Online Classes Vs. Traditional Classes Essay

Online vs. in-person classes essay – introduction, online and traditional classes differences, works cited.

The article compares and contrasts online classes and traditional classes. Among the advantages of online classes are flexibility and convenience, while in-person classes offer a more structured learning environment. The author highlights that online lessons can be more cost-effective, although they lack support provided by live interactions. Overall, the online vs. traditional classes essay is very relevant today, and the choice depends on the individual student’s needs and preferences.

Modern technology has infiltrated the education sector and as a result, many college students now prefer taking online classes, as opposed to attending the traditional regular classes. This is because online classes are convenient for such students, and more so for those who have to both work and attend classes.

As such, online learning gives them the flexibility that they needed. In addition, online learning also gives an opportunity to students and professionals who would not have otherwise gone back to school to get the necessary qualifications. However, students who have enrolled for online learning do not benefit from the one-on-one interaction with their peers and teachers. The essay shall endeavor to examine the differences between online classes and the traditional classes, with a preference for the later.

Online classes mainly take place through the internet. As such, online classes lack the regular student teacher interaction that is common with traditional learning. On the other hand, learning in traditional classes involves direct interaction between the student and the instructors (Donovan, Mader and Shinsky 286).

This is beneficial to both the leaner and the instructors because both can be bale to establish a bond. In addition, student attending the traditional classroom often have to adhere to strict guidelines that have been established by the learning institution. As such, students have to adhere to the established time schedules. On the other hand, students attending online classes can learn at their own time and pace.

One advantage of the traditional classes over online classes is that students who are not disciplined enough may not be able to sail through successfully because there is nobody to push them around. With traditional classes however, there are rules to put them in check. As such, students attending traditional classes are more likely to be committed to their education (Donovan et al 286).

Another advantage of the traditional classes is all the doubts that students might be having regarding a given course content can be cleared by the instructor on the spot, unlike online learning whereby such explanations might not be as coherent as the student would have wished.

With the traditional classes, students are rarely provided with the course materials by their instructors, and they are therefore expected to take their own notes. This is important because they are likely to preserve such note and use them later on in their studies. In contrast, online students are provided with course materials in the form of video or audio texts (Sorenson and Johnson 116).

They can also download such course materials online. Such learning materials can be deleted or lost easily compared with handwritten class notes, and this is a risk. Although the basic requirements for a student attending online classes are comparatively les in comparison to students attending traditional classes, nonetheless, it is important to note that online students are also expected to be internet savvy because all learning takes place online.

This would be a disadvantage for the regular student; only that internet savvy is not a requirement. Students undertaking online learning are likely to be withdrawn because they hardly interact one-on-one with their fellow online students or even their instructors. The only form of interaction is online. As such, it becomes hard for them to develop a special bond with other students and instructors. With traditional learning however, students have the freedom to interact freely and this helps to strengthen their existing bond.

Online learning is convenient and has less basic requirements compared with traditional learning. It also allows learners who would have ordinarily not gone back to school to access an education. However, online students do not benefit from a close interaction with their peers and instructors as do their regular counterparts. Also, regular students can engage their instructors more easily and relatively faster in case they want to have certain sections of the course explained, unlike online students.

Donovan, Judy, Mader, Cynthia and Shinsky, John. Constructive student feedback: Online vs. traditional course evaluations. Journal of Interactive Online Learning , 5.3(2006): 284-292.

Sorenson, Lynn, and Johnson, Trav. Online Student Ratings of Instructions . San Francisco: Jossey Bass, 2003. Print.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, October 28). Online Classes Vs. Traditional Classes Essay. https://ivypanda.com/essays/online-classes-vs-traditional-classes-essay/

"Online Classes Vs. Traditional Classes Essay." IvyPanda , 28 Oct. 2023, ivypanda.com/essays/online-classes-vs-traditional-classes-essay/.

IvyPanda . (2023) 'Online Classes Vs. Traditional Classes Essay'. 28 October.

IvyPanda . 2023. "Online Classes Vs. Traditional Classes Essay." October 28, 2023. https://ivypanda.com/essays/online-classes-vs-traditional-classes-essay/.

1. IvyPanda . "Online Classes Vs. Traditional Classes Essay." October 28, 2023. https://ivypanda.com/essays/online-classes-vs-traditional-classes-essay/.

Bibliography

IvyPanda . "Online Classes Vs. Traditional Classes Essay." October 28, 2023. https://ivypanda.com/essays/online-classes-vs-traditional-classes-essay/.

  • Technology Ruins One-on-One Interaction and Relations
  • Remote vs In-person Classes: Positive and Negative Aspects
  • Mathematics Teaching Approaches in Burns' Study
  • The Impressions of Emirati Youths on ISIS
  • Managers’ Training Proposal
  • Coaching Approaches. Separation by Target and Source Data.
  • Walmart Workplace Aspects Analysis
  • The Value of In-Person Human Interaction
  • Organizational Behavior and Workplace Conflicts
  • Educator Ethics: The Case Study
  • Principles Application in E-Learning
  • Cambourne’s Conditions of Learning
  • Concept of Transformative Learning in Modern Education
  • Podcasts as an Education Tool
  • Wikis as an Educational Tool
  • QLS Endorsed
  • Personal Development
  • Health & Care
  • Employability
  • Career Bundles
  • On Demand Courses
  • Browse All Courses
  • Lifetime Membership New

physical classes vs online classes essay pdf

  • Prime Studentship
  • Yearly Subscription
  • Certificate
  • Student ID Card
  • Redeem Voucher

No products in the basket.

Welcome Back!

What will you learn today find out, with coursegate..

Course Gate

Sign in to your Coursegate account

Create a new account here, online classroom vs physical classroom which is better.

Online Classroom vs Physical Classroom

Classrooms have a direct effect on our learning and understanding process. Back in the day, classrooms meant only physical classrooms. But, online classrooms have gained immense popularity, especially after the emergence of the COVID-19 pandemic. This article will help you understand the difference between online classroom vs. physical classroom. After which, you will be able to distinguish between these two and choose the more suitable one for yourself or your child. 

What is an Online Classroom?

An online classroom is a digital learning experience that allows teachers and students to connect online in real-time. Online classrooms use video conferencing, online whiteboards, and screen sharing to enable teachers to conduct live lectures, virtual office hours, and discussions with students in an interactive setting. Moreover, online classrooms are meant to replicate the experience of physical classrooms, with some added benefits of file sharing, instant feedback, and interaction, and are ideal in distance learning situations.

Online classroom vector illustration

In addition, an online classroom showcases an online learning system that enables students and teachers to communicate and collaborate. Online classrooms are basically like cloud-based learning solutions and are run digitally. Therefore, they are highly customisable and accessible to all users on several devices. These include smartphones, tablets, laptops, etc.

What is a Physical Classroom?

Physical classrooms create a face-to-face environment for students and teachers. They refer to a classroom set-up where everyone can communicate with each other and engage. A physical classroom has different materials and furniture in them. This includes projection screens, board, teachers, class monitors, etc. Moreover, many of the elements in a physical classroom bring positivity and concentration to students regarding studies. They also help the students to feel less distracted. This is because an academic environment surrounds them.

Physical classroom vector illustration

However, only books, lessons, and various class works don’t have to keep students engaged. Other things like furniture, classroom decorations, teacher’s behaviour, peers- play an essential role in indulging students into the classroom environment. It creates an ambience to make students feel inclined to study and focus more.

Online Classroom vs. Physical Classroom

Since we have now developed a good knowledge of what online classrooms and physical classrooms are, let’s see the critical differences between online classroom vs. physical classroom. First, let’s see the pros and cons of online classrooms.

Online Classroom- Pros & Cons

Online classrooms may be the perfect option for some, but not the correct choice for others. Therefore, it is best to know its pros and cons before deciding for a kid or an adult.

Student watching online video lecture

Pros of Online Classroom

There are several pros of online classrooms. However, some of the crucial pros of online classrooms include the following:

Provides a Safe & Comfortable Environment 

Online classrooms allow you to study in the comfort of your own home. It is completely home-based, and you are in charge of your surrounding environment. There will be no classroom bullying, no fighting, etc. Also, there will be less disease transmission from others. Most importantly, from dangerous viruses such as COVID-19. 

Complete Flexibility

Total flexibility is the primary advantage of online classrooms. Students can work on their assignments any time of the day, whenever they feel. Also, they can access all their classes from any location that has good internet service. 

physical classes vs online classes essay pdf

LIFETIME LEARNER PACKAGE​

physical classes vs online classes essay pdf

Say goodbye to one-off online courses and hello to endless learning possibilities! Get unlimited access to our entire course library forever

Cost-Effective

Online classrooms require fewer materials. So, it is cost-effective compared to the usual classrooms. Pupils only need to buy e-books and have a good internet connection to attend classes in an online classroom. They do not need to purchase expensive textbooks. Moreover, most of the materials are provided online by the  teaching  faculty. And, any additional costs, such as transportation, lab costs, are also not required to take online classes. 

Cons of Online Classroom

Among the number of pros of online classrooms, there are some cons too. It depends on different people on what they want to focus more on. Therefore, let us now look at the cons now.

Less Socialisation 

Physical classrooms have several options for students to engage and get involved in many recreational activities. On the other hand, there are fewer options for students in online classrooms. They can’t talk to others, interact in the classroom openly, etc.  Students do all teamwork online, all by themselves. This makes them less social. Therefore, interpersonal skills such as teamwork, leadership, and social skills do not develop in them. 

It also affects their mental growth and makes them socially not ready. On top of that, they miss out on classroom-related extracurricular activities such as class parties, face-to-face presentations, classroom games, etc. 

Motivational Problems

Online classrooms expect the pupils to take authority over most of their work. But, sometimes it gets tricky for them to finish them on time. They have to work in isolation, with no peer or teacher to assist them physically if they get stuck somewhere. Thus, this is a significant disadvantage for students who are not very motivated and very bad at working in isolation instead of in groups. 

Distractions

The list of distractions in an online classroom is vast. In a physical classroom, the environment is only suited for learning and getting to interact with others. But, in an online classroom, pupils are in their homes or any other comfortable place. This means that the primary purpose of that environment is not for learning. They are also not under the supervision of teachers.

For instance, at home, the amount of distractions is endless. There might be music playing in the next room, a serious family discussion in the other room, etc. Thus, the classroom environment is not distraction-free. It diverts the mind of pupils from their studies. This causes them to focus less.

Physical Classroom- Pros & Cons

The physical classroom environment is the most common and the most traditional learning environment. However, it has its own pros and cons list too. Let us have a look at some in this section.

Empty physical classroom

Pros of Physical Classroom

Physical classrooms have numerous advantages. Nothing else can beat learning with a proper physical classroom and face-to-face human interaction. Some of the pros are:

Respect towards one’s own physical and mental health and respect for your classmates/teammates is included in a physical classroom environment. Pupils can use this teaching in other social and working environments. It also encourages pupils to achieve through learning, gain recognition for their efforts and achievements, and raise their future aspirations to succeed. Pupils should be involved in learning in its widest sense, both inside and outside the classroom, to achieve their true potential.

In addition, physical classroom education teaches the students how to talk to others and show respect. They learn this through various classroom activities. For example- group projects, presentations, story sharing, etc.

Interactive Learning 

Physical classrooms involve interacting with different teachers face to face, ask more questions if there is any confusion in a topic. Moreover, it allows students to interact with their peers. This builds up their team working and team-building skills. Students can brainstorm ideas amongst each other as well as get feedback from others. 

Books and pencils on a table

The feedbacks can be both good or bad. The bad feedbacks can be treated as constrictive feedbacks, and they can work harder to achieve the desired results. Also, if one is struggling with any lesson or subject, face-to-face tutor help after school hours is available too. Thus, their self-confidence is boosted up through these special classes. 

