Independent and Dependent Variables

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In research, a variable is any characteristic, number, or quantity that can be measured or counted in experimental investigations . One is called the dependent variable, and the other is the independent variable.

In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect.

Variables provide the foundation for examining relationships, drawing conclusions, and making predictions in research studies.

variables2

Independent Variable

In psychology, the independent variable is the variable the experimenter manipulates or changes and is assumed to directly affect the dependent variable.

It’s considered the cause or factor that drives change, allowing psychologists to observe how it influences behavior, emotions, or other dependent variables in an experimental setting. Essentially, it’s the presumed cause in cause-and-effect relationships being studied.

For example, allocating participants to drug or placebo conditions (independent variable) to measure any changes in the intensity of their anxiety (dependent variable).

In a well-designed experimental study , the independent variable is the only important difference between the experimental (e.g., treatment) and control (e.g., placebo) groups.

By changing the independent variable and holding other factors constant, psychologists aim to determine if it causes a change in another variable, called the dependent variable.

For example, in a study investigating the effects of sleep on memory, the amount of sleep (e.g., 4 hours, 8 hours, 12 hours) would be the independent variable, as the researcher might manipulate or categorize it to see its impact on memory recall, which would be the dependent variable.

Dependent Variable

In psychology, the dependent variable is the variable being tested and measured in an experiment and is “dependent” on the independent variable.

In psychology, a dependent variable represents the outcome or results and can change based on the manipulations of the independent variable. Essentially, it’s the presumed effect in a cause-and-effect relationship being studied.

An example of a dependent variable is depression symptoms, which depend on the independent variable (type of therapy).

In an experiment, the researcher looks for the possible effect on the dependent variable that might be caused by changing the independent variable.

For instance, in a study examining the effects of a new study technique on exam performance, the technique would be the independent variable (as it is being introduced or manipulated), while the exam scores would be the dependent variable (as they represent the outcome of interest that’s being measured).

Examples in Research Studies

For example, we might change the type of information (e.g., organized or random) given to participants to see how this might affect the amount of information remembered.

In this example, the type of information is the independent variable (because it changes), and the amount of information remembered is the dependent variable (because this is being measured).

Independent and Dependent Variables Examples

For the following hypotheses, name the IV and the DV.

1. Lack of sleep significantly affects learning in 10-year-old boys.

IV……………………………………………………

DV…………………………………………………..

2. Social class has a significant effect on IQ scores.

DV……………………………………………….…

3. Stressful experiences significantly increase the likelihood of headaches.

4. Time of day has a significant effect on alertness.

Operationalizing Variables

To ensure cause and effect are established, it is important that we identify exactly how the independent and dependent variables will be measured; this is known as operationalizing the variables.

Operational variables (or operationalizing definitions) refer to how you will define and measure a specific variable as it is used in your study. This enables another psychologist to replicate your research and is essential in establishing reliability (achieving consistency in the results).

For example, if we are concerned with the effect of media violence on aggression, then we need to be very clear about what we mean by the different terms. In this case, we must state what we mean by the terms “media violence” and “aggression” as we will study them.

Therefore, you could state that “media violence” is operationally defined (in your experiment) as ‘exposure to a 15-minute film showing scenes of physical assault’; “aggression” is operationally defined as ‘levels of electrical shocks administered to a second ‘participant’ in another room.

In another example, the hypothesis “Young participants will have significantly better memories than older participants” is not operationalized. How do we define “young,” “old,” or “memory”? “Participants aged between 16 – 30 will recall significantly more nouns from a list of twenty than participants aged between 55 – 70” is operationalized.

The key point here is that we have clarified what we mean by the terms as they were studied and measured in our experiment.

If we didn’t do this, it would be very difficult (if not impossible) to compare the findings of different studies to the same behavior.

Operationalization has the advantage of generally providing a clear and objective definition of even complex variables. It also makes it easier for other researchers to replicate a study and check for reliability .

For the following hypotheses, name the IV and the DV and operationalize both variables.

1. Women are more attracted to men without earrings than men with earrings.

I.V._____________________________________________________________

D.V. ____________________________________________________________

Operational definitions:

I.V. ____________________________________________________________

2. People learn more when they study in a quiet versus noisy place.

I.V. _________________________________________________________

D.V. ___________________________________________________________

3. People who exercise regularly sleep better at night.

Can there be more than one independent or dependent variable in a study?

Yes, it is possible to have more than one independent or dependent variable in a study.

In some studies, researchers may want to explore how multiple factors affect the outcome, so they include more than one independent variable.

Similarly, they may measure multiple things to see how they are influenced, resulting in multiple dependent variables. This allows for a more comprehensive understanding of the topic being studied.

What are some ethical considerations related to independent and dependent variables?

Ethical considerations related to independent and dependent variables involve treating participants fairly and protecting their rights.

Researchers must ensure that participants provide informed consent and that their privacy and confidentiality are respected. Additionally, it is important to avoid manipulating independent variables in ways that could cause harm or discomfort to participants.

Researchers should also consider the potential impact of their study on vulnerable populations and ensure that their methods are unbiased and free from discrimination.

Ethical guidelines help ensure that research is conducted responsibly and with respect for the well-being of the participants involved.

Can qualitative data have independent and dependent variables?

Yes, both quantitative and qualitative data can have independent and dependent variables.

In quantitative research, independent variables are usually measured numerically and manipulated to understand their impact on the dependent variable. In qualitative research, independent variables can be qualitative in nature, such as individual experiences, cultural factors, or social contexts, influencing the phenomenon of interest.

The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable.

So, regardless of the type of data, researchers analyze the relationship between independent and dependent variables to gain insights into their research questions.

Can the same variable be independent in one study and dependent in another?

Yes, the same variable can be independent in one study and dependent in another.

The classification of a variable as independent or dependent depends on how it is used within a specific study. In one study, a variable might be manipulated or controlled to see its effect on another variable, making it independent.

However, in a different study, that same variable might be the one being measured or observed to understand its relationship with another variable, making it dependent.

The role of a variable as independent or dependent can vary depending on the research question and study design.

Print Friendly, PDF & Email

Grad Coach

Research Variables 101

Independent variables, dependent variables, control variables and more

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to the world of research, especially scientific research, you’re bound to run into the concept of variables , sooner or later. If you’re feeling a little confused, don’t worry – you’re not the only one! Independent variables, dependent variables, confounding variables – it’s a lot of jargon. In this post, we’ll unpack the terminology surrounding research variables using straightforward language and loads of examples .

Overview: Variables In Research

1. ?
2. variables
3. variables
4. variables

5. variables
6. variables
7. variables
8. variables

What (exactly) is a variable?

The simplest way to understand a variable is as any characteristic or attribute that can experience change or vary over time or context – hence the name “variable”. For example, the dosage of a particular medicine could be classified as a variable, as the amount can vary (i.e., a higher dose or a lower dose). Similarly, gender, age or ethnicity could be considered demographic variables, because each person varies in these respects.

Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, and the relationships between different variables. For example:

  • How someone’s age impacts their sleep quality
  • How different teaching methods impact learning outcomes
  • How diet impacts weight (gain or loss)

As you can see, variables are often used to explain relationships between different elements and phenomena. In scientific studies, especially experimental studies, the objective is often to understand the causal relationships between variables. In other words, the role of cause and effect between variables. This is achieved by manipulating certain variables while controlling others – and then observing the outcome. But, we’ll get into that a little later…

The “Big 3” Variables

Variables can be a little intimidating for new researchers because there are a wide variety of variables, and oftentimes, there are multiple labels for the same thing. To lay a firm foundation, we’ll first look at the three main types of variables, namely:

  • Independent variables (IV)
  • Dependant variables (DV)
  • Control variables

What is an independent variable?

Simply put, the independent variable is the “ cause ” in the relationship between two (or more) variables. In other words, when the independent variable changes, it has an impact on another variable.

For example:

  • Increasing the dosage of a medication (Variable A) could result in better (or worse) health outcomes for a patient (Variable B)
  • Changing a teaching method (Variable A) could impact the test scores that students earn in a standardised test (Variable B)
  • Varying one’s diet (Variable A) could result in weight loss or gain (Variable B).

It’s useful to know that independent variables can go by a few different names, including, explanatory variables (because they explain an event or outcome) and predictor variables (because they predict the value of another variable). Terminology aside though, the most important takeaway is that independent variables are assumed to be the “cause” in any cause-effect relationship. As you can imagine, these types of variables are of major interest to researchers, as many studies seek to understand the causal factors behind a phenomenon.

Need a helping hand?

qualitative research independent variables

What is a dependent variable?

While the independent variable is the “ cause ”, the dependent variable is the “ effect ” – or rather, the affected variable . In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable.

Keeping with the previous example, let’s look at some dependent variables in action:

  • Health outcomes (DV) could be impacted by dosage changes of a medication (IV)
  • Students’ scores (DV) could be impacted by teaching methods (IV)
  • Weight gain or loss (DV) could be impacted by diet (IV)

In scientific studies, researchers will typically pay very close attention to the dependent variable (or variables), carefully measuring any changes in response to hypothesised independent variables. This can be tricky in practice, as it’s not always easy to reliably measure specific phenomena or outcomes – or to be certain that the actual cause of the change is in fact the independent variable.

As the adage goes, correlation is not causation . In other words, just because two variables have a relationship doesn’t mean that it’s a causal relationship – they may just happen to vary together. For example, you could find a correlation between the number of people who own a certain brand of car and the number of people who have a certain type of job. Just because the number of people who own that brand of car and the number of people who have that type of job is correlated, it doesn’t mean that owning that brand of car causes someone to have that type of job or vice versa. The correlation could, for example, be caused by another factor such as income level or age group, which would affect both car ownership and job type.

To confidently establish a causal relationship between an independent variable and a dependent variable (i.e., X causes Y), you’ll typically need an experimental design , where you have complete control over the environmen t and the variables of interest. But even so, this doesn’t always translate into the “real world”. Simply put, what happens in the lab sometimes stays in the lab!

As an alternative to pure experimental research, correlational or “ quasi-experimental ” research (where the researcher cannot manipulate or change variables) can be done on a much larger scale more easily, allowing one to understand specific relationships in the real world. These types of studies also assume some causality between independent and dependent variables, but it’s not always clear. So, if you go this route, you need to be cautious in terms of how you describe the impact and causality between variables and be sure to acknowledge any limitations in your own research.

Free Webinar: Research Methodology 101

What is a control variable?

In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn’t have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it’s a variable that’s not allowed to vary – tough life 🙂

As we mentioned earlier, one of the major challenges in identifying and measuring causal relationships is that it’s difficult to isolate the impact of variables other than the independent variable. Simply put, there’s always a risk that there are factors beyond the ones you’re specifically looking at that might be impacting the results of your study. So, to minimise the risk of this, researchers will attempt (as best possible) to hold other variables constant . These factors are then considered control variables.

Some examples of variables that you may need to control include:

  • Temperature
  • Time of day
  • Noise or distractions

Which specific variables need to be controlled for will vary tremendously depending on the research project at hand, so there’s no generic list of control variables to consult. As a researcher, you’ll need to think carefully about all the factors that could vary within your research context and then consider how you’ll go about controlling them. A good starting point is to look at previous studies similar to yours and pay close attention to which variables they controlled for.

Of course, you won’t always be able to control every possible variable, and so, in many cases, you’ll just have to acknowledge their potential impact and account for them in the conclusions you draw. Every study has its limitations , so don’t get fixated or discouraged by troublesome variables. Nevertheless, always think carefully about the factors beyond what you’re focusing on – don’t make assumptions!

 A control variable is intentionally held constant (it doesn't vary) to ensure it doesn’t have an influence on any other variables.

Other types of variables

As we mentioned, independent, dependent and control variables are the most common variables you’ll come across in your research, but they’re certainly not the only ones you need to be aware of. Next, we’ll look at a few “secondary” variables that you need to keep in mind as you design your research.

  • Moderating variables
  • Mediating variables
  • Confounding variables
  • Latent variables

Let’s jump into it…

What is a moderating variable?

A moderating variable is a variable that influences the strength or direction of the relationship between an independent variable and a dependent variable. In other words, moderating variables affect how much (or how little) the IV affects the DV, or whether the IV has a positive or negative relationship with the DV (i.e., moves in the same or opposite direction).

For example, in a study about the effects of sleep deprivation on academic performance, gender could be used as a moderating variable to see if there are any differences in how men and women respond to a lack of sleep. In such a case, one may find that gender has an influence on how much students’ scores suffer when they’re deprived of sleep.

It’s important to note that while moderators can have an influence on outcomes , they don’t necessarily cause them ; rather they modify or “moderate” existing relationships between other variables. This means that it’s possible for two different groups with similar characteristics, but different levels of moderation, to experience very different results from the same experiment or study design.

