of work. She is also passionate about translating research to the broader public through interactive and creative keynote talks, workshops, and coaching. Follow her on LinkedIn  here .
  • Lauren C. Howe is an assistant professor in management at the University of Zurich. As head of research at the Center for Leadership in the Future of Work , she focuses on how human aspects, such as mindsets, socioemotional skills, and leadership, play a role in the changing world of work.
  • Zsofia Belovai is a behavioral science lead for the organizational performance research practice at MoreThanNow, focusing on exploring how employee welfare can drive KPIs.
  • Guusje Lindemann is a senior behavioral scientist at MoreThanNow, in the social impact and organizational performance practices, working on making the workplace better for all.
  • Sharon O’Connor is the global employee wellbeing lead at Novartis. She is a founding member of the Wellbeing Executives Council of The Conference Board, and a guest lecturer on the Workplace Wellness postgraduate certificate at Trinity College Dublin.

Partner Center

IMAGES

  1. Top 10 medical research interview questions and answers

    research questions examples on health

  2. Asking Clinical Questions

    research questions examples on health

  3. Questionnaire

    research questions examples on health

  4. Research Questionnaire Examples

    research questions examples on health

  5. Questionnaire Examples

    research questions examples on health

  6. 💄 Sample nursing research questions. Examples of Research Questions

    research questions examples on health

VIDEO

  1. #4 Purpose of Research

  2. PRESENTATION OF RESEARCH TITLE AND STATEMENT OF THE PROBLEM (Qualitative Research)

  3. Effective English Phrases for Health Inquiries

  4. Constructing valid Research Questions and Objectives

  5. Lunch & Learn #2

  6. Risk Assessment EXAMPLES 🔓Top 5 Hazards UNLOCKED 🤓

COMMENTS

  1. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  2. 55 Research Questions About Mental Health

    55 research questions about mental health. Mental health and related conditions are a hot-button healthcare topic in 2024. With an estimated one in five Americans living with a mental health condition, ongoing research into the causes, treatment options, and possible triggers has never been more necessary. Research in the mental health space ...

  3. Psychology Research Questions: 80 Ideas For Your Next Project

    Health psychology research question examples. Health psychology is a crucial field of study. Understanding how psychological factors influence health behaviors, adherence to medical treatments, and overall wellness enables health experts to develop effective interventions and preventive measures, ultimately improving health outcomes.

  4. 100+ Healthcare Research Topics (+ Free Webinar)

    Here, we'll explore a variety of healthcare-related research ideas and topic thought-starters across a range of healthcare fields, including allopathic and alternative medicine, dentistry, physical therapy, optometry, pharmacology and public health. NB - This is just the start….

  5. Research Question Examples ‍

    A well-crafted research question (or set of questions) sets the stage for a robust study and meaningful insights. But, if you're new to research, it's not always clear what exactly constitutes a good research question. In this post, we'll provide you with clear examples of quality research questions across various disciplines, so that you can approach your research project with confidence!

  6. Framing Research Questions

    a who (who was studied - a population or sample) a what (what was done or examined - an intervention, an exposure, a policy, a program, a phenomenon) a how ([how] did the [what] affect the [who] - an outcome, an effect). PICO is the most common framework for developing a clinical research question, but multiple question frameworks exist.

  7. 8 Major Findings and Research Questions

    Mental Health and Well-being: For women in the health professions, major risk factors during the COVID-19 pandemic in 2020 included unpredictability in clinical work, evolving clinical and leadership roles, the psychological demands of unremitting and stressful work, and heightened health risks to family and self (see Chapter 7).

  8. Public Health Research Topics & Ideas (Includes Free Webinar)

    If you're just starting out exploring public health and/or epidemiology-related topics for your dissertation, thesis or research project, you've come to the right place. In this post, we'll help kickstart your research by providing a hearty list of research ideas, including examples from recent studies in public health and epidemiology.. PS - This is just the start…

  9. Establishing the national top 10 priority research questions to improve

    Table 2 shows the top 10 priority research questions of the total sample covered a diverse range of DFD topics, including health economics, peripheral neuropathy, education, infection, ... In contrast, health professionals prioritized research questions relating more to health services research and management of DFD. The top-ranked question for ...

  10. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  11. Research Guides: Public Health: Defining the Question

    Introduction. Whether you are practicing evidence-informed decision making or conducting research (e.g. a systematic review), the first step of the process is to clearly define the question or problem in a searchable and answerable format. This step of the process helps you answer the questions:

  12. Develop your research question

    Developing a question helps you focus on an aspect of your topic, which will streamline your research and writing. To create a research question: Pick a topic you are interested in. Narrow the topic to a particular aspect. Brainstorm some questions around your topic aspect. Select a question to work with. Focus the question by making it more ...

  13. Choosing a topic and developing a research question

    Examples of research questions: Does improved nutrition in children impact academic achievement? ... Factors to consider when formulating a research question: What is the health issue (is it looking at the prevention of a health condition, is it about the treatment of a health condition, etc.?)