Discipline is a crucial part of learning. Most people prefer physical classrooms to ensure that students are learning how to behave, learn good manners alongside academic education. Waking up on time, getting ready for school, catching the public transport, acting correctly in class, etc.- these are all part of the disciple that the physical classroom teaches. In addition, discipline teaches students many lessons that can be converted into real-life scenarios when they grow up. 

Self-discipline is one of the essential skills to have – significantly when revising for exams and working full time as an adult. Physical classroom education helps to teach this. Without discipline, all the other skills acquired by an individual go unnoticed. This skill helps to make the different skills and expertise shine brighter.

Moreover, the discipline also teaches individuals proper leadership skills and goal setting to prepare them for their future in work. If an individual is not disciplined, they can never be good leaders or goal setters. Thus, for example, allocating team captains for sports such as volleyball can help pupils learn to work with small groups and assist them in completing a common task (for example, score a goal). 

Cons of Physical Classroom

Amongst all the pros of physical classrooms, there are some cons too. Thus, the most crucial cons are highlighted in this section. Let us have a look at some now.

Physical classrooms have a reasonable cost. Educational institutions charge more money from students if they are to learn in physical classrooms. However, in these challenging economic times, when many schools are getting the axe, and some districts are even laying off teachers, the expense of holding physical classrooms may cause some schools to reconsider whether the class is worth it. The cost and maintenance of classes and equipment, the expense of a gym, maybe money that’s better spent on retaining talented teachers or entire academic programs.

Coins and bills

In addition, many schools and administrators base budget choices on the most important programs to students and parents: usually, those academic subjects measured on standardised testing. If the expense increases for a school, it would also directly impact the money it charges from students and their families. Thus, this creates division amongst students too. It builds up a notion that if you are financially more capable, you can afford the best form of education.

With physical classroom learning, students must physically attend the courses to get credit for attendance. Therefore, those who must travel long distances to get to school must allow enough time to arrive on time, particularly when inclement weather is involved.

Especially during the time of this global COVID-19 pandemic, it is also unsafe to travel. Thus, the risk of exposure to harmful viruses is high too. In addition, it would make the students more vulnerable to fall severely ill. Additionally, for students who are physically disabled, coming to school every day can create problems. They would have to always rely on someone else to take them to school. However, if they cannot commute to school sometimes because there is no other to take them, it would make them feel different from others and, therefore, are treated differently.

Less Flexibility

Physical classroom learning means the class schedule is already fixed and is not subject to change. Thus, they will not be able to take up specific jobs too. Some pupils face financial issues at home, and therefore they have to work to support their family and themselves, but a physical classroom education acts as a roadblock. Thus, less flexibility is one of the critical points in the Online classroom vs. Physical Classroom.

Closing Note

Education is essential for all. However, different people have different preferences when it comes to selecting the most suitable mode of education. Online classroom vs. Physical Classroom is an ongoing debate for several people. Sometimes, it gets challenging to pick the appropriate form of the classroom for yourself or a child. This article will help you solve all your dilemmas and educate you regarding online and physical classrooms. 

Here at Coursegate, we have a wide range of courses to select from. Furthermore, all our courses are delivered online with 24/7 support from the team. Therefore, if you feel that online classrooms would be more suitable for you at the end of the debate of online classroom vs physical classroom, look into our well-equipped online courses!

How Much Do Medical Billing and Coding Make in the UK

How Much Do Medical Billing and Coding Make [Everything You Need to Know]

how much does a teaching assistant earn per hour uk

How Much Does a Teaching Assistant Earn Per Hour in The UK [Everything You Must Know]

physical classes vs online classes essay pdf

4 Challenges Medical Students Face and How to Encounter Them

physical classes vs online classes essay pdf

How Video Converters Support 4K and 8K Videos

physical classes vs online classes essay pdf

Become a Freelance Graphic Designer in 2024

physical classes vs online classes essay pdf

9 Revision Methods to Help You Ace Your Exams

  • online classroom
  • physical classroom
  • All Courses
  • IT & Software 99
  • Microsoft Office 64
  • Nonprofit & Charity 55
  • Health & Safety 91
  • Life Style 72
  • On Demand Courses 42
  • Quality Licence Scheme Endorsed 113
  • Health and Fitness 77
  • Health and Care 161
  • Digital Marketing 48
  • Psychology & Counselling 83
  • Teaching and Education 99
  • Management 129
  • Accounting 62
  • Employability 198
  • Human Resource 44
  • Personal Development 131
  • Marketing 59
  • Business 153
  • Photography 38
  • Language 26

physical classes vs online classes essay pdf

© Course Gate Edukite Ltd, Reg no: 11378092

Privacy Overview

Upgrade to get unlimited access to all courses for only £49.00per year.

No more than 50 active courses at any one time. Membership renews after 12 months. Cancel anytime from your account. Certain courses are not included. Can't be used in conjunction with any other offer.

Home — Essay Samples — Education — Online Vs. Traditional Classes — Online Classes vs Traditional Classes: Which One is More Beneficial?

test_template

Online Classes Vs Traditional Classes: Which One is More Beneficial?

  • Categories: E-Learning Online Vs. Traditional Classes

About this sample

close

Words: 489 |

Published: Jan 30, 2024

Words: 489 | Page: 1 | 3 min read

Table of contents

Introduction, background information on online classes and traditional classes, thesis statement, advantages of online classes.

  • Students can choose when and where to study
  • Allows for balancing work and family commitments
  • No geographical limitations
  • Students can access course material 24/7

Disadvantages of online classes

  • Limited opportunities for networking and collaboration
  • Difficulty in building relationships
  • Students must be disciplined and organized
  • Easy to procrastinate without structured class times

Advantages of traditional classes

  • Immediate feedback and clarification
  • Personalized attention from instructors
  • Dynamic discussions and debates
  • Hands-on activities and experiments

Disadvantages of traditional classes

  • Limited flexibility for working students or those with family commitments
  • Difficulty attending multiple classes at once
  • Limited access for students in remote areas
  • Impacts diversity in the classroom

Restatement of thesis

Final thoughts.

  • E-Learning Industry. (2021). E-learning Statistics and Facts For 2021. https://elearningindustry.com/elearning-statistics-and-facts-for-2021
  • Fortune Business Insights. (2021). E-Learning Market Size, Share & Analysis By Product (Services, Content), By End-User (Corporate, Academic), And Regional Forecast 2021-2028. https://www.fortunebusinessinsights.com/e-learning-market-102801
  • Ortega, L. (2009). Understanding Online vs. Classroom Instruction From Students' Perspective. Journal of Online Learning and Teaching, 5(4).

Image of Dr. Charlotte Jacobson

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Verified writer

  • Expert in: Education

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

3 pages / 1154 words

5 pages / 2159 words

3 pages / 1540 words

1 pages / 553 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Online Vs. Traditional Classes

Most of the college using the electronic textbook which purchase from some website or using the PowerPoint nowadays. A traditional textbook is made by hundreds of pages of information, but all of this information is being write [...]

The debate between online education and in-class education has been ongoing for several years, with proponents and detractors arguing the benefits and drawbacks of each mode of learning. The rise of online education has brought [...]

The Society of Jesus, also known as the Jesuits, has played a significant role in the history of education and has had a profound impact on various fields of study. Founded by Saint Ignatius of Loyola in the 16th century, the [...]

As a college student, the choice between taking courses online or in-person can be a difficult one. While online classes provide flexibility and convenience, they also come with their own set of challenges. In this essay, we [...]

Education on top priority Today, education stands on top of the priority list. Anywhere you go or anything you want to achieve in your life, you require education. The opportunities to get educated and earn degrees are [...]

At times when you’ve had to decide on your education, did you ever stop to think about whether you prefer attending to conventional classes or taking online classes? Attending to conventional classes at a school is probably the [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

physical classes vs online classes essay pdf

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Wiley - PMC COVID-19 Collection

Logo of pheblackwell

Online and face‐to‐face learning: Evidence from students’ performance during the Covid‐19 pandemic

Carolyn chisadza.

1 Department of Economics, University of Pretoria, Hatfield South Africa

Matthew Clance

Thulani mthembu.

2 Department of Education Innovation, University of Pretoria, Hatfield South Africa

Nicky Nicholls

Eleni yitbarek.

This study investigates the factors that predict students' performance after transitioning from face‐to‐face to online learning as a result of the Covid‐19 pandemic. It uses students' responses from survey questions and the difference in the average assessment grades between pre‐lockdown and post‐lockdown at a South African university. We find that students' performance was positively associated with good wifi access, relative to using mobile internet data. We also observe lower academic performance for students who found transitioning to online difficult and who expressed a preference for self‐study (i.e. reading through class slides and notes) over assisted study (i.e. joining live lectures or watching recorded lectures). The findings suggest that improving digital infrastructure and reducing the cost of internet access may be necessary for mitigating the impact of the Covid‐19 pandemic on education outcomes.

1. INTRODUCTION

The Covid‐19 pandemic has been a wake‐up call to many countries regarding their capacity to cater for mass online education. This situation has been further complicated in developing countries, such as South Africa, who lack the digital infrastructure for the majority of the population. The extended lockdown in South Africa saw most of the universities with mainly in‐person teaching scrambling to source hardware (e.g. laptops, internet access), software (e.g. Microsoft packages, data analysis packages) and internet data for disadvantaged students in order for the semester to recommence. Not only has the pandemic revealed the already stark inequality within the tertiary student population, but it has also revealed that high internet data costs in South Africa may perpetuate this inequality, making online education relatively inaccessible for disadvantaged students. 1

The lockdown in South Africa made it possible to investigate the changes in second‐year students' performance in the Economics department at the University of Pretoria. In particular, we are interested in assessing what factors predict changes in students' performance after transitioning from face‐to‐face (F2F) to online learning. Our main objectives in answering this study question are to establish what study materials the students were able to access (i.e. slides, recordings, or live sessions) and how students got access to these materials (i.e. the infrastructure they used).

The benefits of education on economic development are well established in the literature (Gyimah‐Brempong,  2011 ), ranging from health awareness (Glick et al.,  2009 ), improved technological innovations, to increased capacity development and employment opportunities for the youth (Anyanwu,  2013 ; Emediegwu,  2021 ). One of the ways in which inequality is perpetuated in South Africa, and Africa as a whole, is through access to education (Anyanwu,  2016 ; Coetzee,  2014 ; Tchamyou et al.,  2019 ); therefore, understanding the obstacles that students face in transitioning to online learning can be helpful in ensuring more equal access to education.

Using students' responses from survey questions and the difference in the average grades between pre‐lockdown and post‐lockdown, our findings indicate that students' performance in the online setting was positively associated with better internet access. Accessing assisted study material, such as narrated slides or recordings of the online lectures, also helped students. We also find lower academic performance for students who reported finding transitioning to online difficult and for those who expressed a preference for self‐study (i.e. reading through class slides and notes) over assisted study (i.e. joining live lectures or watching recorded lectures). The average grades between pre‐lockdown and post‐lockdown were about two points and three points lower for those who reported transitioning to online teaching difficult and for those who indicated a preference for self‐study, respectively. The findings suggest that improving the quality of internet infrastructure and providing assisted learning can be beneficial in reducing the adverse effects of the Covid‐19 pandemic on learning outcomes.

Our study contributes to the literature by examining the changes in the online (post‐lockdown) performance of students and their F2F (pre‐lockdown) performance. This approach differs from previous studies that, in most cases, use between‐subject designs where one group of students following online learning is compared to a different group of students attending F2F lectures (Almatra et al.,  2015 ; Brown & Liedholm,  2002 ). This approach has a limitation in that that there may be unobserved characteristics unique to students choosing online learning that differ from those choosing F2F lectures. Our approach avoids this issue because we use a within‐subject design: we compare the performance of the same students who followed F2F learning Before lockdown and moved to online learning during lockdown due to the Covid‐19 pandemic. Moreover, the study contributes to the limited literature that compares F2F and online learning in developing countries.