What is a mediating variable?

Mediating variables are often used to explain the relationship between the independent and dependent variable (s). For example, if you were researching the effects of age on job satisfaction, then education level could be considered a mediating variable, as it may explain why older people have higher job satisfaction than younger people – they may have more experience or better qualifications, which lead to greater job satisfaction.

Mediating variables also help researchers understand how different factors interact with each other to influence outcomes. For instance, if you wanted to study the effect of stress on academic performance, then coping strategies might act as a mediating factor by influencing both stress levels and academic performance simultaneously. For example, students who use effective coping strategies might be less stressed but also perform better academically due to their improved mental state.

In addition, mediating variables can provide insight into causal relationships between two variables by helping researchers determine whether changes in one factor directly cause changes in another – or whether there is an indirect relationship between them mediated by some third factor(s). For instance, if you wanted to investigate the impact of parental involvement on student achievement, you would need to consider family dynamics as a potential mediator, since it could influence both parental involvement and student achievement simultaneously.

Mediating variables can explain the relationship between the independent and dependent variable, including whether it's causal or not.

What is a confounding variable?

A confounding variable (also known as a third variable or lurking variable ) is an extraneous factor that can influence the relationship between two variables being studied. Specifically, for a variable to be considered a confounding variable, it needs to meet two criteria:

  • It must be correlated with the independent variable (this can be causal or not)
  • It must have a causal impact on the dependent variable (i.e., influence the DV)

Some common examples of confounding variables include demographic factors such as gender, ethnicity, socioeconomic status, age, education level, and health status. In addition to these, there are also environmental factors to consider. For example, air pollution could confound the impact of the variables of interest in a study investigating health outcomes.

Naturally, it’s important to identify as many confounding variables as possible when conducting your research, as they can heavily distort the results and lead you to draw incorrect conclusions . So, always think carefully about what factors may have a confounding effect on your variables of interest and try to manage these as best you can.

What is a latent variable?

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study. They’re also known as hidden or underlying variables , and what makes them rather tricky is that they can’t be directly observed or measured . Instead, latent variables must be inferred from other observable data points such as responses to surveys or experiments.

For example, in a study of mental health, the variable “resilience” could be considered a latent variable. It can’t be directly measured , but it can be inferred from measures of mental health symptoms, stress, and coping mechanisms. The same applies to a lot of concepts we encounter every day – for example:

  • Emotional intelligence
  • Quality of life
  • Business confidence
  • Ease of use

One way in which we overcome the challenge of measuring the immeasurable is latent variable models (LVMs). An LVM is a type of statistical model that describes a relationship between observed variables and one or more unobserved (latent) variables. These models allow researchers to uncover patterns in their data which may not have been visible before, thanks to their complexity and interrelatedness with other variables. Those patterns can then inform hypotheses about cause-and-effect relationships among those same variables which were previously unknown prior to running the LVM. Powerful stuff, we say!

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study.

Let’s recap

In the world of scientific research, there’s no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, we’ve covered some of the popular ones, but remember that this is not an exhaustive list .

To recap, we’ve explored:

  • Independent variables (the “cause”)
  • Dependent variables (the “effect”)
  • Control variables (the variable that’s not allowed to vary)

If you’re still feeling a bit lost and need a helping hand with your research project, check out our 1-on-1 coaching service , where we guide you through each step of the research journey. Also, be sure to check out our free dissertation writing course and our collection of free, fully-editable chapter templates .

qualitative research independent variables

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Survey Design 101: The Basics

Very informative, concise and helpful. Thank you

Ige Samuel Babatunde

Helping information.Thanks

Ancel George

practical and well-demonstrated

Michael

Very helpful and insightful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

Educational Research Basics by Del Siegle

Each person/thing we collect data on is called an OBSERVATION (in our work these are usually people/subjects. Currently, the term participant rather than subject is used when describing the people from whom we collect data).

OBSERVATIONS (participants) possess a variety of CHARACTERISTICS .

If a CHARACTERISTIC of an OBSERVATION (participant) is the same for every member of the group (doesn’t vary) it is called a CONSTANT .

If a CHARACTERISTIC of an OBSERVATION (participant) differs for group members it is called a VARIABLE . In research we don’t get excited about CONSTANTS (since everyone is the same on that characteristic); we’re more interested in VARIABLES. Variables can be classified as QUANTITATIVE or QUALITATIVE (also known as CATEGORICAL).

QUANTITATIVE variables are ones that exist along a continuum that runs from low to high. Ordinal, interval, and ratio variables are quantitative.  QUANTITATIVE variables are sometimes called CONTINUOUS VARIABLES because they have a variety (continuum) of characteristics. Height in inches and scores on a test would be examples of quantitative variables.

QUALITATIVE variables do not express differences in amount, only differences. They are sometimes referred to as CATEGORICAL variables because they classify by categories. Nominal variables such as gender, religion, or eye color are CATEGORICAL variables. Generally speaking, categorical variables

Categorical variables are groups…such as gender or type of degree sought. Quantitative variables are numbers that have a range…like weight in pounds or baskets made during a ball game. When we analyze data we do turn the categorical variables into numbers but only for identification purposes…e.g. 1 = male and 2 = female. Just because 2 = female does not mean that females are better than males who are only 1.  With quantitative data having a higher number means you have more of something. So higher values have meaning.

A special case of a CATEGORICAL variable is a DICHOTOMOUS VARIABLE. DICHOTOMOUS variables have only two CHARACTERISTICS (male or female). When naming QUALITATIVE variables, it is important to name the category rather than the levels (i.e., gender is the variable name, not male and female).

Variables have different purposes or roles…

Independent (Experimental, Manipulated, Treatment, Grouping) Variable- That factor which is measured, manipulated, or selected by the experimenter to determine its relationship to an observed phenomenon. “In a research study, independent variables are antecedent conditions that are presumed to affect a dependent variable. They are either manipulated by the researcher or are observed by the researcher so that their values can be related to that of the dependent variable. For example, in a research study on the relationship between mosquitoes and mosquito bites, the number of mosquitoes per acre of ground would be an independent variable” (Jaeger, 1990, p. 373)

While the independent variable is often manipulated by the researcher, it can also be a classification where subjects are assigned to groups. In a study where one variable causes the other, the independent variable is the cause. In a study where groups are being compared, the independent variable is the group classification.

Dependent (Outcome) Variable- That factor which is observed and measured to determine the effect of the independent variable, i.e., that factor that appears, disappears, or varies as the experimenter introduces, removes, or varies the independent variable. “In a research study, the independent variable defines a principal focus of research interest. It is the consequent variable that is presumably affected by one or more independent variables that are either manipulated by the researcher or observed by the researcher and regarded as antecedent conditions that determine the value of the dependent variable. For example, in a study of the relationship between mosquitoes and mosquito bites, the number of mosquito bites per hour would be the dependent variable” (Jaeger, 1990, p. 370). The dependent variable is the participant’s response.

The dependent variable is the outcome. In an experiment, it may be what was caused or what changed as a result of the study. In a comparison of groups, it is what they differ on.

Moderator Variable- That factor which is measured, manipulated, or selected by the experimenter to discover whether it modifies the relationship of the independent variable to an observed phenomenon. It is a special type of independent variable.

The independent variable’s relationship with the dependent variable may change under different conditions. That condition is the moderator variable. In a study of two methods of teaching reading, one of the methods of teaching reading may work better with boys than girls. Method of teaching reading is the independent variable and reading achievement is the dependent variable. Gender is the moderator variable because it moderates or changes the relationship between the independent variable (teaching method) and the dependent variable (reading achievement).

Suppose we do a study of reading achievement where we compare whole language with phonics, and we also include students’ social economic status (SES) as a variable. The students are randomly assigned to either whole language instruction or phonics instruction. There are students of high and low SES in each group.

Let’s assume that we found that whole language instruction worked better than phonics instruction with the high SES students, but phonics instruction worked better than whole language instruction with the low SES students. Later you will learn in statistics that this is an interaction effect. In this study, language instruction was the independent variable (with two levels: phonics and whole language). SES was the moderator variable (with two levels: high and low). Reading achievement was the dependent variable (measured on a continuous scale so there aren’t levels).

With a moderator variable, we find the type of instruction did make a difference, but it worked differently for the two groups on the moderator variable. We select this moderator variable because we think it is a variable that will moderate the effect of the independent on the dependent. We make this decision before we start the study.

If the moderator had not been in the study above, we would have said that there was no difference in reading achievement between the two types of reading instruction. This would have happened because the average of the high and low scores of each SES group within a reading instruction group would cancel each other an produce what appears to be average reading achievement in each instruction group (i.e., Phonics: Low—6 and High—2; Whole Language:   Low—2 and High—6; Phonics has an average of 4 and Whole Language has an average of 4. If we just look at the averages (without regard to the moderator), it appears that the instruction types produced similar results).

Extraneous Variable- Those factors which cannot be controlled. Extraneous variables are independent variables that have not been controlled. They may or may not influence the results. One way to control an extraneous variable which might influence the results is to make it a constant (keep everyone in the study alike on that characteristic). If SES were thought to influence achievement, then restricting the study to one SES level would eliminate SES as an extraneous variable.

Here are some examples similar to your homework:

Null Hypothesis: Students who receive pizza coupons as a reward do not read more books than students who do not receive pizza coupon rewards. Independent Variable: Reward Status Dependent Variable: Number of Books Read

High achieving students do not perform better than low achieving student when writing stories regardless of whether they use paper and pencil or a word processor. Independent Variable: Instrument Used for Writing Moderator Variable: Ability Level of the Students Dependent Variable:  Quality of Stories Written When we are comparing two groups, the groups are the independent variable. When we are testing whether something influences something else, the influence (cause) is the independent variable. The independent variable is also the one we manipulate. For example, consider the hypothesis “Teachers given higher pay will have more positive attitudes toward children than teachers given lower pay.” One approach is to ask ourselves “Are there two or more groups being compared?” The answer is “Yes.” “What are the groups?” Teachers who are given higher pay and teachers who are given lower pay. Therefore, the independent variable is teacher pay (it has two levels– high pay and low pay). The dependent variable (what the groups differ on) is attitude towards school.

We could also approach this another way. “Is something causing something else?” The answer is “Yes.” “What is causing what?” Teacher pay is causing attitude towards school. Therefore, teacher pay is the independent variable (cause) and attitude towards school is the dependent variable (outcome).

Research Questions and Hypotheses

The research question drives the study. It should specifically state what is being investigated. Statisticians often convert their research questions to null and alternative hypotheses. The null hypothesis states that no relationship (correlation study) or difference (experimental study) exists. Converting research questions to hypotheses is a simple task. Take the questions and make it a positive statement that says a relationship exists (correlation studies) or a difference exists (experiment study) between the groups and we have the alternative hypothesis. Write a statement  that a relationship does not exist or a difference does not exist and we have the null hypothesis.

Format for sample research questions and accompanying hypotheses:

Research Question for Relationships: Is there a relationship between height and weight? Null Hypothesis:  There is no relationship between height and weight. Alternative Hypothesis:   There is a relationship between height and weight.

When a researcher states a nondirectional hypothesis in a study that compares the performance of two groups, she doesn’t state which group she believes will perform better. If the word “more” or “less” appears in the hypothesis, there is a good chance that we are reading a directional hypothesis. A directional hypothesis is one where the researcher states which group she believes will perform better.  Most researchers use nondirectional hypotheses.

We usually write the alternative hypothesis (what we believe might happen) before we write the null hypothesis (saying it won’t happen).

Directional Research Question for Differences: Do boys like reading more than girls? Null Hypothesis:   Boys do not like reading more than girls. Alternative Hypothesis:   Boys do like reading more than girls.

Nondirectional Research Question for Differences: Is there a difference between boys’ and girls’ attitude towards reading? –or– Do boys’ and girls’ attitude towards reading differ? Null Hypothesis:   There is no difference between boys’ and girls’ attitude towards reading.  –or–  Boys’ and girls’ attitude towards reading do not differ. Alternative Hypothesis:   There is a difference between boys’ and girls’ attitude towards reading.  –or–  Boys’ and girls’ attitude towards reading differ.

Del Siegle, Ph.D. Neag School of Education – University of Connecticut [email protected] www.delsiegle.com

Educational resources and simple solutions for your research journey

independent vs dependent variables

Independent vs Dependent Variables: Definitions & Examples

A variable is an important element of research. It is a characteristic, number, or quantity of any category that can be measured or counted and whose value may change with time or other parameters.  