  14. Qualitative Research Questions: Gain Powerful Insights + 25 Examples

    25 examples of expertly crafted qualitative research questions. It's easy enough to cover the theory of writing a qualitative research question, but sometimes it's best if you can see the process in practice. In this section, we'll list 25 examples of B2B and B2C-related qualitative questions. Let's begin with five questions.

  15. Phrasing Research Questions

    The first step in doing evidence-based practice research is forming a researchable question. Questions that are too broad or too narrow can make your research difficult, if not impossible. Clinical example: Too broad: How do you control infection? This topic is so broad that you'd have difficulty wading through all of the results.

  16. Formulation of Research Question

    Formulation of research question (RQ) is an essentiality before starting any research. It aims to explore an existing uncertainty in an area of concern and points to a need for deliberate investigation. It is, therefore, pertinent to formulate a good RQ. ... for example, to develop health policies or improve educational policies.[1,8]

  17. Creating a Research Question

    Sometimes the most difficult part of the research process is choosing a topic. Here are some tips for selecting a research question that you will enjoy learning about and will ultimately lead to a good grade. Read through your assignment. Professors design an assignment outline for a reason.

  18. SARS-CoV-2 and COVID-19: The most important research questions

    This is an excellent example of how a high-quality clinical study can make a major difference in policy setting. ... in this commentary we highlight the most important research questions in the field from our personal perspectives. ... Coronavirus research in our laboratory was funded by the Hong Kong Health and Medical Research Fund (HKM-15 ...

  19. Forming Focused Questions with PICO: PICO Examples

    PICO Examples. Practice Your Skills; ... A multi-institutional research team explored these questions in a scoping review. Cultural Awareness and Nursing Care. ... You coordinate health education programs and have been holding seminars for teenagers about STI prevention. You've been found that they're hesitant to open up to you during ...

  20. Research Guides: Evidence-Based Public Health: Forming a Question

    It involves knowing the right question to ask, turning that question into a good search, knowing the best place to look, finding what is available and then using the evidence you find in the care of your patient population. Use the "5 A's" as a step-by-step guide to locate best evidence. Assess. Identify the public health problem.

  21. Examples of Research Questions

    Examples of some general health services research questions are: Does the organization of renal transplant nurse coordinators' responsibilities influence live donor rates? What activities of nurse managers are associated with nurse turnover? 30 day readmission rates? What effect does the Nurse Faculty Loan program have on the nurse researcher ...

  22. 77 Exciting Medical Research Topics (2024)

    These issues result in health disparities and injustices. Examples of research topics about health inequities include: The impact of social determinants of health in a set population. Early and late-stage cancer stage diagnosis in urban vs. rural populations. Affordability of life-saving medications.

  23. How to Write a Research Question in 2024: Types, Steps, and Examples

    The examples of research questions provided in this guide have illustrated what good research questions look like. The key points outlined below should help researchers in the pursuit: The development of a research question is an iterative process that involves continuously updating one's knowledge on the topic and refining ideas at all ...

  24. Community Needs Assessment Survey: Examples and Overview

    Community Needs Assessment Survey: Examples and Overview. The COVID-19 pandemic revealed health disparities across the country. People of color, people from lower socioeconomic backgrounds, and rural communities experienced higher mortality rates. Community needs assessment surveys can help identify and address these health inequalities.

  25. Mental health and the pandemic: What U.S. surveys have found

    Three years into the COVID-19 outbreak in the United States, Pew Research Center published this collection of survey findings about Americans' challenges with mental health during the pandemic.All findings are previously published. Methodological information about each survey cited here, including the sample sizes and field dates, can be found by following the links in the text.

  26. Advancing Racial Equity in U.S. Health Care: State Disparities

    This report highlights persistent racial and ethnic disparities in health care across the United States. These disparities are fueled by inequities in access to high-quality care that affect health outcomes. Advancing equity in health and health care should be a top priority of health care leaders and policymakers.

  27. Do implicit bias trainings on race improve health care?

    In March 2024, four U.S. senators led a resolution calling out the "implicit racial and ethnic biases within the health care system, which have an explicit impact on the quality of care ...

  28. Writing Survey Questions

    Writing Survey Questions. Perhaps the most important part of the survey process is the creation of questions that accurately measure the opinions, experiences and behaviors of the public. Accurate random sampling will be wasted if the information gathered is built on a shaky foundation of ambiguous or biased questions.

  29. 3 Questions: A shared vocabulary for how infectious diseases spread

    On April 18, the World Health Organization (WHO) released new guidance on airborne disease transmission that seeks to create a consensus around the terminology used to describe the transmission of infectious pathogens through the air.. Lydia Bourouiba, the director of the MIT Fluid Dynamics of Disease Transmission Laboratory and the Fluids and Health Network, an associate professor in the MIT ...

  30. Research: More People Use Mental Health Benefits When They Hear That

    Yaroslav Danylchenko/Stocksy. Summary. Novartis has trained more than 1,000 employees as Mental Health First Aiders to offer peer-to-peer support for their colleagues. While employees were eager ...