Several studies that have also compared the effectiveness of online learning and F2F classes encounter methodological weaknesses, such as small samples, not controlling for demographic characteristics, and substantial differences in course materials and assessments between online and F2F contexts. To address these shortcomings, our study is based on a relatively large sample of students and includes demographic characteristics such as age, gender and perceived family income classification. The lecturer and course materials also remained similar in the online and F2F contexts. A significant proportion of our students indicated that they never had online learning experience before. Less than 20% of the students in the sample had previous experience with online learning. This highlights the fact that online education is still relatively new to most students in our sample.

Given the global experience of the fourth industrial revolution (4IR), 2 with rapidly accelerating technological progress, South Africa needs to be prepared for the possibility of online learning becoming the new norm in the education system. To this end, policymakers may consider engaging with various organizations (schools, universities, colleges, private sector, and research facilities) To adopt interventions that may facilitate the transition to online learning, while at the same time ensuring fair access to education for all students across different income levels. 3

1.1. Related literature

Online learning is a form of distance education which mainly involves internet‐based education where courses are offered synchronously (i.e. live sessions online) and/or asynchronously (i.e. students access course materials online in their own time, which is associated with the more traditional distance education). On the other hand, traditional F2F learning is real time or synchronous learning. In a physical classroom, instructors engage with the students in real time, while in the online format instructors can offer real time lectures through learning management systems (e.g. Blackboard Collaborate), or record the lectures for the students to watch later. Purely online courses are offered entirely over the internet, while blended learning combines traditional F2F classes with learning over the internet, and learning supported by other technologies (Nguyen,  2015 ).

Moreover, designing online courses requires several considerations. For example, the quality of the learning environment, the ease of using the learning platform, the learning outcomes to be achieved, instructor support to assist and motivate students to engage with the course material, peer interaction, class participation, type of assessments (Paechter & Maier,  2010 ), not to mention training of the instructor in adopting and introducing new teaching methods online (Lundberg et al.,  2008 ). In online learning, instructors are more facilitators of learning. On the other hand, traditional F2F classes are structured in such a way that the instructor delivers knowledge, is better able to gauge understanding and interest of students, can engage in class activities, and can provide immediate feedback on clarifying questions during the class. Additionally, the designing of traditional F2F courses can be less time consuming for instructors compared to online courses (Navarro,  2000 ).

Online learning is also particularly suited for nontraditional students who require flexibility due to work or family commitments that are not usually associated with the undergraduate student population (Arias et al.,  2018 ). Initially the nontraditional student belonged to the older adult age group, but with blended learning becoming more commonplace in high schools, colleges and universities, online learning has begun to traverse a wider range of age groups. However, traditional F2F classes are still more beneficial for learners that are not so self‐sufficient and lack discipline in working through the class material in the required time frame (Arias et al.,  2018 ).

For the purpose of this literature review, both pure online and blended learning are considered to be online learning because much of the evidence in the literature compares these two types against the traditional F2F learning. The debate in the literature surrounding online learning versus F2F teaching continues to be a contentious one. A review of the literature reveals mixed findings when comparing the efficacy of online learning on student performance in relation to the traditional F2F medium of instruction (Lundberg et al.,  2008 ; Nguyen,  2015 ). A number of studies conducted Before the 2000s find what is known today in the empirical literature as the “No Significant Difference” phenomenon (Russell & International Distance Education Certificate Center (IDECC),  1999 ). The seminal work from Russell and IDECC ( 1999 ) involved over 350 comparative studies on online/distance learning versus F2F learning, dating back to 1928. The author finds no significant difference overall between online and traditional F2F classroom education outcomes. Subsequent studies that followed find similar “no significant difference” outcomes (Arbaugh,  2000 ; Fallah & Ubell,  2000 ; Freeman & Capper,  1999 ; Johnson et al.,  2000 ; Neuhauser,  2002 ). While Bernard et al. ( 2004 ) also find that overall there is no significant difference in achievement between online education and F2F education, the study does find significant heterogeneity in student performance for different activities. The findings show that students in F2F classes outperform the students participating in synchronous online classes (i.e. classes that require online students to participate in live sessions at specific times). However, asynchronous online classes (i.e. students access class materials at their own time online) outperform F2F classes.

More recent studies find significant results for online learning outcomes in relation to F2F outcomes. On the one hand, Shachar and Yoram ( 2003 ) and Shachar and Neumann ( 2010 ) conduct a meta‐analysis of studies from 1990 to 2009 and find that in 70% of the cases, students taking courses by online education outperformed students in traditionally instructed courses (i.e. F2F lectures). In addition, Navarro and Shoemaker ( 2000 ) observe that learning outcomes for online learners are as effective as or better than outcomes for F2F learners, regardless of background characteristics. In a study on computer science students, Dutton et al. ( 2002 ) find online students perform significantly better compared to the students who take the same course on campus. A meta‐analysis conducted by the US Department of Education finds that students who took all or part of their course online performed better, on average, than those taking the same course through traditional F2F instructions. The report also finds that the effect sizes are larger for studies in which the online learning was collaborative or instructor‐driven than in those studies where online learners worked independently (Means et al.,  2010 ).

On the other hand, evidence by Brown and Liedholm ( 2002 ) based on test scores from macroeconomics students in the United States suggest that F2F students tend to outperform online students. These findings are supported by Coates et al. ( 2004 ) who base their study on macroeconomics students in the United States, and Xu and Jaggars ( 2014 ) who find negative effects for online students using a data set of about 500,000 courses taken by over 40,000 students in Washington. Furthermore, Almatra et al. ( 2015 ) compare overall course grades between online and F2F students for a Telecommunications course and find that F2F students significantly outperform online learning students. In an experimental study where students are randomly assigned to attend live lectures versus watching the same lectures online, Figlio et al. ( 2013 ) observe some evidence that the traditional format has a positive effect compared to online format. Interestingly, Callister and Love ( 2016 ) specifically compare the learning outcomes of online versus F2F skills‐based courses and find that F2F learners earned better outcomes than online learners even when using the same technology. This study highlights that some of the inconsistencies that we find in the results comparing online to F2F learning might be influenced by the nature of the course: theory‐based courses might be less impacted by in‐person interaction than skills‐based courses.

The fact that the reviewed studies on the effects of F2F versus online learning on student performance have been mainly focused in developed countries indicates the dearth of similar studies being conducted in developing countries. This gap in the literature may also highlight a salient point: online learning is still relatively underexplored in developing countries. The lockdown in South Africa therefore provides us with an opportunity to contribute to the existing literature from a developing country context.

2. CONTEXT OF STUDY

South Africa went into national lockdown in March 2020 due to the Covid‐19 pandemic. Like most universities in the country, the first semester for undergraduate courses at the University of Pretoria had already been running since the start of the academic year in February. Before the pandemic, a number of F2F lectures and assessments had already been conducted in most courses. The nationwide lockdown forced the university, which was mainly in‐person teaching, to move to full online learning for the remainder of the semester. This forced shift from F2F teaching to online learning allows us to investigate the changes in students' performance.

Before lockdown, classes were conducted on campus. During lockdown, these live classes were moved to an online platform, Blackboard Collaborate, which could be accessed by all registered students on the university intranet (“ClickUP”). However, these live online lectures involve substantial internet data costs for students. To ensure access to course content for those students who were unable to attend the live online lectures due to poor internet connections or internet data costs, several options for accessing course content were made available. These options included prerecorded narrated slides (which required less usage of internet data), recordings of the live online lectures, PowerPoint slides with explanatory notes and standard PDF lecture slides.

At the same time, the university managed to procure and loan out laptops to a number of disadvantaged students, and negotiated with major mobile internet data providers in the country for students to have free access to study material through the university's “connect” website (also referred to as the zero‐rated website). However, this free access excluded some video content and live online lectures (see Table  1 ). The university also provided between 10 and 20 gigabytes of mobile internet data per month, depending on the network provider, sent to students' mobile phones to assist with internet data costs.

Sites available on zero‐rated website

Note : The table summarizes the sites that were available on the zero‐rated website and those that incurred data costs.

High data costs continue to be a contentious issue in Africa where average incomes are low. Gilbert ( 2019 ) reports that South Africa ranked 16th of the 45 countries researched in terms of the most expensive internet data in Africa, at US$6.81 per gigabyte, in comparison to other Southern African countries such as Mozambique (US$1.97), Zambia (US$2.70), and Lesotho (US$4.09). Internet data prices have also been called into question in South Africa after the Competition Commission published a report from its Data Services Market Inquiry calling the country's internet data pricing “excessive” (Gilbert,  2019 ).

3. EMPIRICAL APPROACH

We use a sample of 395 s‐year students taking a macroeconomics module in the Economics department to compare the effects of F2F and online learning on students' performance using a range of assessments. The module was an introduction to the application of theoretical economic concepts. The content was both theory‐based (developing economic growth models using concepts and equations) and skill‐based (application involving the collection of data from online data sources and analyzing the data using statistical software). Both individual and group assignments formed part of the assessments. Before the end of the semester, during lockdown in June 2020, we asked the students to complete a survey with questions related to the transition from F2F to online learning and the difficulties that they may have faced. For example, we asked the students: (i) how easy or difficult they found the transition from F2F to online lectures; (ii) what internet options were available to them and which they used the most to access the online prescribed work; (iii) what format of content they accessed and which they preferred the most (i.e. self‐study material in the form of PDF and PowerPoint slides with notes vs. assisted study with narrated slides and lecture recordings); (iv) what difficulties they faced accessing the live online lectures, to name a few. Figure  1 summarizes the key survey questions that we asked the students regarding their transition from F2F to online learning.

An external file that holds a picture, illustration, etc.
Object name is AFDR-33-S114-g002.jpg

Summary of survey data

Before the lockdown, the students had already attended several F2F classes and completed three assessments. We are therefore able to create a dependent variable that is comprised of the average grades of three assignments taken before lockdown and the average grades of three assignments taken after the start of the lockdown for each student. Specifically, we use the difference between the post‐ and pre‐lockdown average grades as the dependent variable. However, the number of student observations dropped to 275 due to some students missing one or more of the assessments. The lecturer, content and format of the assessments remain similar across the module. We estimate the following equation using ordinary least squares (OLS) with robust standard errors:

where Y i is the student's performance measured by the difference between the post and pre‐lockdown average grades. B represents the vector of determinants that measure the difficulty faced by students to transition from F2F to online learning. This vector includes access to the internet, study material preferred, quality of the online live lecture sessions and pre‐lockdown class attendance. X is the vector of student demographic controls such as race, gender and an indicator if the student's perceived family income is below average. The ε i is unobserved student characteristics.

4. ANALYSIS

4.1. descriptive statistics.

Table  2 gives an overview of the sample of students. We find that among the black students, a higher proportion of students reported finding the transition to online learning more difficult. On the other hand, more white students reported finding the transition moderately easy, as did the other races. According to Coetzee ( 2014 ), the quality of schools can vary significantly between higher income and lower‐income areas, with black South Africans far more likely to live in lower‐income areas with lower quality schools than white South Africans. As such, these differences in quality of education from secondary schooling can persist at tertiary level. Furthermore, persistent income inequality between races in South Africa likely means that many poorer black students might not be able to afford wifi connections or large internet data bundles which can make the transition difficult for black students compared to their white counterparts.

Descriptive statistics

Notes : The transition difficulty variable was ordered 1: Very Easy; 2: Moderately Easy; 3: Difficult; and 4: Impossible. Since we have few responses to the extremes, we combined Very Easy and Moderately as well as Difficult and Impossible to make the table easier to read. The table with a full breakdown is available upon request.