Variables are defined in different ways in different fields. For instance, in mathematics, a variable is an alphabetic character that expresses a numerical value. In algebra, a variable represents an unknown entity, mostly denoted by a, b, c, x, y, z, etc. In statistics, variables represent real-world conditions or factors. Despite the differences in definitions, in all fields, variables represent the entity that changes and help us understand how one factor may or may not influence another factor.  

Variables in research and statistics are of different types—independent, dependent, quantitative (discrete or continuous), qualitative (nominal/categorical, ordinal), intervening, moderating, extraneous, confounding, control, and composite. In this article we compare the first two types— independent vs dependent variables .  

Table of Contents

What is a variable?  

Researchers conduct experiments to understand the cause-and-effect relationships between various entities. In such experiments, the entities whose values change are called variables. These variables describe the relationships among various factors and help in drawing conclusions in experiments. They help in understanding how some factors influence others. Some examples of variables include age, gender, race, income, weight, etc.   

As mentioned earlier, different types of variables are used in research. Of these, we will compare the most common types— independent vs dependent variables . The independent variable is the cause and the dependent variable is the effect, that is, independent variables influence dependent variables. In research, a dependent variable is the outcome of interest of the study and the independent variable is the factor that may influence the outcome. Let’s explain this with an independent and dependent variable example : In a study to analyze the effect of antibiotic use on microbial resistance, antibiotic use is the independent variable and microbial resistance is the dependent variable because antibiotic use affects microbial resistance.( 1)  

What is an independent variable?  

Here is a list of the important characteristics of independent variables .( 2,3)  

  • An independent variable is the factor that is being manipulated in an experiment.  
  • In a research study, independent variables affect or influence dependent variables and cause them to change.  
  • Independent variables help gather evidence and draw conclusions about the research subject.  
  • They’re also called predictors, factors, treatment variables, explanatory variables, and input variables.  
  • On graphs, independent variables are usually placed on the X-axis.  
  • Example: In a study on the relationship between screen time and sleep problems, screen time is the independent variable because it influences sleep (the dependent variable).  
  • In addition, some factors like age are independent variables because other variables such as a person’s income will not change their age.  

Researcher.Life

Types of independent variables  

Independent variables in research are of the following two types:( 4)  

Quantitative  

Quantitative independent variables differ in amounts or scales. They are numeric and answer questions like “how many” or “how often.”  

Here are a few quantitative independent variables examples :  

  • Differences in treatment dosages and frequencies: Useful in determining the appropriate dosage to get the desired outcome.  
  • Varying salinities: Useful in determining the range of salinity that organisms can tolerate.  

Qualitative  

Qualitative independent variables are non-numerical variables.  

A few qualitative independent variables examples are listed below:  

  • Different strains of a species: Useful in identifying the strain of a crop that is most resistant to a specific disease.  
  • Varying methods of how a treatment is administered—oral or intravenous.  

A quantitative variable is represented by actual amounts and a qualitative variable by categories or groups.  

What is a dependent variable ?  

Here are a few characteristics of dependent variables: ( 3)  

  • A dependent variable represents a quantity whose value depends on the independent variable and how it is changed.  
  • The dependent variable is influenced by the independent variable under various circumstances.  
  • It is also known as the response variable and outcome variable.  
  • On graphs, dependent variables are placed on the Y-axis.  

Here are a few dependent variable examples :  

  • In a study on the effect of exercise on mood, the dependent variable is mood because it may change with exercise.  
  • In a study on the effect of pH on enzyme activity, the enzyme activity is the dependent variable because it changes with changing pH.   

Types of dependent variables  

Dependent variables are of two types:( 5)  

Continuous dependent variables

These variables can take on any value within a given range and are measured on a continuous scale, for example, weight, height, temperature, time, distance, etc.  

Categorical or discrete dependent variables

These variables are divided into distinct categories. They are not measured on a continuous scale so only a limited number of values are possible, for example, gender, race, etc.  

qualitative research independent variables

Differences between independent and dependent variables  

The following table compares independent vs dependent variables .  

     
How to identify  Manipulated or controlled  Observed or measured 
Purpose  Cause or predictor variable  Outcome or response variable 
Relationship  Independent of other variables  Influenced by the independent variable 
Control  Manipulated or assigned by researcher  Measured or observed during experiments 

Independent and dependent variable examples  

Listed below are a few examples of research questions from various disciplines and their corresponding independent and dependent variables.( 6)

       
Genetics  What is the relationship between genetics and susceptibility to diseases?  genetic factors  susceptibility to diseases 
History  How do historical events influence national identity?  historical events  national identity 
Political science  What is the effect of political campaign advertisements on voter behavior?  political campaign advertisements  voter behavior 
Sociology  How does social media influence cultural awareness?  social media exposure  cultural awareness 
Economics  What is the impact of economic policies on unemployment rates?  economic policies  unemployment rates 
Literature  How does literary criticism affect book sales?  literary criticism  book sales 
Geology  How do a region’s geological features influence the magnitude of earthquakes?  geological features  earthquake magnitudes 
Environment  How do changes in climate affect wildlife migration patterns?  climate changes  wildlife migration patterns 
Gender studies  What is the effect of gender bias in the workplace on job satisfaction?  gender bias  job satisfaction 
Film studies  What is the relationship between cinematographic techniques and viewer engagement?  cinematographic techniques  viewer engagement 
Archaeology  How does archaeological tourism affect local communities?  archaeological techniques  local community development 

  Independent vs dependent variables in research  

Experiments usually have at least two variables—independent and dependent. The independent variable is the entity that is being tested and the dependent variable is the result. Classifying independent and dependent variables as discrete and continuous can help in determining the type of analysis that is appropriate in any given research experiment, as shown in the table below. ( 7)  

   
   
    Chi-Square  t-test 
Logistic regression  ANOVA 
Phi  Regression 
Cramer’s V  Point-biserial correlation 
  Logistic regression  Regression 
Point-biserial correlation  Correlation 

  Here are some more research questions and their corresponding independent and dependent variables. ( 6)  

     
What is the impact of online learning platforms on academic performance?  type of learning  academic performance 
What is the association between exercise frequency and mental health?  exercise frequency  mental health 
How does smartphone use affect productivity?  smartphone use  productivity levels 
Does family structure influence adolescent behavior?  family structure  adolescent behavior 
What is the impact of nonverbal communication on job interviews?  nonverbal communication  job interviews 

  How to identify independent vs dependent variables  

In addition to all the characteristics of independent and dependent variables listed previously, here are few simple steps to identify the variable types in a research question.( 8)  

  • Keep in mind that there are no specific words that will always describe dependent and independent variables.  
  • If you’re given a paragraph, convert that into a question and identify specific words describing cause and effect.  
  • The word representing the cause is the independent variable and that describing the effect is the dependent variable.  

Let’s try out these steps with an example.  

A researcher wants to conduct a study to see if his new weight loss medication performs better than two bestseller alternatives. He wants to randomly select 20 subjects from Richmond, Virginia, aged 20 to 30 years and weighing above 60 pounds. Each subject will be randomly assigned to three treatment groups.  

To identify the independent and dependent variables, we convert this paragraph into a question, as follows: Does the new medication perform better than the alternatives? Here, the medications are the independent variable and their performances or effect on the individuals are the dependent variable.  

qualitative research independent variables

Visualizing independent vs dependent variables  

Data visualization is the graphical representation of information by using charts, graphs, and maps. Visualizations help in making data more understandable by making it easier to compare elements, identify trends and relationships (among variables), among other functions.  

Bar graphs, pie charts, and scatter plots are the best methods to graphically represent variables. While pie charts and bar graphs are suitable for depicting categorical data, scatter plots are appropriate for quantitative data. The independent variable is usually placed on the X-axis and the dependent variable on the Y-axis.  

Figure 1 is a scatter plot that depicts the relationship between the number of household members and their monthly grocery expenses. 9 The number of household members is the independent variable and the expenses the dependent variable. The graph shows that as the number of members increases the expenditure also increases.  

scatter plot

Key takeaways   

Let’s summarize the key takeaways about independent vs dependent variables from this article:  

  • A variable is any entity being measured in a study.  
  • A dependent variable is often the focus of a research study and is the response or outcome. It depends on or varies with changes in other variables.  
  • Independent variables cause changes in dependent variables and don’t depend on other variables.  
  • An independent variable can influence a dependent variable, but a dependent variable cannot influence an independent variable.  
  • An independent variable is the cause and dependent variable is the effect.  

Frequently asked questions  

  • What are the different types of variables used in research?  

The following table lists the different types of variables used in research.( 10)  

     
Categorical  Measures a construct that has different categories  gender, race, religious affiliation, political affiliation 
Quantitative  Measures constructs that vary by degree of the amount  weight, height, age, intelligence scores 
Independent (IV)  Measures constructs considered to be the cause  Higher education (IV) leads to higher income (DV) 
Dependent (DV)  Measures constructs that are considered the effect  Exercise (IV) will reduce anxiety levels (DV) 
Intervening or mediating (MV)  Measures constructs that intervene or stand in between the cause and effect  Incarcerated individuals are more likely to have psychiatric disorder (MV), which leads to disability in social roles 
Confounding (CV)  “Rival explanations” that explain the cause-and-effect relationship  Age (CV) explains the relationship between increased shoe size and increase in intelligence in children 
Control variable   Extraneous variables whose influence can be controlled or eliminated  Demographic data such as gender, socioeconomic status, age 

 2. Why is it important to differentiate between independent vs dependent variables ?  

  Differentiating between independent vs dependent variables is important to ensure the correct application in your own research and also the correct understanding of other studies. An incorrectly framed research question can lead to confusion and inaccurate results. An easy way to differentiate is to identify the cause and effect.  

 3. How are independent and dependent variables used in non-experimental research?  

  So far in this article we talked about variables in relation to experimental research, wherein variables are manipulated or measured to test a hypothesis, that is, to observe the effect on dependent variables. Let’s examine non-experimental research and how variable are used. 11 In non-experimental research, variables are not manipulated but are observed in their natural state. Researchers do not have control over the variables and cannot manipulate them based on their research requirements. For example, a study examining the relationship between income and education level would not manipulate either variable. Instead, the researcher would observe and measure the levels of each variable in the sample population. The level of control researchers have is the major difference between experimental and non-experimental research. Another difference is the causal relationship between the variables. In non-experimental research, it is not possible to establish a causal relationship because other variables may be influencing the outcome.  

  4. Are there any advantages and disadvantages of using independent vs dependent variables ?

  Here are a few advantages and disadvantages of both independent and dependent variables.( 12)

Advantages: 

  • Dependent variables are not liable to any form of bias because they cannot be manipulated by researchers or other external factors.  
  • Independent variables are easily obtainable and don’t require complex mathematical procedures to be observed, like dependent variables. This is because researchers can easily manipulate these variables or collect the data from respondents.  
  • Some independent variables are natural factors and cannot be manipulated. They are also easily obtainable because less time is required for data collection.

Disadvantages: 

  • Obtaining dependent variables is a very expensive and effort- and time-intensive process because these variables are obtained from longitudinal research by solving complex equations.  
  • Independent variables are prone to researcher and respondent bias because they can be manipulated, and this may affect the study results.  

We hope this article has provided you with an insight into the use and importance of independent vs dependent variables , which can help you effectively use variables in your next research study.    

  • Kaliyadan F, Kulkarni V. Types of variables, descriptive statistics, and sample size. Indian Dermatol Online J. 2019 Jan-Feb; 10(1): 82–86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362742/  
  • What Is an independent variable? (with uses and examples). Indeed website. Accessed March 11, 2024. https://www.indeed.com/career-advice/career-development/what-is-independent-variable  
  • Independent and dependent variables: Differences & examples. Statistics by Jim website. Accessed March 10, 2024. https://statisticsbyjim.com/regression/independent-dependent-variables/  
  • Independent variable. Biology online website. Accessed March 9, 2024. https://www.biologyonline.com/dictionary/independent-variable#:~:text=The%20independent%20variable%20in%20research,how%20many%20or%20how%20often .  
  • Dependent variables: Definition and examples. Clubz Tutoring Services website. Accessed March 10, 2024. https://clubztutoring.com/ed-resources/math/dependent-variable-definitions-examples-6-7-2/  
  • Research topics with independent and dependent variables. Good research topics website. Accessed March 12, 2024. https://goodresearchtopics.com/research-topics-with-independent-and-dependent-variables/  
  • Levels of measurement and using the correct statistical test. Univariate quantitative methods. Accessed March 14, 2024. https://web.pdx.edu/~newsomj/uvclass/ho_levels.pdf  
  • Easiest way to identify dependent and independent variables. Afidated website. Accessed March 15, 2024. https://www.afidated.com/2014/07/how-to-identify-dependent-and.html  
  • Choosing data visualizations. Math for the people website. Accessed March 14, 2024. https://web.stevenson.edu/mbranson/m4tp/version1/environmental-racism-choosing-data-visualization.html  
  • Trivedi C. Types of variables in scientific research. Concepts Hacked website. Accessed March 15, 2024. https://conceptshacked.com/variables-in-scientific-research/  
  • Variables in experimental and non-experimental research. Statistics solutions website. Accessed March 14, 2024. https://www.statisticssolutions.com/variables-in-experimental-and-non-experimental-research/#:~:text=The%20independent%20variable%20would%20be,state%20instead%20of%20manipulating%20them .  
  • Dependent vs independent variables: 11 key differences. Formplus website. Accessed March 15, 2024. https://www.formpl.us/blog/dependent-independent-variables

Researcher.Life is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Researcher.Life All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 21+ years of experience in academia, Researcher.Life All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $17 a month !    

Related Posts

Simple random sampling

Simple Random Sampling: Definition, Methods, and Examples

case study in research

What is a Case Study in Research? Definition, Methods, and Examples

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Independent and Dependent Variables
  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Definitions

Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect.

Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure. It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause.

Cramer, Duncan and Dennis Howitt. The SAGE Dictionary of Statistics . London: SAGE, 2004; Penslar, Robin Levin and Joan P. Porter. Institutional Review Board Guidebook: Introduction . Washington, DC: United States Department of Health and Human Services, 2010; "What are Dependent and Independent Variables?" Graphic Tutorial.

Identifying Dependent and Independent Variables

Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research . However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order to discover relevant and meaningful results. Specifically, it is important for these two reasons:

  • You need to understand and be able to evaluate their application in other people's research.
  • You need to apply them correctly in your own research.

A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. The best way to understand the difference between a dependent and independent variable is that the meaning of each is implied by what the words tell us about the variable you are using. You can do this with a simple exercise from the website, Graphic Tutorial. Take the sentence, "The [independent variable] causes a change in [dependent variable] and it is not possible that [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help you identify each type of variable. If you're still not sure, consult with your professor before you begin to write.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349;

Structure and Writing Style

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables . Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section . There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables . State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each . In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

  • << Previous: Design Flaws to Avoid
  • Next: Glossary of Research Terms >>
  • Last Updated: Jun 18, 2024 10:45 AM
  • URL: https://libguides.usc.edu/writingguide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Independent vs Dependent Variables | Definition & Examples

Independent vs Dependent Variables | Definition & Examples

Published on 4 May 2022 by Pritha Bhandari . Revised on 17 October 2022.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs dependent variables, independent and dependent variables in research, visualising independent and dependent variables, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Prevent plagiarism, run a free check.

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment.

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women, and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic paper.

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design.

Here are some tips for identifying each variable type.

Recognising independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognising dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

Research question Independent variable Dependent variable(s)
Do tomatoes grow fastest under fluorescent, incandescent, or natural light?
What is the effect of intermittent fasting on blood sugar levels?
Is medical marijuana effective for pain reduction in people with chronic pain?
To what extent does remote working increase job satisfaction?

For experimental data, you analyse your results by generating descriptive statistics and visualising your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • Your variable types
  • Level of measurement
  • Number of independent variable levels

You’ll often use t tests or ANOVAs to analyse your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualise the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualisation you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatterplot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

  • Right-hand-side variables (they appear on the right-hand side of a regression equation)

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet cola and regular cola, so you conduct an experiment .

  • The type of cola – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of cola.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 17). Independent vs Dependent Variables | Definition & Examples. Scribbr. Retrieved 2 July 2024, from https://www.scribbr.co.uk/research-methods/independent-vs-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, types of variables in research | definitions & examples.

qualitative research independent variables

Dependent vs. Independent Variables in Research

qualitative research independent variables

Introduction

Independent and dependent variables in research, can qualitative data have independent and dependent variables.

Experiments rely on capturing the relationship between independent and dependent variables to understand causal patterns. Researchers can observe what happens when they change a condition in their experiment or if there is any effect at all.

It's important to understand the difference between the independent variable and dependent variable. We'll look at the notion of independent and dependent variables in this article. If you are conducting experimental research, defining the variables in your study is essential for realizing rigorous research .

qualitative research independent variables

In experimental research, a variable refers to the phenomenon, person, or thing that is being measured and observed by the researcher. A researcher conducts a study to see how one variable affects another and make assertions about the relationship between different variables.

A typical research question in an experimental study addresses a hypothesized relationship between the independent variable manipulated by the researcher and the dependent variable that is the outcome of interest presumably influenced by the researcher's manipulation.

Take a simple experiment on plants as an example. Suppose you have a control group of plants on one side of a garden and an experimental group of plants on the other side. All things such as sunlight, water, and fertilizer being equal, both plants should be expected to grow at the same rate.

Now imagine that the plants in the experimental group are given a new plant fertilizer under the assumption that they will grow faster. Then you will need to measure the difference in growth between the two groups in your study.

In this case, the independent variable is the type of fertilizer used on your plants while the dependent variable is the rate of growth among your plants. If there is a significant difference in growth between the two groups, then your study provides support to suggest that the fertilizer causes higher rates of plant growth.

qualitative research independent variables

What is the key difference between independent and dependent variables?

The independent variable is the element in your study that you intentionally change, which is why it can also be referred to as the manipulated variable.

You manipulate this variable to see how it might affect the other variables you observe, all other factors being equal. This means that you can observe the cause and effect relationships between one independent variable and one or multiple dependent variables.

Independent variables are directly manipulated by the researcher, while dependent variables are not. They are "dependent" because they are affected by the independent variable in the experiment. Researchers can thus study how manipulating the independent variable leads to changes in the main outcome of interest being measured as the dependent variable.

Note that while you can have multiple dependent variables, it is challenging to establish research rigor for multiple independent variables. If you are making so many changes in an experiment, how do you know which change is responsible for the outcome produced by the study? Studying more than one independent variable would require running an experiment for each independent variable to isolate its effects on the dependent variable.

This being said, it is certainly possible to employ a study design that involves multiple independent and dependent variables, as is the case with what is called a factorial experiment. For example, a psychological study examining the effects of sleep and stress levels on work productivity and social interaction would have two independent variables and two dependent variables, respectively.

Such a study would be complex and require careful planning to establish the necessary research rigor , however. If possible, consider narrowing your research to the examination of one independent variable to make it more manageable and easier to understand.

Independent variable examples

Let's consider an experiment in the social studies. Suppose you want to determine the effectiveness of a new textbook compared to current textbooks in a particular school.

The new textbook is supposed to be better, but how can you prove it? Besides all the selling points that the textbook publisher makes, how do you know if the new textbook is any good? A rigorous study examining the effects of the textbook on classroom outcomes is in order.

The textbook given to students makes up the independent variable in your experimental study. The shift from the existing textbooks to the new one represents the manipulation of the independent variable in this study.

qualitative research independent variables

Dependent variable examples

In any experiment, the dependent variable is observed to measure how it is affected by changes to the independent variable. Outcomes such as test scores and other performance metrics can make up the data for the dependent variable.

Now that we are changing the textbook in the experiment above, we should examine if there are any effects.

To do this, we will need two classrooms of students. As best as possible, the two sets of students should be of similar proficiency (or at least of similar backgrounds) and placed within similar conditions for teaching and learning (e.g., physical space, lesson planning).

The control group in our study will be one set of students using the existing textbook. By examining their performance, we can establish a baseline. The performance of the experimental group, which is the set of students using the new textbook, can then be compared with the baseline performance.

As a result, the change in the test scores make up the data for our dependent variable. We cannot directly affect how well students perform on the test, but we can conclude from our experiment whether the use of the new textbook might impact students' performance.

qualitative research independent variables

Turn data into valuable insights with ATLAS.ti

Rely on our powerful data analysis interface for your research, starting with a free trial.

How do you know if a variable is independent or dependent?

We can typically think of an independent variable as something a researcher can directly change. In the above example, we can change the textbook used by the teacher in class. If we're talking about plants, we can change the fertilizer.

Conversely, the dependent variable is something that we do not directly influence or manipulate. Strictly speaking, we cannot directly manipulate a student's performance on a test or the rate of growth of a plant, not without other factors such as new teaching methods or new fertilizer, respectively.

Understanding the distinction between a dependent variable and an independent variable is key to experimental research. Ultimately, the distinction can be reduced to which element in a study has been directly influenced by the researcher.

Other variables

Given the potential complexities encountered in research, there is essential terminology for other variables in any experimental study. You might employ this terminology or encounter them while reading other research.

A control variable is any factor that the researcher tries to keep constant as the independent variable changes. In the plant experiment described earlier in this article, the sunlight and water are each a controlled variable while the type of fertilizer used is the manipulated variable across control and experimental groups.

To ensure research rigor, the researcher needs to keep these control variables constant to dispel any concerns that differences in growth rate were being driven by sunlight or water, as opposed to the fertilizer being used.

qualitative research independent variables

Extraneous variables refer to any unwanted influence on the dependent variable that may confound the analysis of the study. For example, if bugs or animals ate the plants in your fertilizer study, this was greatly impact the rates of plant growth. This is why it would be important to control the environment and protect it from such threats.

Finally, independent variables can go by different names such as subject variables or predictor variables. Dependent variables can also be referred to as the responding variable or outcome variable. Whatever the language, they all serve the same role of influencing the dependent variable in an experiment.

The use of the word " variables " is typically associated with quantitative and confirmatory research. Naturalistic qualitative research typically does not employ experimental designs or establish causality. Qualitative research often draws on observations , interviews , focus groups , and other forms of data collection that are allow researchers to study the naturally occurring "messiness" of the social world, rather than controlling all variables to isolate a cause-and-effect relationship.

In limited circumstances, the idea of experimental variables can apply to participant observations in ethnography , where the researcher should be mindful of their influence on the environment they are observing.

However, the experimental paradigm is best left to quantitative studies and confirmatory research questions. Qualitative researchers in the social sciences are oftentimes more interested in observing and describing socially-constructed phenomena rather than testing hypotheses .

Nonetheless, the notion of independent and dependent variables does hold important lessons for qualitative researchers. Even if they don't employ variables in their study design, qualitative researchers often observe how one thing affects another. A theoretical or conceptual framework can then suggest potential cause-and-effect relationships in their study.

qualitative research independent variables

With ATLAS.ti, insightful data analysis is at your fingertips

Download a free trial of ATLAS.ti to see how you can make the most of your data.

qualitative research independent variables

  • What is New
  • Download Your Software
  • Behavioral Research
  • Software for Consumer Research
  • Software for Human Factors R&D
  • Request Live Demo
  • Contact Sales

Sensor Hardware

Man wearing VR headset

We carry a range of biosensors from the top hardware producers. All compatible with iMotions

iMotions for Higher Education

Imotions for business.

qualitative research independent variables

What is Attribution Theory?

Morten Pedersen

qualitative research independent variables

What is the Observer Effect? 

News & events.

  • iMotions Lab
  • iMotions Online
  • Eye Tracking
  • Eye Tracking Screen Based
  • Eye Tracking VR
  • Eye Tracking Glasses
  • Eye Tracking Webcam
  • FEA (Facial Expression Analysis)
  • Voice Analysis
  • EDA/GSR (Electrodermal Activity)
  • EEG (Electroencephalography)
  • ECG (Electrocardiography)
  • EMG (Electromyography)
  • Respiration
  • iMotions Lab: New features
  • iMotions Lab: Developers
  • EEG sensors
  • Sensory and Perceptual
  • Consumer Inights
  • Human Factors R&D
  • Work Environments, Training and Safety
  • Customer Stories
  • Published Research Papers
  • Document Library
  • Customer Support Program
  • Help Center
  • Release Notes
  • Contact Support
  • Partnerships
  • Mission Statement
  • Ownership and Structure
  • Executive Management
  • Job Opportunities

Publications

  • Newsletter Sign Up

Roles of Independent and Dependent Variables in Research

Morten Pedersen

Explore the essential roles of independent and dependent variables in research. This guide delves into their definitions, significance in experiments, and their critical relationship. Learn how these variables are the foundation of research design, influencing hypothesis testing, theory development, and statistical analysis, empowering researchers to understand and predict outcomes of research studies.

Table of Contents

Introduction.

At the very base of scientific inquiry and research design , variables act as the fundamental steps, guiding the rhythm and direction of research. This is particularly true in human behavior research, where the quest to understand the complexities of human actions and reactions hinges on the meticulous manipulation and observation of these variables. At the heart of this endeavor lie two different types of variables, namely: independent and dependent variables, whose roles and interplay are critical in scientific discovery.