A higher proportion of students reported that wifi access made the transition to online learning moderately easy. However, relatively more students reported that mobile internet data and accessing the zero‐rated website made the transition difficult. Surprisingly, not many students made use of the zero‐rated website which was freely available. Figure  2 shows that students who reported difficulty transitioning to online learning did not perform as well in online learning versus F2F when compared to those that found it less difficult to transition.

An external file that holds a picture, illustration, etc.
Object name is AFDR-33-S114-g003.jpg

Transition from F2F to online learning.

Notes : This graph shows the students' responses to the question “How easy did you find the transition from face‐to‐face lectures to online lectures?” in relation to the outcome variable for performance

In Figure  3 , the kernel density shows that students who had access to wifi performed better than those who used mobile internet data or the zero‐rated data.

An external file that holds a picture, illustration, etc.
Object name is AFDR-33-S114-g001.jpg

Access to online learning.

Notes : This graph shows the students' responses to the question “What do you currently use the most to access most of your prescribed work?” in relation to the outcome variable for performance

The regression results are reported in Table  3 . We find that the change in students' performance from F2F to online is negatively associated with the difficulty they faced in transitioning from F2F to online learning. According to student survey responses, factors contributing to difficulty in transitioning included poor internet access, high internet data costs and lack of equipment such as laptops or tablets to access the study materials on the university website. Students who had access to wifi (i.e. fixed wireless broadband, Asymmetric Digital Subscriber Line (ADSL) or optic fiber) performed significantly better, with on average 4.5 points higher grade, in relation to students that had to use mobile internet data (i.e. personal mobile internet data, wifi at home using mobile internet data, or hotspot using mobile internet data) or the zero‐rated website to access the study materials. The insignificant results for the zero‐rated website are surprising given that the website was freely available and did not incur any internet data costs. However, most students in this sample complained that the internet connection on the zero‐rated website was slow, especially in uploading assignments. They also complained about being disconnected when they were in the middle of an assessment. This may have discouraged some students from making use of the zero‐rated website.

Results: Predictors for student performance using the difference on average assessment grades between pre‐ and post‐lockdown

Coefficients reported. Robust standard errors in parentheses.

∗∗∗ p  < .01.

Students who expressed a preference for self‐study approaches (i.e. reading PDF slides or PowerPoint slides with explanatory notes) did not perform as well, on average, as students who preferred assisted study (i.e. listening to recorded narrated slides or lecture recordings). This result is in line with Means et al. ( 2010 ), where student performance was better for online learning that was collaborative or instructor‐driven than in cases where online learners worked independently. Interestingly, we also observe that the performance of students who often attended in‐person classes before the lockdown decreased. Perhaps these students found the F2F lectures particularly helpful in mastering the course material. From the survey responses, we find that a significant proportion of the students (about 70%) preferred F2F to online lectures. This preference for F2F lectures may also be linked to the factors contributing to the difficulty some students faced in transitioning to online learning.

We find that the performance of low‐income students decreased post‐lockdown, which highlights another potential challenge to transitioning to online learning. The picture and sound quality of the live online lectures also contributed to lower performance. Although this result is not statistically significant, it is worth noting as the implications are linked to the quality of infrastructure currently available for students to access online learning. We find no significant effects of race on changes in students' performance, though males appeared to struggle more with the shift to online teaching than females.

For the robustness check in Table  4 , we consider the average grades of the three assignments taken after the start of the lockdown as a dependent variable (i.e. the post‐lockdown average grades for each student). We then include the pre‐lockdown average grades as an explanatory variable. The findings and overall conclusions in Table  4 are consistent with the previous results.

Robustness check: Predictors for student performance using the average assessment grades for post‐lockdown

As a further robustness check in Table  5 , we create a panel for each student across the six assignment grades so we can control for individual heterogeneity. We create a post‐lockdown binary variable that takes the value of 1 for the lockdown period and 0 otherwise. We interact the post‐lockdown dummy variable with a measure for transition difficulty and internet access. The internet access variable is an indicator variable for mobile internet data, wifi, or zero‐rated access to class materials. The variable wifi is a binary variable taking the value of 1 if the student has access to wifi and 0 otherwise. The zero‐rated variable is a binary variable taking the value of 1 if the student used the university's free portal access and 0 otherwise. We also include assignment and student fixed effects. The results in Table  5 remain consistent with our previous findings that students who had wifi access performed significantly better than their peers.

Interaction model

Notes : Coefficients reported. Robust standard errors in parentheses. The dependent variable is the assessment grades for each student on each assignment. The number of observations include the pre‐post number of assessments multiplied by the number of students.

6. CONCLUSION

The Covid‐19 pandemic left many education institutions with no option but to transition to online learning. The University of Pretoria was no exception. We examine the effect of transitioning to online learning on the academic performance of second‐year economic students. We use assessment results from F2F lectures before lockdown, and online lectures post lockdown for the same group of students, together with responses from survey questions. We find that the main contributor to lower academic performance in the online setting was poor internet access, which made transitioning to online learning more difficult. In addition, opting to self‐study (read notes instead of joining online classes and/or watching recordings) did not help the students in their performance.

The implications of the results highlight the need for improved quality of internet infrastructure with affordable internet data pricing. Despite the university's best efforts not to leave any student behind with the zero‐rated website and free monthly internet data, the inequality dynamics in the country are such that invariably some students were negatively affected by this transition, not because the student was struggling academically, but because of inaccessibility of internet (wifi). While the zero‐rated website is a good collaborative initiative between universities and network providers, the infrastructure is not sufficient to accommodate mass students accessing it simultaneously.

This study's findings may highlight some shortcomings in the academic sector that need to be addressed by both the public and private sectors. There is potential for an increase in the digital divide gap resulting from the inequitable distribution of digital infrastructure. This may lead to reinforcement of current inequalities in accessing higher education in the long term. To prepare the country for online learning, some considerations might need to be made to make internet data tariffs more affordable and internet accessible to all. We hope that this study's findings will provide a platform (or will at least start the conversation for taking remedial action) for policy engagements in this regard.

We are aware of some limitations presented by our study. The sample we have at hand makes it difficult to extrapolate our findings to either all students at the University of Pretoria or other higher education students in South Africa. Despite this limitation, our findings highlight the negative effect of the digital divide on students' educational outcomes in the country. The transition to online learning and the high internet data costs in South Africa can also have adverse learning outcomes for low‐income students. With higher education institutions, such as the University of Pretoria, integrating online teaching to overcome the effect of the Covid‐19 pandemic, access to stable internet is vital for students' academic success.

It is also important to note that the data we have at hand does not allow us to isolate wifi's causal effect on students' performance post‐lockdown due to two main reasons. First, wifi access is not randomly assigned; for instance, there is a high chance that students with better‐off family backgrounds might have better access to wifi and other supplementary infrastructure than their poor counterparts. Second, due to the university's data access policy and consent, we could not merge the data at hand with the student's previous year's performance. Therefore, future research might involve examining the importance of these elements to document the causal impact of access to wifi on students' educational outcomes in the country.

ACKNOWLEDGMENT

The authors acknowledge the helpful comments received from the editor, the anonymous reviewers, and Elizabeth Asiedu.

Chisadza, C. , Clance, M. , Mthembu, T. , Nicholls, N. , & Yitbarek, E. (2021). Online and face‐to‐face learning: Evidence from students’ performance during the Covid‐19 pandemic . Afr Dev Rev , 33 , S114–S125. 10.1111/afdr.12520 [ CrossRef ] [ Google Scholar ]

1 https://mybroadband.co.za/news/cellular/309693-mobile-data-prices-south-africa-vs-the-world.html .

2 The 4IR is currently characterized by increased use of new technologies, such as advanced wireless technologies, artificial intelligence, cloud computing, robotics, among others. This era has also facilitated the use of different online learning platforms ( https://www.brookings.edu/research/the-fourth-industrialrevolution-and-digitization-will-transform-africa-into-a-global-powerhouse/ ).

3 Note that we control for income, but it is plausible to assume other unobservable factors such as parental preference and parenting style might also affect access to the internet of students.

  • Almatra, O. , Johri, A. , Nagappan, K. , & Modanlu, A. (2015). An empirical study of face‐to‐face and distance learning sections of a core telecommunication course (Conference Proceedings Paper No. 12944). 122nd ASEE Annual Conference and Exposition, Seattle, Washington State.
  • Anyanwu, J. C. (2013). Characteristics and macroeconomic determinants of youth employment in Africa . African Development Review , 25 ( 2 ), 107–129. [ Google Scholar ]
  • Anyanwu, J. C. (2016). Accounting for gender equality in secondary school enrolment in Africa: Accounting for gender equality in secondary school enrolment . African Development Review , 28 ( 2 ), 170–191. [ Google Scholar ]
  • Arbaugh, J. (2000). Virtual classroom versus physical classroom: An exploratory study of class discussion patterns and student learning in an asynchronous internet‐based MBA course . Journal of Management Education , 24 ( 2 ), 213–233. [ Google Scholar ]
  • Arias, J. J. , Swinton, J. , & Anderson, K. (2018). On‐line vs. face‐to‐face: A comparison of student outcomes with random assignment . e‐Journal of Business Education and Scholarship of Teaching, , 12 ( 2 ), 1–23. [ Google Scholar ]
  • Bernard, R. M. , Abrami, P. C. , Lou, Y. , Borokhovski, E. , Wade, A. , Wozney, L. , Wallet, P. A. , Fiset, M. , & Huang, B. (2004). How does distance education compare with classroom instruction? A meta‐analysis of the empirical literature . Review of Educational Research , 74 ( 3 ), 379–439. [ Google Scholar ]
  • Brown, B. , & Liedholm, C. (2002). Can web courses replace the classroom in principles of microeconomics? American Economic Review , 92 ( 2 ), 444–448. [ Google Scholar ]
  • Callister, R. R. , & Love, M. S. (2016). A comparison of learning outcomes in skills‐based courses: Online versus face‐to‐face formats . Decision Sciences Journal of Innovative Education , 14 ( 2 ), 243–256. [ Google Scholar ]
  • Coates, D. , Humphreys, B. R. , Kane, J. , & Vachris, M. A. (2004). “No significant distance” between face‐to‐face and online instruction: Evidence from principles of economics . Economics of Education Review , 23 ( 5 ), 533–546. [ Google Scholar ]
  • Coetzee, M. (2014). School quality and the performance of disadvantaged learners in South Africa (Working Paper No. 22). University of Stellenbosch Economics Department, Stellenbosch
  • Dutton, J. , Dutton, M. , & Perry, J. (2002). How do online students differ from lecture students? Journal of Asynchronous Learning Networks , 6 ( 1 ), 1–20. [ Google Scholar ]
  • Emediegwu, L. (2021). Does educational investment enhance capacity development for Nigerian youths? An autoregressive distributed lag approach . African Development Review , 32 ( S1 ), S45–S53. [ Google Scholar ]
  • Fallah, M. H. , & Ubell, R. (2000). Blind scores in a graduate test. Conventional compared with web‐based outcomes . ALN Magazine , 4 ( 2 ). [ Google Scholar ]
  • Figlio, D. , Rush, M. , & Yin, L. (2013). Is it live or is it internet? Experimental estimates of the effects of online instruction on student learning . Journal of Labor Economics , 31 ( 4 ), 763–784. [ Google Scholar ]
  • Freeman, M. A. , & Capper, J. M. (1999). Exploiting the web for education: An anonymous asynchronous role simulation . Australasian Journal of Educational Technology , 15 ( 1 ), 95–116. [ Google Scholar ]
  • Gilbert, P. (2019). The most expensive data prices in Africa . Connecting Africa. https://www.connectingafrica.com/author.asp?section_id=761%26doc_id=756372
  • Glick, P. , Randriamamonjy, J. , & Sahn, D. (2009). Determinants of HIV knowledge and condom use among women in Madagascar: An analysis using matched household and community data . African Development Review , 21 ( 1 ), 147–179. [ Google Scholar ]
  • Gyimah‐Brempong, K. (2011). Education and economic development in Africa . African Development Review , 23 ( 2 ), 219–236. [ Google Scholar ]
  • Johnson, S. , Aragon, S. , Shaik, N. , & Palma‐Rivas, N. (2000). Comparative analysis of learner satisfaction and learning outcomes in online and face‐to‐face learning environments . Journal of Interactive Learning Research , 11 ( 1 ), 29–49. [ Google Scholar ]
  • Lundberg, J. , Merino, D. , & Dahmani, M. (2008). Do online students perform better than face‐to‐face students? Reflections and a short review of some empirical findings . Revista de Universidad y Sociedad del Conocimiento , 5 ( 1 ), 35–44. [ Google Scholar ]
  • Means, B. , Toyama, Y. , Murphy, R. , Bakia, M. , & Jones, K. (2010). Evaluation of evidence‐based practices in online learning: A meta‐analysis and review of online learning studies (Report No. ed‐04‐co‐0040 task 0006). U.S. Department of Education, Office of Planning, Evaluation, and Policy Development, Washington DC.
  • Navarro, P. (2000). Economics in the cyber‐classroom . Journal of Economic Perspectives , 14 ( 2 ), 119–132. [ Google Scholar ]
  • Navarro, P. , & Shoemaker, J. (2000). Performance and perceptions of distance learners in cyberspace . American Journal of Distance Education , 14 ( 2 ), 15–35. [ Google Scholar ]
  • Neuhauser, C. (2002). Learning style and effectiveness of online and face‐to‐face instruction . American Journal of Distance Education , 16 ( 2 ), 99–113. [ Google Scholar ]
  • Nguyen, T. (2015). The effectiveness of online learning: Beyond no significant difference and future horizons . MERLOT Journal of Online Teaching and Learning , 11 ( 2 ), 309–319. [ Google Scholar ]
  • Paechter, M. , & Maier, B. (2010). Online or face‐to‐face? Students' experiences and preferences in e‐learning . Internet and Higher Education , 13 ( 4 ), 292–297. [ Google Scholar ]
  • Russell, T. L. , & International Distance Education Certificate Center (IDECC) (1999). The no significant difference phenomenon: A comparative research annotated bibliography on technology for distance education: As reported in 355 research reports, summaries and papers . North Carolina State University. [ Google Scholar ]
  • Shachar, M. , & Neumann, Y. (2010). Twenty years of research on the academic performance differences between traditional and distance learning: Summative meta‐analysis and trend examination . MERLOT Journal of Online Learning and Teaching , 6 ( 2 ), 318–334. [ Google Scholar ]
  • Shachar, M. , & Yoram, N. (2003). Differences between traditional and distance education academic performances: A meta‐analytic approach . International Review of Research in Open and Distance Learning , 4 ( 2 ), 1–20. [ Google Scholar ]
  • Tchamyou, V. S. , Asongu, S. , & Odhiambo, N. (2019). The role of ICT in modulating the effect of education and lifelong learning on income inequality and economic growth in Africa . African Development Review , 31 ( 3 ), 261–274. [ Google Scholar ]
  • Xu, D. , & Jaggars, S. S. (2014). Performance gaps between online and face‐to‐face courses: Differences across types of students and academic subject areas . The Journal of Higher Education , 85 ( 5 ), 633–659. [ Google Scholar ]
  • Reference Manager
  • Simple TEXT file