Understanding the distinction between independent and dependent variables is not merely an academic exercise; it is essential for anyone venturing into the field of research. This article aims to demystify these concepts, offering clarity on their definitions, roles, and the nuances of their relationship in the study of human behavior, and in science generally. We will cover hypothesis testing and theory development, illuminating how these variables serve as the cornerstone of experimental design and statistical analysis.

qualitative research independent variables

The significance of grasping the difference between independent and dependent variables extends beyond the confines of academia. It empowers researchers to design robust studies, enables critical evaluation of research findings, and fosters an appreciation for the complexity of human behavior research. As we delve into this exploration, our objective is clear: to equip readers with a deep understanding of these fundamental concepts, enhancing their ability to contribute to the ever-evolving field of human behavior research.

Chapter 1: The Role of Independent Variables in Human Behavior Research

In the realm of human behavior research, independent variables are the keystones around which studies are designed and hypotheses are tested. Independent variables are the factors or conditions that researchers manipulate or observe to examine their effects on dependent variables, which typically reflect aspects of human behavior or psychological phenomena. Understanding the role of independent variables is crucial for designing robust research methodologies, ensuring the reliability and validity of findings.

Defining Independent Variables

Independent variables are those variables that are changed or controlled in a scientific experiment to test the effects on dependent variables. In studies focusing on human behavior, these can range from psychological interventions (e.g., cognitive-behavioral therapy), environmental adjustments (e.g., noise levels, lighting, smells, etc), to societal factors (e.g., social media use). For example, in an experiment investigating the impact of sleep on cognitive performance, the amount of sleep participants receive is the independent variable. 

Selection and Manipulation

Selecting an independent variable requires careful consideration of the research question and the theoretical framework guiding the study. Researchers must ensure that their chosen variable can be effectively, and consistently manipulated or measured and is ethically and practically feasible, particularly when dealing with human subjects.

Manipulating an independent variable involves creating different conditions (e.g., treatment vs. control groups) to observe how changes in the variable affect outcomes. For instance, researchers studying the effect of educational interventions on learning outcomes might vary the type of instructional material (digital vs. traditional) to assess differences in student performance.

Challenges in Human Behavior Research

Manipulating independent variables in human behavior research presents unique challenges. Ethical considerations are paramount, as interventions must not harm participants. For example, studies involving vulnerable populations or sensitive topics require rigorous ethical oversight to ensure that the manipulation of independent variables does not result in adverse effects.

qualitative research independent variables

Practical limitations also come into play, such as controlling for extraneous variables that could influence the outcomes. In the aforementioned example of sleep and cognitive performance, factors like caffeine consumption or stress levels could confound the results. Researchers employ various methodological strategies, such as random assignment and controlled environments, to mitigate these influences.

Chapter 2: Dependent Variables: Measuring Human Behavior

The dependent variable in human behavior research acts as a mirror, reflecting the outcomes or effects resulting from variations in the independent variable. It is the aspect of human experience or behavior that researchers aim to understand, predict, or change through their studies. This section explores how dependent variables are measured, the significance of their accurate measurement, and the inherent challenges in capturing the complexities of human behavior.

Defining Dependent Variables

Dependent variables are the responses or outcomes that researchers measure in an experiment, expecting them to vary as a direct result of changes in the independent variable. In the context of human behavior research, dependent variables could include measures of emotional well-being, cognitive performance, social interactions, or any other aspect of human behavior influenced by the experimental manipulation. For instance, in a study examining the effect of exercise on stress levels, stress level would be the dependent variable, measured through various psychological assessments or physiological markers.

Measurement Methods and Tools

Measuring dependent variables in human behavior research involves a diverse array of methodologies, ranging from self-reported questionnaires and interviews to physiological measurements and behavioral observations. The choice of measurement tool depends on the nature of the dependent variable and the objectives of the study.

  • Self-reported Measures: Often used for assessing psychological states or subjective experiences, such as anxiety, satisfaction, or mood. These measures rely on participants’ introspection and honesty, posing challenges in terms of accuracy and bias.
  • Behavioral Observations: Involve the direct observation and recording of participants’ behavior in natural or controlled settings. This method is used for behaviors that can be externally observed and quantified, such as social interactions or task performance.
  • Physiological Measurements: Include the use of technology to measure physical responses that indicate psychological states, such as heart rate, cortisol levels, or brain activity. These measures can provide objective data about the physiological aspects of human behavior.

Reliability and Validity

The reliability and validity of the measurement of dependent variables are critical to the integrity of human behavior research.

  • Reliability refers to the consistency of a measure; a reliable tool yields similar results under consistent conditions.
  • Validity pertains to the accuracy of the measure; a valid tool accurately reflects the concept it aims to measure.

Ensuring reliability and validity often involves the use of established measurement instruments with proven track records, pilot testing new instruments, and applying rigorous statistical analyses to evaluate measurement properties.

Challenges in Measuring Human Behavior

Measuring human behavior presents challenges due to its complexity and the influence of multiple, often interrelated, variables. Researchers must contend with issues such as participant bias, environmental influences, and the subjective nature of many psychological constructs. Additionally, the dynamic nature of human behavior means that it can change over time, necessitating careful consideration of when and how measurements are taken.

Section 3: Relationship between Independent and Dependent Variables

Understanding the relationship between independent and dependent variables is at the core of research in human behavior. This relationship is what researchers aim to elucidate, whether they seek to explain, predict, or influence human actions and psychological states. This section explores the nature of this relationship, the means by which it is analyzed, and common misconceptions that may arise.

The Nature of the Relationship

The relationship between independent and dependent variables can manifest in various forms—direct, indirect, linear, nonlinear, and may be moderated or mediated by other variables. At its most basic, this relationship is often conceptualized as cause and effect: the independent variable (the cause) influences the dependent variable (the effect). For instance, increased physical activity (independent variable) may lead to decreased stress levels (dependent variable).

Analyzing the Relationship

Statistical analyses play a pivotal role in examining the relationship between independent and dependent variables. Techniques vary depending on the nature of the variables and the research design, ranging from simple correlation and regression analyses for quantifying the strength and form of relationships, to complex multivariate analyses for exploring relationships among multiple variables simultaneously.

  • Correlation Analysis : Used to determine the degree to which two variables are related. However, it’s crucial to note that correlation does not imply causation.
  • Regression Analysis : Goes a step further by not only assessing the strength of the relationship but also predicting the value of the dependent variable based on the independent variable.
  • Experimental Design : Provides a more robust framework for inferring causality, where manipulation of the independent variable and control of confounding factors allow researchers to directly observe the impact on the dependent variable.

Independent and Dependent Variables in Research

Causality vs. Correlation

A fundamental consideration in human behavior research is the distinction between causality and correlation. Causality implies that changes in the independent variable cause changes in the dependent variable. Correlation, on the other hand, indicates that two variables are related but does not establish a cause-effect relationship. Confounding variables may influence both, creating the appearance of a direct relationship where none exists. Understanding this distinction is crucial for accurate interpretation of research findings.

Common Misinterpretations

The complexity of human behavior and the myriad factors that influence it often lead to challenges in interpreting the relationship between independent and dependent variables. Researchers must be wary of:

  • Overestimating the strength of causal relationships based on correlational data.
  • Ignoring potential confounding variables that may influence the observed relationship.
  • Assuming the directionality of the relationship without adequate evidence.

This exploration highlights the importance of understanding independent and dependent variables in human behavior research. Independent variables act as the initiating factors in experiments, influencing the observed behaviors, while dependent variables reflect the results of these influences, providing insights into human emotions and actions. 

Ethical and practical challenges arise, especially in experiments involving human participants, necessitating careful consideration to respect participants’ well-being. The measurement of these variables is critical for testing theories and validating hypotheses, with their relationship offering potential insights into causality and correlation within human behavior. 

Rigorous statistical analysis and cautious interpretation of findings are essential to avoid misconceptions. Overall, the study of these variables is fundamental to advancing human behavior research, guiding researchers towards deeper understanding and potential interventions to improve the human condition.

Free 44-page Experimental Design Guide

For Beginners and Intermediates

  • Introduction to experimental methods
  • Respondent management with groups and populations
  • How to set up stimulus selection and arrangement

qualitative research independent variables

Last edited

About the author

See what is next in human behavior research

Follow our newsletter to get the latest insights and events send to your inbox.

Related Posts

qualitative research independent variables

The Impact of Gaze Tracking Technology: Applications and Benefits

Consumer Insights

qualitative research independent variables

The Ultimatum Game

qualitative research independent variables

The Stag Hunt (Game Theory)

qualitative research independent variables

Unlocking the Potential of VR Eye Trackers: How They Work and Their Applications

You might also like these.

qualitative research independent variables

Neuroaesthetics: Decoding the Brain’s Love for Art and Beauty

qualitative research independent variables

Exploring Mobile Eye Trackers: How Eye Tracking Glasses Work and Their Applications

Case Stories

Explore Blog Categories

Best Practice

Collaboration, product guides, product news, research fundamentals, research insights, 🍪 use of cookies.

We are committed to protecting your privacy and only use cookies to improve the user experience.

Chose which third-party services that you will allow to drop cookies. You can always change your cookie settings via the Cookie Settings link in the footer of the website. For more information read our Privacy Policy.

  • gtag This tag is from Google and is used to associate user actions with Google Ad campaigns to measure their effectiveness. Enabling this will load the gtag and allow for the website to share information with Google. This service is essential and can not be disabled.
  • Livechat Livechat provides you with direct access to the experts in our office. The service tracks visitors to the website but does not store any information unless consent is given. This service is essential and can not be disabled.
  • Pardot Collects information such as the IP address, browser type, and referring URL. This information is used to create reports on website traffic and track the effectiveness of marketing campaigns.
  • Third-party iFrames Allows you to see thirdparty iFrames.

What is an independent variable?

Last updated

14 February 2023

Reviewed by

Short on time? Get an AI generated summary of this article instead

Independent variables are features or values fixed within the population or study under investigation. An example might be a subject's age within a study - other variables, such as what they eat, how long they sleep, and how much TV they watch wouldn't change the subject's age. 

On the other hand, a dependent variable can be influenced by other factors or variables. For example, how well you perform on a series of tests (a dependent variable) could be influenced by how long you study or how much sleep you get before the night of the exam. 

A better understanding of independent variables, specifically the types, how they function in research contexts, and how to distinguish them from dependent variables, will assist you in determining how to identify them in your studies. 

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • Types of independent variables

Independent variables can be of several types, depending on the hypothesis and research. However, the most common types are experimental independent variables and subject variables.

Experimental independent variables

Experimental variables are those that can be directly manipulated in a study. In other words, these are independent variables that you can manipulate to discover how they influence your dependent variables. 

For example, you may have two study groups split by independent variables: one receiving a new drug treatment and one receiving a placebo. These types of studies generally require the random assignment of research participants to different groups to observe how results vary based on the influence of different independent variables.

A proper experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so they don't affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the experimental independent variable manipulation.

Subject variables

Subject variables are independent variables that can't be changed in a study but can be used to categorize study participants. They are mostly features that differ between study subjects. For instance, as a social researcher, you can use gender identification, race, education level, or income as key independent variables to classify your research subjects.

Unlike experimental variables, subject variables necessitate a quasi-experimental approach because there is no random assignment. This type of independent variable comprises features and attributes inherent within study participants; therefore, they cannot be assigned randomly. 

Instead, you can develop a research approach in which you evaluate the findings of different groups of participants based on their features. It is important to note that any research design that uses non-random assignment is vulnerable to study biases such as sampling and selection bias.

  • What is the importance of independent variables?

As noted previously, independent variables are critical in developing a study design. This is because they assist researchers in determining cause-and-effect relationships. Controlled experiments require minimal to no outside influence to make conclusions. 

Identifying independent variables is one way to eliminate external influences and achieve greater certainty that research results are representative. By controlling for outside influences as much as possible, you can make meaningful inferences about the link between independent and dependent variables.

In most cases, changes in the independent variables cause changes in the dependent variables. For example, if you change an independent variable such as age, you might expect a dependent variable such as cognitive function or running speed to change if the age difference is large. However, there are situations when variations in the independent variables do not influence the dependent variable.

  • How can you choose an independent variable?

Choosing independent variables within your research will be driven by the objectives of your study. Start by formulating a hypothesis about the outcome you anticipate, and then choose independent variables that you believe will significantly influence the dependent variables.

Make sure you have experimental and control groups that have identical features. They should only differ based on the treatment they get for the independent variable. In this case, your control group will undergo no treatment or changes in the independent variable, versus the experimental group, which will receive the treatment or a wide variation of the independent variable.

  • How to include an independent variable in an experiment

The type of study or experiment greatly impacts the nature of an independent variable. If you are doing an experiment involving a control condition or group, you will need to monitor and define the values of the independent variables you are using within test condition groups.

In an observational experiment, the explanatory variables' values are not predetermined, but instead are observed in their natural surroundings.

Model specification is the process of deciding which independent variables to incorporate into a statistical model. It involves extensive study, numerous specific topics, and statistical aspects.

Including one independent variable in a regression model entails performing a simple regression, while for more than one independent variable, it is a multiple regression. The names might be different, but the analysis, interpretation, and assumptions are all the same.

  • What are some examples of independent variables?

To better understand the concept of independent variables, have a look at these few examples used in different contexts:

Mental health context: As a medical researcher, you may be interested in finding out whether a new type of treatment can reduce anxiety in people suffering from a social anxiety disorder. Your study can include three groups of patients. One group receives the new treatment, another gets a different treatment, and the last gets no treatment. The type of treatment is the independent variable.

Workplace context: In this case, you may want to know if giving employees greater control over how they perform their duties results in increased job satisfaction. Your study will involve two groups of employees, one with a lot of say over how they do their jobs and the other without. In this scenario, the independent variable is the amount of control the employees have over their job.

Educational context: You can conduct a study to see if after-school math tutoring improves student performance on standardized math tests. In this example, one group of students will attend an after-school tutoring session three times a week, whereas another group will not receive this extra help. The independent variable is the involvement in after-school math tutoring sessions.

Organization context: You may want to know if the color of an office affects work efficiency. Your research will consider a group of employees working in white or yellow rooms. The independent variable is the color of the office.

  • What is a dependent variable?

A dependent variable changes as a result of the manipulation of the independent variable. In a nutshell, it is what you test or measure in an experiment. It is also known as a response variable since it responds to changes in another variable, or known as an outcome variable because it represents the outcome you want to measure.

Statisticians also denote these as left-hand side variables because they are typically found on the left-hand side of a regression model. Typically, dependent variables are plotted on the y-axis of graphs. 

For instance, in a study designed to evaluate how a certain treatment affects the symptoms of psychological disorders, the dependent variable might be identified as the severity of the symptoms a patient experiences. The treatment used would be the independent variable.

The results of an experiment are important because they can assist you in determining the extent to which changes in your independent variable cause variations in your dependent variable. They can also help forecast the degree to which your dependent variable will vary due to changes in the independent variable.

  • Identifying independent vs. dependent variables

It can be challenging to differentiate between independent and dependent variables, especially when designing comprehensive research. In some circumstances, a dependent variable from one research study will be used as an independent variable in another. The key is to pay close attention to the study design.

Recognizing independent variables

To recognize independent variables in research, focus on determining whether the variable causes variation in another variable. Independent variables are also manipulated variables whose values are determined by the researchers. In certain experiments, notably in medicine, they are described as risk factors; whereas in others, they are referred to as experimental factors.

Keep in mind that control groups and treatments are often independent variables. And studies that use this approach tend to classify independent variables as categorical grouping variables that establish the experimental groups.

The approaches used to identify independent variables in observational research differ slightly. In these studies, independent variables explain, predict, or correlate with variation in the dependent variable. The study results are also changed or regulated by a variable. If you see an estimated impact size, it is an independent variable, irrespective of the type of study you are reading or designing.

Recognizing dependent variables

To identify dependent variables, you must first determine if the variable is measurable within the research. Also, determine whether the variable relies on another variable in the experiment. If you discover that a variable is only subject to change or variability after other variables have been changed, it may be a dependent variable.

  • Independent and dependent variables in research

Both independent and dependent variables are mainly used in quasi-experimental and experimental studies. When conducting research, you can generate descriptive statistics to illustrate results. Following that, you would choose a suitable statistical test to validate your hypothesis. 

The kind of variable, measurement level, and several independent variable levels will significantly influence your chosen test. Many studies use either the ANOVA or the t-test for data analysis and to obtain answers to research questions .

  • Other key variables

Other variables, in addition to independent and dependent variables, may have a major impact on a research outcome. Thus, it is vital to identify and take control of extraneous variables since they can cause variation in the relationship between the independent and dependent variables.

Some examples of extraneous variables include demand characteristics and experimenter effects. When these variables cannot be controlled in an experiment, they are usually called confounding variables .

  • Visualizing independent and dependent variables

You can use either a chart or a graph to visualize quantitative research results. Graphs have a typical display in which the independent variables lie on the horizontal x-axis and the dependent variables on the vertical y-axis. The presentation of data will depend on the nature of the variables in your research questions.

  • The lowdown

Having a working knowledge of independent and dependent variables is key to understanding how research projects work. There are various ways to think of independent variables. However, the best approach is to picture the independent variable as what you change and the dependent variable as what is influenced due to the variation. 

In other words, consider the independent variable the cause and the dependent variable the effect. When visualizing these variables in a graph, place the independent variable on the x-axis and the dependent variable on the y-axis.

It is also essential to remember that there are other variables aside from the independent and dependent variables that might impact the outcome of an experiment. As a result, you should identify and control extraneous variables as much as possible to make a valid conclusion about the study findings.

What are the dependent and independent variables in research?

An independent variable in research or an experiment is what the researcher manipulates or changes. The dependent variable, on the other hand, is what is measured. In general, the independent variable is in charge of influencing the dependent variable.

What are the variables in research examples?

In research or an experiment, a variable refers to something that can be tested. You can use independent and dependent variables to design research .

Can a variable be both independent and dependent at the same time?

No, because a dependent variable is reliant on the independent variable. Thus, a variable in a study can only be the cause (independent) or the effect (dependent). However, there are also cases in which a dependent variable from one study is used as an independent variable in another.

Can a study have more than one independent or dependent variable?

Yes, however, a study must include various research questions for multiple independent and dependent variables to be effective.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 6 October 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 7 March 2023

Last updated: 9 March 2023

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

qualitative research independent variables

Users report unexpectedly high data usage, especially during streaming sessions.

qualitative research independent variables

Users find it hard to navigate from the home page to relevant playlists in the app.

qualitative research independent variables

It would be great to have a sleep timer feature, especially for bedtime listening.

qualitative research independent variables

I need better filters to find the songs or artists I’m looking for.

Log in or sign up

Get started for free

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8.2 Multiple Independent Variables

Learning objectives.

  • Explain why researchers often include multiple independent variables in their studies.
  • Define factorial design, and use a factorial design table to represent and interpret simple factorial designs.
  • Distinguish between main effects and interactions, and recognize and give examples of each.
  • Sketch and interpret bar graphs and line graphs showing the results of studies with simple factorial designs.

Just as it is common for studies in psychology to include multiple dependent variables, it is also common for them to include multiple independent variables. Schnall and her colleagues studied the effect of both disgust and private body consciousness in the same study. Researchers’ inclusion of multiple independent variables in one experiment is further illustrated by the following actual titles from various professional journals:

  • The Effects of Temporal Delay and Orientation on Haptic Object Recognition
  • Opening Closed Minds: The Combined Effects of Intergroup Contact and Need for Closure on Prejudice
  • Effects of Expectancies and Coping on Pain-Induced Intentions to Smoke
  • The Effect of Age and Divided Attention on Spontaneous Recognition
  • The Effects of Reduced Food Size and Package Size on the Consumption Behavior of Restrained and Unrestrained Eaters

Just as including multiple dependent variables in the same experiment allows one to answer more research questions, so too does including multiple independent variables in the same experiment. For example, instead of conducting one study on the effect of disgust on moral judgment and another on the effect of private body consciousness on moral judgment, Schnall and colleagues were able to conduct one study that addressed both questions. But including multiple independent variables also allows the researcher to answer questions about whether the effect of one independent variable depends on the level of another. This is referred to as an interaction between the independent variables. Schnall and her colleagues, for example, observed an interaction between disgust and private body consciousness because the effect of disgust depended on whether participants were high or low in private body consciousness. As we will see, interactions are often among the most interesting results in psychological research.

Factorial Designs

By far the most common approach to including multiple independent variables in an experiment is the factorial design. In a factorial design , each level of one independent variable (which can also be called a factor ) is combined with each level of the others to produce all possible combinations. Each combination, then, becomes a condition in the experiment. Imagine, for example, an experiment on the effect of cell phone use (yes vs. no) and time of day (day vs. night) on driving ability. This is shown in the factorial design table in Figure 8.2 “Factorial Design Table Representing a 2 × 2 Factorial Design” . The columns of the table represent cell phone use, and the rows represent time of day. The four cells of the table represent the four possible combinations or conditions: using a cell phone during the day, not using a cell phone during the day, using a cell phone at night, and not using a cell phone at night. This particular design is a 2 × 2 (read “two-by-two”) factorial design because it combines two variables, each of which has two levels. If one of the independent variables had a third level (e.g., using a handheld cell phone, using a hands-free cell phone, and not using a cell phone), then it would be a 3 × 2 factorial design, and there would be six distinct conditions. Notice that the number of possible conditions is the product of the numbers of levels. A 2 × 2 factorial design has four conditions, a 3 × 2 factorial design has six conditions, a 4 × 5 factorial design would have 20 conditions, and so on.

Figure 8.2 Factorial Design Table Representing a 2 × 2 Factorial Design

Factorial Design Table Representing a 2x2 Factorial Design

In principle, factorial designs can include any number of independent variables with any number of levels. For example, an experiment could include the type of psychotherapy (cognitive vs. behavioral), the length of the psychotherapy (2 weeks vs. 2 months), and the sex of the psychotherapist (female vs. male). This would be a 2 × 2 × 2 factorial design and would have eight conditions. Figure 8.3 “Factorial Design Table Representing a 2 × 2 × 2 Factorial Design” shows one way to represent this design. In practice, it is unusual for there to be more than three independent variables with more than two or three levels each because the number of conditions can quickly become unmanageable. For example, adding a fourth independent variable with three levels (e.g., therapist experience: low vs. medium vs. high) to the current example would make it a 2 × 2 × 2 × 3 factorial design with 24 distinct conditions. In the rest of this section, we will focus on designs with two independent variables. The general principles discussed here extend in a straightforward way to more complex factorial designs.

Figure 8.3 Factorial Design Table Representing a 2 × 2 × 2 Factorial Design

Factorial Design Table Representing a 2x2x2 Factorial Design

Assigning Participants to Conditions

Recall that in a simple between-subjects design, each participant is tested in only one condition. In a simple within-subjects design, each participant is tested in all conditions. In a factorial experiment, the decision to take the between-subjects or within-subjects approach must be made separately for each independent variable. In a between-subjects factorial design , all of the independent variables are manipulated between subjects. For example, all participants could be tested either while using a cell phone or while not using a cell phone and either during the day or during the night. This would mean that each participant was tested in one and only one condition. In a within-subjects factorial design , all of the independent variables are manipulated within subjects. All participants could be tested both while using a cell phone and while not using a cell phone and both during the day and during the night. This would mean that each participant was tested in all conditions. The advantages and disadvantages of these two approaches are the same as those discussed in Chapter 6 “Experimental Research” . The between-subjects design is conceptually simpler, avoids carryover effects, and minimizes the time and effort of each participant. The within-subjects design is more efficient for the researcher and controls extraneous participant variables.

It is also possible to manipulate one independent variable between subjects and another within subjects. This is called a mixed factorial design . For example, a researcher might choose to treat cell phone use as a within-subjects factor by testing the same participants both while using a cell phone and while not using a cell phone (while counterbalancing the order of these two conditions). But he or she might choose to treat time of day as a between-subjects factor by testing each participant either during the day or during the night (perhaps because this only requires them to come in for testing once). Thus each participant in this mixed design would be tested in two of the four conditions.

Regardless of whether the design is between subjects, within subjects, or mixed, the actual assignment of participants to conditions or orders of conditions is typically done randomly.

Nonmanipulated Independent Variables

In many factorial designs, one of the independent variables is a nonmanipulated independent variable . The researcher measures it but does not manipulate it. The study by Schnall and colleagues is a good example. One independent variable was disgust, which the researchers manipulated by testing participants in a clean room or a messy room. The other was private body consciousness, which the researchers simply measured. Another example is a study by Halle Brown and colleagues in which participants were exposed to several words that they were later asked to recall (Brown, Kosslyn, Delamater, Fama, & Barsky, 1999). The manipulated independent variable was the type of word. Some were negative health-related words (e.g., tumor , coronary ), and others were not health related (e.g., election , geometry ). The nonmanipulated independent variable was whether participants were high or low in hypochondriasis (excessive concern with ordinary bodily symptoms). The result of this study was that the participants high in hypochondriasis were better than those low in hypochondriasis at recalling the health-related words, but they were no better at recalling the non-health-related words.