People also looked at

Original research article, a comparative analysis of student performance in an online vs. face-to-face environmental science course from 2009 to 2016.

physical classes vs online classes essay pdf

  • Department of Biology, Fort Valley State University, Fort Valley, GA, United States

A growing number of students are now opting for online classes. They find the traditional classroom modality restrictive, inflexible, and impractical. In this age of technological advancement, schools can now provide effective classroom teaching via the Web. This shift in pedagogical medium is forcing academic institutions to rethink how they want to deliver their course content. The overarching purpose of this research was to determine which teaching method proved more effective over the 8-year period. The scores of 548 students, 401 traditional students and 147 online students, in an environmental science class were used to determine which instructional modality generated better student performance. In addition to the overarching objective, we also examined score variabilities between genders and classifications to determine if teaching modality had a greater impact on specific groups. No significant difference in student performance between online and face-to-face (F2F) learners overall, with respect to gender, or with respect to class rank were found. These data demonstrate the ability to similarly translate environmental science concepts for non-STEM majors in both traditional and online platforms irrespective of gender or class rank. A potential exists for increasing the number of non-STEM majors engaged in citizen science using the flexibility of online learning to teach environmental science core concepts.

Introduction

The advent of online education has made it possible for students with busy lives and limited flexibility to obtain a quality education. As opposed to traditional classroom teaching, Web-based instruction has made it possible to offer classes worldwide through a single Internet connection. Although it boasts several advantages over traditional education, online instruction still has its drawbacks, including limited communal synergies. Still, online education seems to be the path many students are taking to secure a degree.

This study compared the effectiveness of online vs. traditional instruction in an environmental studies class. Using a single indicator, we attempted to see if student performance was effected by instructional medium. This study sought to compare online and F2F teaching on three levels—pure modality, gender, and class rank. Through these comparisons, we investigated whether one teaching modality was significantly more effective than the other. Although there were limitations to the study, this examination was conducted to provide us with additional measures to determine if students performed better in one environment over another ( Mozes-Carmel and Gold, 2009 ).

The methods, procedures, and operationalization tools used in this assessment can be expanded upon in future quantitative, qualitative, and mixed method designs to further analyze this topic. Moreover, the results of this study serve as a backbone for future meta-analytical studies.

Origins of Online Education

Computer-assisted instruction is changing the pedagogical landscape as an increasing number of students are seeking online education. Colleges and universities are now touting the efficiencies of Web-based education and are rapidly implementing online classes to meet student needs worldwide. One study reported “increases in the number of online courses given by universities have been quite dramatic over the last couple of years” ( Lundberg et al., 2008 ). Think tanks are also disseminating statistics on Web-based instruction. “In 2010, the Sloan Consortium found a 17% increase in online students from the years before, beating the 12% increase from the previous year” ( Keramidas, 2012 ).

Contrary to popular belief, online education is not a new phenomenon. The first correspondence and distance learning educational programs were initiated in the mid-1800s by the University of London. This model of educational learning was dependent on the postal service and therefore wasn't seen in American until the later Nineteenth century. It was in 1873 when what is considered the first official correspondence educational program was established in Boston, Massachusetts known as the “Society to Encourage Home Studies.” Since then, non-traditional study has grown into what it is today considered a more viable online instructional modality. Technological advancement indubitably helped improve the speed and accessibility of distance learning courses; now students worldwide could attend classes from the comfort of their own homes.

Qualities of Online and Traditional Face to Face (F2F) Classroom Education

Online and traditional education share many qualities. Students are still required to attend class, learn the material, submit assignments, and complete group projects. While teachers, still have to design curriculums, maximize instructional quality, answer class questions, motivate students to learn, and grade assignments. Despite these basic similarities, there are many differences between the two modalities. Traditionally, classroom instruction is known to be teacher-centered and requires passive learning by the student, while online instruction is often student-centered and requires active learning.

In teacher-centered, or passive learning, the instructor usually controls classroom dynamics. The teacher lectures and comments, while students listen, take notes, and ask questions. In student-centered, or active learning, the students usually determine classroom dynamics as they independently analyze the information, construct questions, and ask the instructor for clarification. In this scenario, the teacher, not the student, is listening, formulating, and responding ( Salcedo, 2010 ).

In education, change comes with questions. Despite all current reports championing online education, researchers are still questioning its efficacy. Research is still being conducted on the effectiveness of computer-assisted teaching. Cost-benefit analysis, student experience, and student performance are now being carefully considered when determining whether online education is a viable substitute for classroom teaching. This decision process will most probably carry into the future as technology improves and as students demand better learning experiences.

Thus far, “literature on the efficacy of online courses is expansive and divided” ( Driscoll et al., 2012 ). Some studies favor traditional classroom instruction, stating “online learners will quit more easily” and “online learning can lack feedback for both students and instructors” ( Atchley et al., 2013 ). Because of these shortcomings, student retention, satisfaction, and performance can be compromised. Like traditional teaching, distance learning also has its apologists who aver online education produces students who perform as well or better than their traditional classroom counterparts ( Westhuis et al., 2006 ).

The advantages and disadvantages of both instructional modalities need to be fully fleshed out and examined to truly determine which medium generates better student performance. Both modalities have been proven to be relatively effective, but, as mentioned earlier, the question to be asked is if one is truly better than the other.

Student Need for Online Education

With technological advancement, learners now want quality programs they can access from anywhere and at any time. Because of these demands, online education has become a viable, alluring option to business professionals, stay-at home-parents, and other similar populations. In addition to flexibility and access, multiple other face value benefits, including program choice and time efficiency, have increased the attractiveness of distance learning ( Wladis et al., 2015 ).

First, prospective students want to be able to receive a quality education without having to sacrifice work time, family time, and travel expense. Instead of having to be at a specific location at a specific time, online educational students have the freedom to communicate with instructors, address classmates, study materials, and complete assignments from any Internet-accessible point ( Richardson and Swan, 2003 ). This type of flexibility grants students much-needed mobility and, in turn, helps make the educational process more enticing. According to Lundberg et al. (2008) “the student may prefer to take an online course or a complete online-based degree program as online courses offer more flexible study hours; for example, a student who has a job could attend the virtual class watching instructional film and streaming videos of lectures after working hours.”

Moreover, more study time can lead to better class performance—more chapters read, better quality papers, and more group project time. Studies on the relationship between study time and performance are limited; however, it is often assumed the online student will use any surplus time to improve grades ( Bigelow, 2009 ). It is crucial to mention the link between flexibility and student performance as grades are the lone performance indicator of this research.

Second, online education also offers more program choices. With traditional classroom study, students are forced to take courses only at universities within feasible driving distance or move. Web-based instruction, on the other hand, grants students electronic access to multiple universities and course offerings ( Salcedo, 2010 ). Therefore, students who were once limited to a few colleges within their immediate area can now access several colleges worldwide from a single convenient location.

Third, with online teaching, students who usually don't participate in class may now voice their opinions and concerns. As they are not in a classroom setting, quieter students may feel more comfortable partaking in class dialogue without being recognized or judged. This, in turn, may increase average class scores ( Driscoll et al., 2012 ).

Benefits of Face-to-Face (F2F) Education via Traditional Classroom Instruction

The other modality, classroom teaching, is a well-established instructional medium in which teaching style and structure have been refined over several centuries. Face-to-face instruction has numerous benefits not found in its online counterpart ( Xu and Jaggars, 2016 ).

First and, perhaps most importantly, classroom instruction is extremely dynamic. Traditional classroom teaching provides real-time face-to-face instruction and sparks innovative questions. It also allows for immediate teacher response and more flexible content delivery. Online instruction dampens the learning process because students must limit their questions to blurbs, then grant the teacher and fellow classmates time to respond ( Salcedo, 2010 ). Over time, however, online teaching will probably improve, enhancing classroom dynamics and bringing students face-to face with their peers/instructors. However, for now, face-to-face instruction provides dynamic learning attributes not found in Web-based teaching ( Kemp and Grieve, 2014 ).

Second, traditional classroom learning is a well-established modality. Some students are opposed to change and view online instruction negatively. These students may be technophobes, more comfortable with sitting in a classroom taking notes than sitting at a computer absorbing data. Other students may value face-to-face interaction, pre and post-class discussions, communal learning, and organic student-teacher bonding ( Roval and Jordan, 2004 ). They may see the Internet as an impediment to learning. If not comfortable with the instructional medium, some students may shun classroom activities; their grades might slip and their educational interest might vanish. Students, however, may eventually adapt to online education. With more universities employing computer-based training, students may be forced to take only Web-based courses. Albeit true, this doesn't eliminate the fact some students prefer classroom intimacy.

Third, face-to-face instruction doesn't rely upon networked systems. In online learning, the student is dependent upon access to an unimpeded Internet connection. If technical problems occur, online students may not be able to communicate, submit assignments, or access study material. This problem, in turn, may frustrate the student, hinder performance, and discourage learning.

Fourth, campus education provides students with both accredited staff and research libraries. Students can rely upon administrators to aid in course selection and provide professorial recommendations. Library technicians can help learners edit their papers, locate valuable study material, and improve study habits. Research libraries may provide materials not accessible by computer. In all, the traditional classroom experience gives students important auxiliary tools to maximize classroom performance.

Fifth, traditional classroom degrees trump online educational degrees in terms of hiring preferences. Many academic and professional organizations do not consider online degrees on par with campus-based degrees ( Columbaro and Monaghan, 2009 ). Often, prospective hiring bodies think Web-based education is a watered-down, simpler means of attaining a degree, often citing poor curriculums, unsupervised exams, and lenient homework assignments as detriments to the learning process.

Finally, research shows online students are more likely to quit class if they do not like the instructor, the format, or the feedback. Because they work independently, relying almost wholly upon self-motivation and self-direction, online learners may be more inclined to withdraw from class if they do not get immediate results.

The classroom setting provides more motivation, encouragement, and direction. Even if a student wanted to quit during the first few weeks of class, he/she may be deterred by the instructor and fellow students. F2F instructors may be able to adjust the structure and teaching style of the class to improve student retention ( Kemp and Grieve, 2014 ). With online teaching, instructors are limited to electronic correspondence and may not pick-up on verbal and non-verbal cues.

Both F2F and online teaching have their pros and cons. More studies comparing the two modalities to achieve specific learning outcomes in participating learner populations are required before well-informed decisions can be made. This study examined the two modalities over eight (8) years on three different levels. Based on the aforementioned information, the following research questions resulted.

RQ1: Are there significant differences in academic performance between online and F2F students enrolled in an environmental science course?

RQ2: Are there gender differences between online and F2F student performance in an environmental science course?

RQ3: Are there significant differences between the performance of online and F2F students in an environmental science course with respect to class rank?

The results of this study are intended to edify teachers, administrators, and policymakers on which medium may work best.

Methodology

Participants.

The study sample consisted of 548 FVSU students who completed the Environmental Science class between 2009 and 2016. The final course grades of the participants served as the primary comparative factor in assessing performance differences between online and F2F instruction. Of the 548 total participants, 147 were online students while 401 were traditional students. This disparity was considered a limitation of the study. Of the 548 total students, 246 were male, while 302 were female. The study also used students from all four class ranks. There were 187 freshmen, 184 sophomores, 76 juniors, and 101 seniors. This was a convenience, non-probability sample so the composition of the study set was left to the discretion of the instructor. No special preferences or weights were given to students based upon gender or rank. Each student was considered a single, discrete entity or statistic.

All sections of the course were taught by a full-time biology professor at FVSU. The professor had over 10 years teaching experience in both classroom and F2F modalities. The professor was considered an outstanding tenured instructor with strong communication and management skills.

The F2F class met twice weekly in an on-campus classroom. Each class lasted 1 h and 15 min. The online class covered the same material as the F2F class, but was done wholly on-line using the Desire to Learn (D2L) e-learning system. Online students were expected to spend as much time studying as their F2F counterparts; however, no tracking measure was implemented to gauge e-learning study time. The professor combined textbook learning, lecture and class discussion, collaborative projects, and assessment tasks to engage students in the learning process.

This study did not differentiate between part-time and full-time students. Therefore, many part-time students may have been included in this study. This study also did not differentiate between students registered primarily at FVSU or at another institution. Therefore, many students included in this study may have used FVSU as an auxiliary institution to complete their environmental science class requirement.

Test Instruments

In this study, student performance was operationalized by final course grades. The final course grade was derived from test, homework, class participation, and research project scores. The four aforementioned assessments were valid and relevant; they were useful in gauging student ability and generating objective performance measurements. The final grades were converted from numerical scores to traditional GPA letters.

Data Collection Procedures

The sample 548 student grades were obtained from FVSU's Office of Institutional Research Planning and Effectiveness (OIRPE). The OIRPE released the grades to the instructor with the expectation the instructor would maintain confidentiality and not disclose said information to third parties. After the data was obtained, the instructor analyzed and processed the data though SPSS software to calculate specific values. These converted values were subsequently used to draw conclusions and validate the hypothesis.

Summary of the Results: The chi-square analysis showed no significant difference in student performance between online and face-to-face (F2F) learners [χ 2 (4, N = 548) = 6.531, p > 0.05]. The independent sample t -test showed no significant difference in student performance between online and F2F learners with respect to gender [ t (145) = 1.42, p = 0.122]. The 2-way ANOVA showed no significant difference in student performance between online and F2F learners with respect to class rank ( Girard et al., 2016 ).

Research question #1 was to determine if there was a statistically significant difference between the academic performance of online and F2F students.

Research Question 1

The first research question investigated if there was a difference in student performance between F2F and online learners.

To investigate the first research question, we used a traditional chi-square method to analyze the data. The chi-square analysis is particularly useful for this type of comparison because it allows us to determine if the relationship between teaching modality and performance in our sample set can be extended to the larger population. The chi-square method provides us with a numerical result which can be used to determine if there is a statistically significant difference between the two groups.

Table 1 shows us the mean and SD for modality and for gender. It is a general breakdown of numbers to visually elucidate any differences between scores and deviations. The mean GPA for both modalities is similar with F2F learners scoring a 69.35 and online learners scoring a 68.64. Both groups had fairly similar SDs. A stronger difference can be seen between the GPAs earned by men and women. Men had a 3.23 mean GPA while women had a 2.9 mean GPA. The SDs for both groups were almost identical. Even though the 0.33 numerical difference may look fairly insignificant, it must be noted that a 3.23 is approximately a B+ while a 2.9 is approximately a B. Given a categorical range of only A to F, a plus differential can be considered significant.

www.frontiersin.org

Table 1 . Means and standard deviations for 8 semester- “Environmental Science data set.”

The mean grade for men in the environmental online classes ( M = 3.23, N = 246, SD = 1.19) was higher than the mean grade for women in the classes ( M = 2.9, N = 302, SD = 1.20) (see Table 1 ).

First, a chi-square analysis was performed using SPSS to determine if there was a statistically significant difference in grade distribution between online and F2F students. Students enrolled in the F2F class had the highest percentage of A's (63.60%) as compared to online students (36.40%). Table 2 displays grade distribution by course delivery modality. The difference in student performance was statistically significant, χ 2 (4, N = 548) = 6.531, p > 0.05. Table 3 shows the gender difference on student performance between online and F2F students.

www.frontiersin.org

Table 2 . Contingency table for student's academic performance ( N = 548).

www.frontiersin.org

Table 3 . Gender * performance crosstabulation.

Table 2 shows us the performance measures of online and F2F students by grade category. As can be seen, F2F students generated the highest performance numbers for each grade category. However, this disparity was mostly due to a higher number of F2F students in the study. There were 401 F2F students as opposed to just 147 online students. When viewing grades with respect to modality, there are smaller percentage differences between respective learners ( Tanyel and Griffin, 2014 ). For example, F2F learners earned 28 As (63.60% of total A's earned) while online learners earned 16 As (36.40% of total A's earned). However, when viewing the A grade with respect to total learners in each modality, it can be seen that 28 of the 401 F2F students (6.9%) earned As as compared to 16 of 147 (10.9%) online learners. In this case, online learners scored relatively higher in this grade category. The latter measure (grade total as a percent of modality total) is a better reflection of respective performance levels.

Given a critical value of 7.7 and a d.f. of 4, we were able to generate a chi-squared measure of 6.531. The correlating p -value of 0.163 was greater than our p -value significance level of 0.05. We, therefore, had to accept the null hypothesis and reject the alternative hypothesis. There is no statistically significant difference between the two groups in terms of performance scores.

Research Question 2

The second research question was posed to evaluate if there was a difference between online and F2F varied with gender. Does online and F2F student performance vary with respect to gender? Table 3 shows the gender difference on student performance between online and face to face students. We used chi-square test to determine if there were differences in online and F2F student performance with respect to gender. The chi-square test with alpha equal to 0.05 as criterion for significance. The chi-square result shows that there is no statistically significant difference between men and women in terms of performance.

Research Question 3

The third research question tried to determine if there was a difference between online and F2F varied with respect to class rank. Does online and F2F student performance vary with respect to class rank?

Table 4 shows the mean scores and standard deviations of freshman, sophomore, and junior and senior students for both online and F2F student performance. To test the third hypothesis, we used a two-way ANOVA. The ANOVA is a useful appraisal tool for this particular hypothesis as it tests the differences between multiple means. Instead of testing specific differences, the ANOVA generates a much broader picture of average differences. As can be seen in Table 4 , the ANOVA test for this particular hypothesis states there is no significant difference between online and F2F learners with respect to class rank. Therefore, we must accept the null hypothesis and reject the alternative hypothesis.

www.frontiersin.org

Table 4 . Descriptive analysis of student performance by class rankings gender.

The results of the ANOVA show there is no significant difference in performance between online and F2F students with respect to class rank. Results of ANOVA is presented in Table 5 .

www.frontiersin.org

Table 5 . Analysis of variance (ANOVA) for online and F2F of class rankings.

As can be seen in Table 4 , the ANOVA test for this particular hypothesis states there is no significant difference between online and F2F learners with respect to class rank. Therefore, we must accept the null hypothesis and reject the alternative hypothesis.

Discussion and Social Implications

The results of the study show there is no significant difference in performance between online and traditional classroom students with respect to modality, gender, or class rank in a science concepts course for non-STEM majors. Although there were sample size issues and study limitations, this assessment shows both online learners and classroom learners perform at the same level. This conclusion indicates teaching modality may not matter as much as other factors. Given the relatively sparse data on pedagogical modality comparison given specific student population characteristics, this study could be considered innovative. In the current literature, we have not found a study of this nature comparing online and F2F non-STEM majors with respect to three separate factors—medium, gender, and class rank—and the ability to learn science concepts and achieve learning outcomes. Previous studies have compared traditional classroom learning vs. F2F learning for other factors (including specific courses, costs, qualitative analysis, etcetera, but rarely regarding outcomes relevant to population characteristics of learning for a specific science concepts course over many years) ( Liu, 2005 ).

In a study evaluating the transformation of a graduate level course for teachers, academic quality of the online course and learning outcomes were evaluated. The study evaluated the ability of course instructors to design the course for online delivery and develop various interactive multimedia models at a cost-savings to the respective university. The online learning platform proved effective in translating information where tested students successfully achieved learning outcomes comparable to students taking the F2F course ( Herman and Banister, 2007 ).

Another study evaluated the similarities and differences in F2F and online learning in a non-STEM course, “Foundations of American Education” and overall course satisfaction by students enrolled in either of the two modalities. F2F and online course satisfaction was qualitatively and quantitative analyzed. However, in analyzing online and F2F course feedback using quantitative feedback, online course satisfaction was less than F2F satisfaction. When qualitative data was used, course satisfaction was similar between modalities ( Werhner, 2010 ). The course satisfaction data and feedback was used to suggest a number of posits for effective online learning in the specific course. The researcher concluded that there was no difference in the learning success of students enrolled in the online vs. F2F course, stating that “in terms of learning, students who apply themselves diligently should be successful in either format” ( Dell et al., 2010 ). The author's conclusion presumes that the “issues surrounding class size are under control and that the instructor has a course load that makes the intensity of the online course workload feasible” where the authors conclude that the workload for online courses is more than for F2F courses ( Stern, 2004 ).