Such studies are extremely common, and there are several points worth making about them. First, nonmanipulated independent variables are usually participant variables (private body consciousness, hypochondriasis, self-esteem, and so on), and as such they are by definition between-subjects factors. For example, people are either low in hypochondriasis or high in hypochondriasis; they cannot be tested in both of these conditions. Second, such studies are generally considered to be experiments as long as at least one independent variable is manipulated, regardless of how many nonmanipulated independent variables are included. Third, it is important to remember that causal conclusions can only be drawn about the manipulated independent variable. For example, Schnall and her colleagues were justified in concluding that disgust affected the harshness of their participants’ moral judgments because they manipulated that variable and randomly assigned participants to the clean or messy room. But they would not have been justified in concluding that participants’ private body consciousness affected the harshness of their participants’ moral judgments because they did not manipulate that variable. It could be, for example, that having a strict moral code and a heightened awareness of one’s body are both caused by some third variable (e.g., neuroticism). Thus it is important to be aware of which variables in a study are manipulated and which are not.

Graphing the Results of Factorial Experiments

The results of factorial experiments with two independent variables can be graphed by representing one independent variable on the x- axis and representing the other by using different kinds of bars or lines. (The y- axis is always reserved for the dependent variable.) Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” shows results for two hypothetical factorial experiments. The top panel shows the results of a 2 × 2 design. Time of day (day vs. night) is represented by different locations on the x- axis, and cell phone use (no vs. yes) is represented by different-colored bars. (It would also be possible to represent cell phone use on the x- axis and time of day as different-colored bars. The choice comes down to which way seems to communicate the results most clearly.) The bottom panel of Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” shows the results of a 4 × 2 design in which one of the variables is quantitative. This variable, psychotherapy length, is represented along the x- axis, and the other variable (psychotherapy type) is represented by differently formatted lines. This is a line graph rather than a bar graph because the variable on the x- axis is quantitative with a small number of distinct levels.

Figure 8.4 Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables

Two Ways to PLot the Results of a Factorial Experiment With Two Independent Variables

Main Effects and Interactions

In factorial designs, there are two kinds of results that are of interest: main effects and interaction effects (which are also called just “interactions”). A main effect is the statistical relationship between one independent variable and a dependent variable—averaging across the levels of the other independent variable. Thus there is one main effect to consider for each independent variable in the study. The top panel of Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” shows a main effect of cell phone use because driving performance was better, on average, when participants were not using cell phones than when they were. The blue bars are, on average, higher than the red bars. It also shows a main effect of time of day because driving performance was better during the day than during the night—both when participants were using cell phones and when they were not. Main effects are independent of each other in the sense that whether or not there is a main effect of one independent variable says nothing about whether or not there is a main effect of the other. The bottom panel of Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” , for example, shows a clear main effect of psychotherapy length. The longer the psychotherapy, the better it worked. But it also shows no overall advantage of one type of psychotherapy over the other.

There is an interaction effect (or just “interaction”) when the effect of one independent variable depends on the level of another. Although this might seem complicated, you have an intuitive understanding of interactions already. It probably would not surprise you, for example, to hear that the effect of receiving psychotherapy is stronger among people who are highly motivated to change than among people who are not motivated to change. This is an interaction because the effect of one independent variable (whether or not one receives psychotherapy) depends on the level of another (motivation to change). Schnall and her colleagues also demonstrated an interaction because the effect of whether the room was clean or messy on participants’ moral judgments depended on whether the participants were low or high in private body consciousness. If they were high in private body consciousness, then those in the messy room made harsher judgments. If they were low in private body consciousness, then whether the room was clean or messy did not matter.

The effect of one independent variable can depend on the level of the other in different ways. This is shown in Figure 8.5 “Bar Graphs Showing Three Types of Interactions” . In the top panel, one independent variable has an effect at one level of the second independent variable but no effect at the others. (This is much like the study of Schnall and her colleagues where there was an effect of disgust for those high in private body consciousness but not for those low in private body consciousness.) In the middle panel, one independent variable has a stronger effect at one level of the second independent variable than at the other level. This is like the hypothetical driving example where there was a stronger effect of using a cell phone at night than during the day. In the bottom panel, one independent variable again has an effect at both levels of the second independent variable, but the effects are in opposite directions. Figure 8.5 “Bar Graphs Showing Three Types of Interactions” shows the strongest form of this kind of interaction, called a crossover interaction . One example of a crossover interaction comes from a study by Kathy Gilliland on the effect of caffeine on the verbal test scores of introverts and extroverts (Gilliland, 1980). Introverts perform better than extroverts when they have not ingested any caffeine. But extroverts perform better than introverts when they have ingested 4 mg of caffeine per kilogram of body weight. Figure 8.6 “Line Graphs Showing Three Types of Interactions” shows examples of these same kinds of interactions when one of the independent variables is quantitative and the results are plotted in a line graph. Note that in a crossover interaction, the two lines literally “cross over” each other.

Figure 8.5 Bar Graphs Showing Three Types of Interactions

Bar Graphs Showing Three Types of Interactions

In the top panel, one independent variable has an effect at one level of the second independent variable but not at the other. In the middle panel, one independent variable has a stronger effect at one level of the second independent variable than at the other. In the bottom panel, one independent variable has the opposite effect at one level of the second independent variable than at the other.

Figure 8.6 Line Graphs Showing Three Types of Interactions

Line Graphs Showing Three Types of Interactions

In many studies, the primary research question is about an interaction. The study by Brown and her colleagues was inspired by the idea that people with hypochondriasis are especially attentive to any negative health-related information. This led to the hypothesis that people high in hypochondriasis would recall negative health-related words more accurately than people low in hypochondriasis but recall non-health-related words about the same as people low in hypochondriasis. And of course this is exactly what happened in this study.

Key Takeaways

  • Researchers often include multiple independent variables in their experiments. The most common approach is the factorial design, in which each level of one independent variable is combined with each level of the others to create all possible conditions.
  • In a factorial design, the main effect of an independent variable is its overall effect averaged across all other independent variables. There is one main effect for each independent variable.
  • There is an interaction between two independent variables when the effect of one depends on the level of the other. Some of the most interesting research questions and results in psychology are specifically about interactions.
  • Practice: Return to the five article titles presented at the beginning of this section. For each one, identify the independent variables and the dependent variable.
  • Practice: Create a factorial design table for an experiment on the effects of room temperature and noise level on performance on the SAT. Be sure to indicate whether each independent variable will be manipulated between subjects or within subjects and explain why.

Brown, H. D., Kosslyn, S. M., Delamater, B., Fama, A., & Barsky, A. J. (1999). Perceptual and memory biases for health-related information in hypochondriacal individuals. Journal of Psychosomatic Research , 47 , 67–78.

Gilliland, K. (1980). The interactive effect of introversion-extroversion with caffeine induced arousal on verbal performance. Journal of Research in Personality , 14 , 482–492.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is Qualitative Research? | Methods & Examples

What Is Qualitative Research? | Methods & Examples

Published on June 19, 2020 by Pritha Bhandari . Revised on June 22, 2023.

Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research.

Qualitative research is the opposite of quantitative research , which involves collecting and analyzing numerical data for statistical analysis.

Qualitative research is commonly used in the humanities and social sciences, in subjects such as anthropology, sociology, education, health sciences, history, etc.

  • How does social media shape body image in teenagers?
  • How do children and adults interpret healthy eating in the UK?
  • What factors influence employee retention in a large organization?
  • How is anxiety experienced around the world?
  • How can teachers integrate social issues into science curriculums?

Table of contents

Approaches to qualitative research, qualitative research methods, qualitative data analysis, advantages of qualitative research, disadvantages of qualitative research, other interesting articles, frequently asked questions about qualitative research.

Qualitative research is used to understand how people experience the world. While there are many approaches to qualitative research, they tend to be flexible and focus on retaining rich meaning when interpreting data.

Common approaches include grounded theory, ethnography , action research , phenomenological research, and narrative research. They share some similarities, but emphasize different aims and perspectives.

Qualitative research approaches
Approach What does it involve?
Grounded theory Researchers collect rich data on a topic of interest and develop theories .
Researchers immerse themselves in groups or organizations to understand their cultures.
Action research Researchers and participants collaboratively link theory to practice to drive social change.
Phenomenological research Researchers investigate a phenomenon or event by describing and interpreting participants’ lived experiences.
Narrative research Researchers examine how stories are told to understand how participants perceive and make sense of their experiences.

Note that qualitative research is at risk for certain research biases including the Hawthorne effect , observer bias , recall bias , and social desirability bias . While not always totally avoidable, awareness of potential biases as you collect and analyze your data can prevent them from impacting your work too much.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

qualitative research independent variables

Each of the research approaches involve using one or more data collection methods . These are some of the most common qualitative methods:

  • Observations: recording what you have seen, heard, or encountered in detailed field notes.
  • Interviews:  personally asking people questions in one-on-one conversations.
  • Focus groups: asking questions and generating discussion among a group of people.
  • Surveys : distributing questionnaires with open-ended questions.
  • Secondary research: collecting existing data in the form of texts, images, audio or video recordings, etc.
  • You take field notes with observations and reflect on your own experiences of the company culture.
  • You distribute open-ended surveys to employees across all the company’s offices by email to find out if the culture varies across locations.
  • You conduct in-depth interviews with employees in your office to learn about their experiences and perspectives in greater detail.

Qualitative researchers often consider themselves “instruments” in research because all observations, interpretations and analyses are filtered through their own personal lens.

For this reason, when writing up your methodology for qualitative research, it’s important to reflect on your approach and to thoroughly explain the choices you made in collecting and analyzing the data.

Qualitative data can take the form of texts, photos, videos and audio. For example, you might be working with interview transcripts, survey responses, fieldnotes, or recordings from natural settings.

Most types of qualitative data analysis share the same five steps:

  • Prepare and organize your data. This may mean transcribing interviews or typing up fieldnotes.
  • Review and explore your data. Examine the data for patterns or repeated ideas that emerge.
  • Develop a data coding system. Based on your initial ideas, establish a set of codes that you can apply to categorize your data.
  • Assign codes to the data. For example, in qualitative survey analysis, this may mean going through each participant’s responses and tagging them with codes in a spreadsheet. As you go through your data, you can create new codes to add to your system if necessary.
  • Identify recurring themes. Link codes together into cohesive, overarching themes.

There are several specific approaches to analyzing qualitative data. Although these methods share similar processes, they emphasize different concepts.

Qualitative data analysis
Approach When to use Example
To describe and categorize common words, phrases, and ideas in qualitative data. A market researcher could perform content analysis to find out what kind of language is used in descriptions of therapeutic apps.
To identify and interpret patterns and themes in qualitative data. A psychologist could apply thematic analysis to travel blogs to explore how tourism shapes self-identity.
To examine the content, structure, and design of texts. A media researcher could use textual analysis to understand how news coverage of celebrities has changed in the past decade.
To study communication and how language is used to achieve effects in specific contexts. A political scientist could use discourse analysis to study how politicians generate trust in election campaigns.

Qualitative research often tries to preserve the voice and perspective of participants and can be adjusted as new research questions arise. Qualitative research is good for:

  • Flexibility

The data collection and analysis process can be adapted as new ideas or patterns emerge. They are not rigidly decided beforehand.

  • Natural settings

Data collection occurs in real-world contexts or in naturalistic ways.

  • Meaningful insights

Detailed descriptions of people’s experiences, feelings and perceptions can be used in designing, testing or improving systems or products.

  • Generation of new ideas

Open-ended responses mean that researchers can uncover novel problems or opportunities that they wouldn’t have thought of otherwise.

Researchers must consider practical and theoretical limitations in analyzing and interpreting their data. Qualitative research suffers from:

  • Unreliability

The real-world setting often makes qualitative research unreliable because of uncontrolled factors that affect the data.

  • Subjectivity

Due to the researcher’s primary role in analyzing and interpreting data, qualitative research cannot be replicated . The researcher decides what is important and what is irrelevant in data analysis, so interpretations of the same data can vary greatly.

  • Limited generalizability

Small samples are often used to gather detailed data about specific contexts. Despite rigorous analysis procedures, it is difficult to draw generalizable conclusions because the data may be biased and unrepresentative of the wider population .

  • Labor-intensive

Although software can be used to manage and record large amounts of text, data analysis often has to be checked or performed manually.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). What Is Qualitative Research? | Methods & Examples. Scribbr. Retrieved July 2, 2024, from https://www.scribbr.com/methodology/qualitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, qualitative vs. quantitative research | differences, examples & methods, how to do thematic analysis | step-by-step guide & examples, what is your plagiarism score.

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

  • Privacy Policy

Research Method

Home » Independent Variable – Definition, Types and Examples

Independent Variable – Definition, Types and Examples

Table of Contents

Independent Variable

Independent Variable

Definition:

Independent variable is a variable that is manipulated or changed by the researcher to observe its effect on the dependent variable. It is also known as the predictor variable or explanatory variable

The independent variable is the presumed cause in an experiment or study, while the dependent variable is the presumed effect or outcome. The relationship between the independent variable and the dependent variable is often analyzed using statistical methods to determine the strength and direction of the relationship.