In “A Meta-Analysis of Three Types of Interaction Treatments in Distance Education,” Bernard et al. (2009) conducted a meta-analysis evaluating three types of instructional and/or media conditions designed into distance education (DE) courses known as interaction treatments (ITs)—student–student (SS), student–teacher (ST), or student–content (SC) interactions—to other DE instructional/interaction treatments. The researchers found that a strong association existed between the integration of these ITs into distance education courses and achievement compared with blended or F2F modalities of learning. The authors speculated that this was due to increased cognitive engagement based in these three interaction treatments ( Larson and Sung, 2009 ).

Other studies evaluating students' preferences (but not efficacy) for online vs. F2F learning found that students prefer online learning when it was offered, depending on course topic, and online course technology platform ( Ary and Brune, 2011 ). F2F learning was preferred when courses were offered late morning or early afternoon 2–3 days/week. A significant preference for online learning resulted across all undergraduate course topics (American history and government, humanities, natural sciences, social, and behavioral sciences, diversity, and international dimension) except English composition and oral communication. A preference for analytical and quantitative thought courses was also expressed by students, though not with statistically significant results ( Mann and Henneberry, 2014 ). In this research study, we looked at three hypothesis comparing online and F2F learning. In each case, the null hypothesis was accepted. Therefore, at no level of examination did we find a significant difference between online and F2F learners. This finding is important because it tells us traditional-style teaching with its heavy emphasis on interpersonal classroom dynamics may 1 day be replaced by online instruction. According to Daymont and Blau (2008) online learners, regardless of gender or class rank, learn as much from electronic interaction as they do from personal interaction. Kemp and Grieve (2014) also found that both online and F2F learning for psychology students led to similar academic performance. Given the cost efficiencies and flexibility of online education, Web-based instructional systems may rapidly rise.

A number of studies support the economic benefits of online vs. F2F learning, despite differences in social constructs and educational support provided by governments. In a study by Li and Chen (2012) higher education institutions benefit the most from two of four outputs—research outputs and distance education—with teaching via distance education at both the undergraduate and graduate levels more profitable than F2F teaching at higher education institutions in China. Zhang and Worthington (2017) reported an increasing cost benefit for the use of distance education over F2F instruction as seen at 37 Australian public universities over 9 years from 2003 to 2012. Maloney et al. (2015) and Kemp and Grieve (2014) also found significant savings in higher education when using online learning platforms vs. F2F learning. In the West, the cost efficiency of online learning has been demonstrated by several research studies ( Craig, 2015 ). Studies by Agasisti and Johnes (2015) and Bartley and Golek (2004) both found the cost benefits of online learning significantly greater than that of F2F learning at U.S. institutions.

Knowing there is no significant difference in student performance between the two mediums, institutions of higher education may make the gradual shift away from traditional instruction; they may implement Web-based teaching to capture a larger worldwide audience. If administered correctly, this shift to Web-based teaching could lead to a larger buyer population, more cost efficiencies, and more university revenue.

The social implications of this study should be touted; however, several concerns regarding generalizability need to be taken into account. First, this study focused solely on students from an environmental studies class for non-STEM majors. The ability to effectively prepare students for scientific professions without hands-on experimentation has been contended. As a course that functions to communicate scientific concepts, but does not require a laboratory based component, these results may not translate into similar performance of students in an online STEM course for STEM majors or an online course that has an online laboratory based co-requisite when compared to students taking traditional STEM courses for STEM majors. There are few studies that suggest the landscape may be changing with the ability to effectively train students in STEM core concepts via online learning. Biel and Brame (2016) reported successfully translating the academic success of F2F undergraduate biology courses to online biology courses. However, researchers reported that of the large-scale courses analyzed, two F2F sections outperformed students in online sections, and three found no significant difference. A study by Beale et al. (2014) comparing F2F learning with hybrid learning in an embryology course found no difference in overall student performance. Additionally, the bottom quartile of students showed no differential effect of the delivery method on examination scores. Further, a study from Lorenzo-Alvarez et al. (2019) found that radiology education in an online learning platform resulted in similar academic outcomes as F2F learning. Larger scale research is needed to determine the effectiveness of STEM online learning and outcomes assessments, including workforce development results.

In our research study, it is possible the study participants may have been more knowledgeable about environmental science than about other subjects. Therefore, it should be noted this study focused solely on students taking this one particular class. Given the results, this course presents a unique potential for increasing the number of non-STEM majors engaged in citizen science using the flexibility of online learning to teach environmental science core concepts.

Second, the operationalization measure of “grade” or “score” to determine performance level may be lacking in scope and depth. The grades received in a class may not necessarily show actual ability, especially if the weights were adjusted to heavily favor group tasks and writing projects. Other performance indicators may be better suited to properly access student performance. A single exam containing both multiple choice and essay questions may be a better operationalization indicator of student performance. This type of indicator will provide both a quantitative and qualitative measure of subject matter comprehension.

Third, the nature of the student sample must be further dissected. It is possible the online students in this study may have had more time than their counterparts to learn the material and generate better grades ( Summers et al., 2005 ). The inverse holds true, as well. Because this was a convenience non-probability sampling, the chances of actually getting a fair cross section of the student population were limited. In future studies, greater emphasis must be placed on selecting proper study participants, those who truly reflect proportions, types, and skill levels.

This study was relevant because it addressed an important educational topic; it compared two student groups on multiple levels using a single operationalized performance measure. More studies, however, of this nature need to be conducted before truly positing that online and F2F teaching generate the same results. Future studies need to eliminate spurious causal relationships and increase generalizability. This will maximize the chances of generating a definitive, untainted results. This scientific inquiry and comparison into online and traditional teaching will undoubtedly garner more attention in the coming years.

Our study compared learning via F2F vs. online learning modalities in teaching an environmental science course additionally evaluating factors of gender and class rank. These data demonstrate the ability to similarly translate environmental science concepts for non-STEM majors in both traditional and online platforms irrespective of gender or class rank. The social implications of this finding are important for advancing access to and learning of scientific concepts by the general population, as many institutions of higher education allow an online course to be taken without enrolling in a degree program. Thus, the potential exists for increasing the number of non-STEM majors engaged in citizen science using the flexibility of online learning to teach environmental science core concepts.

Limitations of the Study

The limitations of the study centered around the nature of the sample group, student skills/abilities, and student familiarity with online instruction. First, because this was a convenience, non-probability sample, the independent variables were not adjusted for real-world accuracy. Second, student intelligence and skill level were not taken into consideration when separating out comparison groups. There exists the possibility that the F2F learners in this study may have been more capable than the online students and vice versa. This limitation also applies to gender and class rank differences ( Friday et al., 2006 ). Finally, there may have been ease of familiarity issues between the two sets of learners. Experienced traditional classroom students now taking Web-based courses may be daunted by the technical aspect of the modality. They may not have had the necessary preparation or experience to efficiently e-learn, thus leading to lowered scores ( Helms, 2014 ). In addition to comparing online and F2F instructional efficacy, future research should also analyze blended teaching methods for the effectiveness of courses for non-STEM majors to impart basic STEM concepts and see if the blended style is more effective than any one pure style.

Data Availability Statement

The datasets generated for this study are available on request to the corresponding author.

Ethics Statement

The studies involving human participants were reviewed and approved by Fort Valley State University Human Subjects Institutional Review Board. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Author Contributions

JP provided substantial contributions to the conception of the work, acquisition and analysis of data for the work, and is the corresponding author on this paper who agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. FJ provided substantial contributions to the design of the work, interpretation of the data for the work, and revised it critically for intellectual content.

This research was supported in part by funding from the National Science Foundation, Awards #1649717, 1842510, Ñ900572, and 1939739 to FJ.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors would like to thank the reviewers for their detailed comments and feedback that assisted in the revising of our original manuscript.

Agasisti, T., and Johnes, G. (2015). Efficiency, costs, rankings and heterogeneity: the case of US higher education. Stud. High. Educ. 40, 60–82. doi: 10.1080/03075079.2013.818644

CrossRef Full Text | Google Scholar

Ary, E. J., and Brune, C. W. (2011). A comparison of student learning outcomes in traditional and online personal finance courses. MERLOT J. Online Learn. Teach. 7, 465–474.

Google Scholar

Atchley, W., Wingenbach, G., and Akers, C. (2013). Comparison of course completion and student performance through online and traditional courses. Int. Rev. Res. Open Dist. Learn. 14, 104–116. doi: 10.19173/irrodl.v14i4.1461

Bartley, S. J., and Golek, J. H. (2004). Evaluating the cost effectiveness of online and face-to-face instruction. Educ. Technol. Soc. 7, 167–175.

Beale, E. G., Tarwater, P. M., and Lee, V. H. (2014). A retrospective look at replacing face-to-face embryology instruction with online lectures in a human anatomy course. Am. Assoc. Anat. 7, 234–241. doi: 10.1002/ase.1396

PubMed Abstract | CrossRef Full Text | Google Scholar

Bernard, R. M., Abrami, P. C., Borokhovski, E., Wade, C. A., Tamim, R. M., Surkesh, M. A., et al. (2009). A meta-analysis of three types of interaction treatments in distance education. Rev. Educ. Res. 79, 1243–1289. doi: 10.3102/0034654309333844

Biel, R., and Brame, C. J. (2016). Traditional versus online biology courses: connecting course design and student learning in an online setting. J. Microbiol. Biol. Educ. 17, 417–422. doi: 10.1128/jmbe.v17i3.1157

Bigelow, C. A. (2009). Comparing student performance in an online versus a face to face introductory turfgrass science course-a case study. NACTA J. 53, 1–7.

Columbaro, N. L., and Monaghan, C. H. (2009). Employer perceptions of online degrees: a literature review. Online J. Dist. Learn. Administr. 12.

Craig, R. (2015). A Brief History (and Future) of Online Degrees. Forbes/Education . Available online at: https://www.forbes.com/sites/ryancraig/2015/06/23/a-brief-history-and-future-of-online-degrees/#e41a4448d9a8

Daymont, T., and Blau, G. (2008). Student performance in online and traditional sections of an undergraduate management course. J. Behav. Appl. Manag. 9, 275–294.

Dell, C. A., Low, C., and Wilker, J. F. (2010). Comparing student achievement in online and face-to-face class formats. J. Online Learn. Teach. Long Beach 6, 30–42.

Driscoll, A., Jicha, K., Hunt, A. N., Tichavsky, L., and Thompson, G. (2012). Can online courses deliver in-class results? A comparison of student performance and satisfaction in an online versus a face-to-face introductory sociology course. Am. Sociol. Assoc . 40, 312–313. doi: 10.1177/0092055X12446624

Friday, E., Shawnta, S., Green, A. L., and Hill, A. Y. (2006). A multi-semester comparison of student performance between multiple traditional and online sections of two management courses. J. Behav. Appl. Manag. 8, 66–81.

Girard, J. P., Yerby, J., and Floyd, K. (2016). Knowledge retention in capstone experiences: an analysis of online and face-to-face courses. Knowl. Manag. ELearn. 8, 528–539. doi: 10.34105/j.kmel.2016.08.033

Helms, J. L. (2014). Comparing student performance in online and face-to-face delivery modalities. J. Asynchr. Learn. Netw. 18, 1–14. doi: 10.24059/olj.v18i1.348

Herman, T., and Banister, S. (2007). Face-to-face versus online coursework: a comparison of costs and learning outcomes. Contemp. Issues Technol. Teach. Educ. 7, 318–326.

Kemp, N., and Grieve, R. (2014). Face-to-Face or face-to-screen? Undergraduates' opinions and test performance in classroom vs. online learning. Front. Psychol. 5:1278. doi: 10.3389/fpsyg.2014.01278

Keramidas, C. G. (2012). Are undergraduate students ready for online learning? A comparison of online and face-to-face sections of a course. Rural Special Educ. Q . 31, 25–39. doi: 10.1177/875687051203100405

Larson, D.K., and Sung, C. (2009). Comparing student performance: online versus blended versus face-to-face. J. Asynchr. Learn. Netw. 13, 31–42. doi: 10.24059/olj.v13i1.1675

Li, F., and Chen, X. (2012). Economies of scope in distance education: the case of Chinese Research Universities. Int. Rev. Res. Open Distrib. Learn. 13, 117–131.

Liu, Y. (2005). Effects of online instruction vs. traditional instruction on student's learning. Int. J. Instruct. Technol. Dist. Learn. 2, 57–64.

Lorenzo-Alvarez, R., Rudolphi-Solero, T., Ruiz-Gomez, M. J., and Sendra-Portero, F. (2019). Medical student education for abdominal radiographs in a 3D virtual classroom versus traditional classroom: a randomized controlled trial. Am. J. Roentgenol. 213, 644–650. doi: 10.2214/AJR.19.21131

Lundberg, J., Castillo-Merino, D., and Dahmani, M. (2008). Do online students perform better than face-to-face students? Reflections and a short review of some Empirical Findings. Rev. Univ. Soc. Conocim . 5, 35–44. doi: 10.7238/rusc.v5i1.326

Maloney, S., Nicklen, P., Rivers, G., Foo, J., Ooi, Y. Y., Reeves, S., et al. (2015). Cost-effectiveness analysis of blended versus face-to-face delivery of evidence-based medicine to medical students. J. Med. Internet Res. 17:e182. doi: 10.2196/jmir.4346

Mann, J. T., and Henneberry, S. R. (2014). Online versus face-to-face: students' preferences for college course attributes. J. Agric. Appl. Econ . 46, 1–19. doi: 10.1017/S1074070800000602

Mozes-Carmel, A., and Gold, S. S. (2009). A comparison of online vs proctored final exams in online classes. Imanagers J. Educ. Technol. 6, 76–81. doi: 10.26634/jet.6.1.212

Richardson, J. C., and Swan, K. (2003). Examining social presence in online courses in relation to student's perceived learning and satisfaction. J. Asynchr. Learn. 7, 68–88.

Roval, A. P., and Jordan, H. M. (2004). Blended learning and sense of community: a comparative analysis with traditional and fully online graduate courses. Int. Rev. Res. Open Dist. Learn. 5. doi: 10.19173/irrodl.v5i2.192

Salcedo, C. S. (2010). Comparative analysis of learning outcomes in face-to-face foreign language classes vs. language lab and online. J. Coll. Teach. Learn. 7, 43–54. doi: 10.19030/tlc.v7i2.88

Stern, B. S. (2004). A comparison of online and face-to-face instruction in an undergraduate foundations of american education course. Contemp. Issues Technol. Teach. Educ. J. 4, 196–213.

Summers, J. J., Waigandt, A., and Whittaker, T. A. (2005). A comparison of student achievement and satisfaction in an online versus a traditional face-to-face statistics class. Innov. High. Educ. 29, 233–250. doi: 10.1007/s10755-005-1938-x

Tanyel, F., and Griffin, J. (2014). A Ten-Year Comparison of Outcomes and Persistence Rates in Online versus Face-to-Face Courses . Retrieved from: https://www.westga.edu/~bquest/2014/onlinecourses2014.pdf

Werhner, M. J. (2010). A comparison of the performance of online versus traditional on-campus earth science students on identical exams. J. Geosci. Educ. 58, 310–312. doi: 10.5408/1.3559697

Westhuis, D., Ouellette, P. M., and Pfahler, C. L. (2006). A comparative analysis of on-line and classroom-based instructional formats for teaching social work research. Adv. Soc. Work 7, 74–88. doi: 10.18060/184

Wladis, C., Conway, K. M., and Hachey, A. C. (2015). The online STEM classroom-who succeeds? An exploration of the impact of ethnicity, gender, and non-traditional student characteristics in the community college context. Commun. Coll. Rev. 43, 142–164. doi: 10.1177/0091552115571729

Xu, D., and Jaggars, S. S. (2016). Performance gaps between online and face-to-face courses: differences across types of students and academic subject areas. J. Higher Educ. 85, 633–659. doi: 10.1353/jhe.2014.0028

Zhang, L.-C., and Worthington, A. C. (2017). Scale and scope economies of distance education in Australian universities. Stud. High. Educ. 42, 1785–1799. doi: 10.1080/03075079.2015.1126817

Keywords: face-to-face (F2F), traditional classroom teaching, web-based instructions, information and communication technology (ICT), online learning, desire to learn (D2L), passive learning, active learning

Citation: Paul J and Jefferson F (2019) A Comparative Analysis of Student Performance in an Online vs. Face-to-Face Environmental Science Course From 2009 to 2016. Front. Comput. Sci. 1:7. doi: 10.3389/fcomp.2019.00007

Received: 15 May 2019; Accepted: 15 October 2019; Published: 12 November 2019.

Reviewed by:

Copyright © 2019 Paul and Jefferson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Jasmine Paul, paulj@fvsu.edu

COMMENTS

  1. Online Classes Vs. Traditional Classes Essay

    The article compares and contrasts online classes and traditional classes. Among the advantages of online classes are flexibility and convenience, while in-person classes offer a more structured learning environment. The author highlights that online lessons can be more cost-effective, although they lack support provided by live interactions.

  2. An Essay on The Classroom vs Online Classes

    With online courses colleges and universities haves made tremendous impact on the instruction and student learning. Distance education opportunities have brought the classroom from the university or college settings to the home, allowing students the privilege of pursuing college degrees without the inconvenience of actually traveling to campus to take the course.

  3. (PDF) Effectiveness of Online Class and Physical Class during Covid-19

    Educational institutions were also bitterly affected from the uncertain lockdown of Covid-19. The pandemic disturbed the physical class and started the online class. This is the reason to study ...

  4. PDF Physical Classes Vs Online Study- A comparison

    physical classes and teaching had to be shifted online. (iv) Students and teachers were compelled to immediately, adapt to technology, to save continuity of the academic ... thus notes the following parameters for comparison in the two modes of Actual vs Online class study: 1. Convenience of Attendance 2. Supervision of the class 3. Engagement ...

  5. Online School Vs Traditional School: [Essay Example], 570 words

    Categories: Online Vs. Traditional Classes. Students may have the opportunities to attend an online school and they can make a choice between online schools and traditional schools. The debate of "online school vs traditional school" is prevalent, as both have their merits. There are some similarities between an online school and studying in a ...

  6. PDF Learning Outcomes in an online vs traditional course

    For example, a study of learning outcomes (exam scores) in online vs. traditional classes in microeconomics determined that students in the online class scored higher on the final exam than the traditional class (68.1% vs. 61.6%).

  7. PDF Virtual Classrooms: How Online College Courses Affect Student

    called "online education" or "online classes" (McPherson and Bacow 2015 provide a review), for example, massively open online courses (MOOCs). Our shorthand "online" should not read as broadly representative of all online education. However, the form of online education used by the university we study is widely used in both

  8. Essays on Online Vs. Traditional Classes

    1 page / 569 words. Hybrid learning, a combination of traditional classroom instruction and online education, has gained prominence as an alternative educational model. The Advantages and Disadvantages of Hybrid Learning Essay delves into the benefits and drawbacks of this approach.

  9. (PDF) Online classes versus traditional classes? Comparison during COVID-19

    enrolled to compare between the online versus traditional method of teaching through questionnaire. RESULTS: Forty percent of students found the online lecture material dif cult to understand. 42. ...

  10. Virtual Classroom versus Physical Classroom: An Exploratory Study of

    The results showed significantly higher discussion participation patterns for the Internet-based course (both by class section and by gender) and no significant differences in learning in either class section. This article concludes by discussing possible reasons for these findings and suggests implications for Internet-based education.

  11. Online Classroom vs Physical Classroom! Which is better?

    Less Socialisation. Physical classrooms have several options for students to engage and get involved in many recreational activities. On the other hand, there are fewer options for students in online classrooms. They can't talk to others, interact in the classroom openly, etc. Students do all teamwork online, all by themselves.

  12. Traditional Learning Compared to Online Learning During the COVID-19

    In Saudi Arabia, the recent transfer of education to online delivery has not been optional. The COVID-19 pandemic has, for example, forced educators to convert university courses to online learning, with the most significant challenge likely being the mass transfer of all students and all staff to digital platforms on the same day (Chaka, 2020 ...

  13. Comparing Face-to-face and Online Teaching and Learning in Higher Education

    A comparison of face-to-face and online teaching and learning has been undertaken to. ascertain the focal point that would justify the best-preferred option as far as teaching. and learning in DE ...

  14. Online Classes vs Traditional Classes: Which One is More Beneficial

    Online Education Vs In-Class Education: a Comprehensive Analysis Essay The debate between online education and in-class education has been ongoing for several years, with proponents and detractors arguing the benefits and drawbacks of each mode of learning.

  15. PDF Online Vs. Face-to-Face: A Comparison of Student Outcomes with ...

    Online educational opportunities have blossomed as parents, students, college and university administrators and state and federal legislatures try to grapple with the problem of increasing education costs. The potential advantages of offering courses online are numerous: There is a perception that online classes are a more cost-

  16. Online and face‐to‐face learning: Evidence from students' performance

    1.1. Related literature. Online learning is a form of distance education which mainly involves internet‐based education where courses are offered synchronously (i.e. live sessions online) and/or asynchronously (i.e. students access course materials online in their own time, which is associated with the more traditional distance education).

  17. PDF Analysis of Online Classes in Physical Education during the COVID-19

    However, online practical classes (OPC) in physical education (PE) are not easy to teach or learn for educators and students, respectively. Many studies have reported that the interaction between the students and the educator in online courses is inferior to that in the traditional classroom setting, making student engagement difficult [6,7].

  18. A Comparative Analysis of Student Performance in an Online vs. Face-to

    The mean grade for men in the environmental online classes (M = 3.23, N = 246, SD = 1.19) was higher than the mean grade for women in the classes (M = 2.9, N = 302, SD = 1.20) (see Table 1).First, a chi-square analysis was performed using SPSS to determine if there was a statistically significant difference in grade distribution between online and F2F students.

  19. (PDF) Effectiveness Of Online Learning and Physical Activities Study In

    The study showed that, students assessed physical education learning with online learning is very effective (8.3%) effective (36.9%) normal (40.2%) although there are also students who think ...

  20. Online Classes vs Traditional Classes Essay

    Traditional classes are based on courses, and it let individual to organize better, and learn in the better environment. Traditional classes have their policies, and procedures. In the classroom students are forced to be quit, and listen to the teacher or classmates. Students do not have many options besides learning.

  21. Traditional Classes vs. Online Classes: A Comprehensive

    Alcantara 1 Traditional classes versus Online classes: Comparison Essay Last December 2019 a pandemic strike which we now call COVID19, which brougth us remote learning to the masses, online courses predate the pandemic and offer a completely different experience. While once thought of as a novelty, online education is even more robust than before and offers exciting new opportunities to learn ...

  22. (PDF) A Comparative Study of Online Education and Traditional Offline

    Download file PDF Read file. ... this study was taken up with the objective to assess the perception and preference of nursing students towards online classes vs. face-to-face classes. This ...

  23. Physical Classes VS Online Classes

    Physical Classes VS Online Classes | Physical Education VS Online Education | Online Classes VS Offline Classes | EssayWelcome to "The Essay Series" by Manso...