Types of Independent Variables

Types of Independent Variables are as follows:

Categorical Independent Variables

These variables are categorical or nominal in nature and represent a group or category. Examples of categorical independent variables include gender, ethnicity, marital status, and educational level.

Continuous Independent Variables

These variables are continuous in nature and can take any value on a continuous scale. Examples of continuous independent variables include age, height, weight, temperature, and blood pressure.

Discrete Independent Variables

These variables are discrete in nature and can only take on specific values. Examples of discrete independent variables include the number of siblings, the number of children in a family, and the number of pets owned.

Binary Independent Variables

These variables are dichotomous or binary in nature, meaning they can take on only two values. Examples of binary independent variables include yes or no questions, such as whether a participant is a smoker or non-smoker.

Controlled Independent Variables

These variables are manipulated or controlled by the researcher to observe their effect on the dependent variable. Examples of controlled independent variables include the type of treatment or therapy given, the dosage of a medication, or the amount of exposure to a stimulus.

Independent Variable and dependent variable Analysis Methods

Following analysis methods that can be used to examine the relationship between an independent variable and a dependent variable:

Correlation Analysis

This method is used to determine the strength and direction of the relationship between two continuous variables. Correlation coefficients such as Pearson’s r or Spearman’s rho are used to quantify the strength and direction of the relationship.

ANOVA (Analysis of Variance)

This method is used to compare the means of two or more groups for a continuous dependent variable. ANOVA can be used to test the effect of a categorical independent variable on a continuous dependent variable.

Regression Analysis

This method is used to examine the relationship between a dependent variable and one or more independent variables. Linear regression is a common type of regression analysis that can be used to predict the value of the dependent variable based on the value of one or more independent variables.

Chi-square Test

This method is used to test the association between two categorical variables. It can be used to examine the relationship between a categorical independent variable and a categorical dependent variable.

This method is used to compare the means of two groups for a continuous dependent variable. It can be used to test the effect of a binary independent variable on a continuous dependent variable.

Measuring Scales of Independent Variable

There are four commonly used Measuring Scales of Independent Variables:

  • Nominal Scale : This scale is used for variables that can be categorized but have no inherent order or numerical value. Examples of nominal variables include gender, race, and occupation.
  • Ordinal Scale : This scale is used for variables that can be categorized and have a natural order but no specific numerical value. Examples of ordinal variables include levels of education (e.g., high school, bachelor’s degree, master’s degree), socioeconomic status (e.g., low, middle, high), and Likert scales (e.g., strongly disagree, disagree, neutral, agree, strongly agree).
  • I nterval Scale : This scale is used for variables that have a numerical value and a consistent unit of measurement but no true zero point. Examples of interval variables include temperature in Celsius or Fahrenheit, IQ scores, and time of day.
  • Ratio Scale: This scale is used for variables that have a numerical value, a consistent unit of measurement, and a true zero point. Examples of ratio variables include height, weight, and income.

Independent Variable Examples

Here are some examples of independent variables:

  • In a study examining the effects of a new medication on blood pressure, the independent variable would be the medication itself.
  • In a study comparing the academic performance of male and female students, the independent variable would be gender.
  • In a study investigating the effects of different types of exercise on weight loss, the independent variable would be the type of exercise performed.
  • In a study examining the relationship between age and income, the independent variable would be age.
  • In a study investigating the effects of different types of music on mood, the independent variable would be the type of music played.
  • In a study examining the effects of different teaching strategies on student test scores, the independent variable would be the teaching strategy used.
  • In a study investigating the effects of caffeine on reaction time, the independent variable would be the amount of caffeine consumed.
  • In a study comparing the effects of two different fertilizers on plant growth, the independent variable would be the type of fertilizer used.

Independent variable vs Dependent variable

Independent Variable
The variable that is changed or manipulated in an experiment.The variable that is measured or observed and is affected by the independent variable.
The independent variable is the cause and influences the dependent variable.The dependent variable is the effect and is influenced by the independent variable.
Typically plotted on the x-axis of a graph.Typically plotted on the y-axis of a graph.
Age, gender, treatment type, temperature, time.Blood pressure, heart rate, test scores, reaction time, weight.
The researcher can control the independent variable to observe its effects on the dependent variable.The researcher cannot control the dependent variable but can measure and observe its changes in response to the independent variable.
To determine the effect of the independent variable on the dependent variable.To observe changes in the dependent variable and understand how it is affected by the independent variable.

Applications of Independent Variable

Applications of Independent Variable in different fields are as follows:

  • Scientific experiments : Independent variables are commonly used in scientific experiments to study the cause-and-effect relationships between different variables. By controlling and manipulating the independent variable, scientists can observe how changes in that variable affect the dependent variable.
  • Market research: Independent variables are also used in market research to study consumer behavior. For example, researchers may manipulate the price of a product (independent variable) to see how it affects consumer demand (dependent variable).
  • Psychology: In psychology, independent variables are often used to study the effects of different treatments or therapies on mental health conditions. For example, researchers may manipulate the type of therapy (independent variable) to see how it affects a patient’s symptoms (dependent variable).
  • Education: Independent variables are used in educational research to study the effects of different teaching methods or interventions on student learning outcomes. For example, researchers may manipulate the teaching method (independent variable) to see how it affects student performance on a test (dependent variable).

Purpose of Independent Variable

The purpose of an independent variable is to manipulate or control it in order to observe its effect on the dependent variable. In other words, the independent variable is the variable that is being tested or studied to see if it has an effect on the dependent variable.

The independent variable is often manipulated by the researcher in order to create different experimental conditions. By varying the independent variable, the researcher can observe how the dependent variable changes in response. For example, in a study of the effects of caffeine on memory, the independent variable would be the amount of caffeine consumed, while the dependent variable would be memory performance.

The main purpose of the independent variable is to determine causality. By manipulating the independent variable and observing its effect on the dependent variable, researchers can determine whether there is a causal relationship between the two variables. This is important for understanding how different variables affect each other and for making predictions about how changes in one variable will affect other variables.

When to use Independent Variable

Here are some situations when an independent variable may be used:

  • When studying cause-and-effect relationships: Independent variables are often used in studies that aim to establish causal relationships between variables. By manipulating the independent variable and observing the effect on the dependent variable, researchers can determine whether there is a cause-and-effect relationship between the two variables.
  • When comparing groups or conditions: Independent variables can also be used to compare groups or conditions. For example, a researcher might manipulate an independent variable (such as a treatment or intervention) and observe the effect on a dependent variable (such as a symptom or behavior) in two different groups of participants (such as a treatment group and a control group).
  • When testing hypotheses: Independent variables are used to test hypotheses about how different variables are related. By manipulating the independent variable and observing the effect on the dependent variable, researchers can test whether their hypotheses are supported or not.

Characteristics of Independent Variable

Here are some of the characteristics of independent variables:

  • Manipulation: The independent variable is manipulated by the researcher in order to create different experimental conditions. The researcher changes the level or value of the independent variable to observe how it affects the dependent variable.
  • Control : The independent variable is controlled by the researcher to ensure that it is the only variable that is changing in the experiment. By controlling other variables that might affect the dependent variable, the researcher can isolate the effect of the independent variable on the dependent variable.
  • Categorical or continuous: Independent variables can be either categorical or continuous. Categorical independent variables have distinct categories or levels that are not ordered (e.g., gender, ethnicity), while continuous independent variables are measured on a scale (e.g., age, temperature).
  • Treatment : In some experiments, the independent variable represents a treatment or intervention that is being tested. For example, a researcher might manipulate the independent variable by giving participants a new medication or therapy.
  • Random assignment : In order to control for extraneous variables and ensure that the independent variable is the only variable that is changing, participants are often randomly assigned to different levels of the independent variable. This helps to ensure that any differences between the groups are not due to pre-existing differences between the participants.

Advantages of Independent Variable

Independent variables have several advantages, including:

  • Control : Independent variables allow researchers to control the variables being studied, which helps to establish cause-and-effect relationships. By manipulating the independent variable, researchers can see how changes in that variable affect the dependent variable.
  • Replication : Manipulating independent variables allows researchers to replicate studies to confirm or refute previous findings. By controlling the independent variable, researchers can ensure that any differences in the dependent variable are due to the manipulation of the independent variable, rather than other factors.
  • Predictive Powe r: Independent variables can be used to predict future outcomes. By examining how changes in the independent variable affect the dependent variable, researchers can make predictions about how the dependent variable will respond in the future.
  • Precision : Independent variables can help to increase the precision of a study by allowing researchers to control for extraneous variables that might otherwise confound the results. This can lead to more accurate and reliable findings.
  • Generalizability : Independent variables can help to increase the generalizability of a study by allowing researchers to manipulate variables in a way that reflects real-world conditions. This can help to ensure that findings are applicable to a wider range of situations and contexts.

Disadvantages of Independent Variable

Independent variables also have several disadvantages, including:

  • Artificiality : In some cases, manipulating the independent variable in a study may create an artificial environment that does not reflect real-world conditions. This can limit the generalizability of the findings.
  • Ethical concerns: Manipulating independent variables in some studies may raise ethical concerns, such as when human participants are subjected to potentially harmful or uncomfortable conditions.
  • Limitations in measuring variables: Some variables may be difficult or impossible to manipulate in a study. For example, it may be difficult to manipulate someone’s age or gender, which can limit the researcher’s ability to study the effects of these variables.
  • Complexity : Some variables may be very complex, making it difficult to determine which variables are independent and which are dependent. This can make it challenging to design a study that effectively examines the relationship between variables.
  • Extraneous variables : Even when researchers manipulate the independent variable, other variables may still affect the results. These extraneous variables can confound the results, making it difficult to draw clear conclusions about the relationship between the independent and dependent variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Extraneous Variable

Extraneous Variable – Types, Control and Examples

Variables in Research

Variables in Research – Definition, Types and...

Ordinal Variable

Ordinal Variable – Definition, Purpose and...

Interval Variable

Interval Variable – Definition, Purpose and...

Attribute

Attribute – Meanings, Definition and Examples

Dichotomous Variable

Dichotomous Variable – Definition Types and...

  • Submission Guidelines

qualitative and quantitative header

qualitative and quantitative header

Learning Objective

Differentiate between qualitative and quantitative approaches.

Hong is a physical therapist who teaches injury assessment classes at the University of Utah. With the recent change to online for the remainder of the semester, Hong is interested in the impact on students’ skills acquisition for injury assessment. He wants to utilize both quantitative and qualitative approaches—he plans to compare previous student test scores to current student test scores. He also plans to interview current students about their experiences practicing injury assessment skills virtually. What specific study design methods will Hong use?

Making sense of the evidence

hen conducting a literature search and reviewing research articles, it is important to have a general understanding of the types of research and data you anticipate from different types of studies.

In this article, we review two broad categories of study methods, quantitative and qualitative, and discuss some of their subtypes, or designs, and the type of data that they generate.

Quantitative vs. qualitative approaches

Objective and measurable Subjective and structured
Gathering data in organized, objective ways to generalize findings to other persons or populations. When inquiry centers around life experiences or meaning. Explores the complexity, depth, and richness of a particular situation.

Quantitative is measurable. It is often associated with a more traditional scientific method of gathering data in an organized, objective manner so that findings can be generalized to other persons or populations. Quantitative designs are based on probabilities or likelihood—it utilizes ‘p’ values, power analysis, and other scientific methods to ensure the rigor and reproducibility of the results to other populations. Quantitative designs can be experimental, quasi-experimental, descriptive, or correlational.

Qualitative is usually more subjective , although like quantitative research, it also uses a systematic approach. Qualitative research is generally preferred when the clinical question centers around life experiences or meaning. Qualitative research explores the complexity, depth, and richness of a particular situation from the perspective of the informants—referring to the person or persons providing the information. This may be the patient, the patient’s caregivers, the patient’s family members, etc. The information may also come from the investigator’s or researcher’s observations. At the heart of qualitative research is the belief that reality is based on perceptions and can be different for each person, often changing over time.

Study design differences

– cause and effect (if A, then B) – also examines cause, used when not all variables can be controlled – examine characteristics of a particular situation or group – examine relationships between two or more variables – examines the lived experience within a particular condition or situation – examine the culture of a group of people – using a research problem to discover and develop a theory

Quantitative design methods

Quantitative designs typically fall into four categories: experimental, quasi-experimental, descriptive, or correlational. Let’s talk about these different types. But before we begin, we need to briefly review the difference between independent and dependent variables.

The independent variable is the variable that is being manipulated, or the one that varies. It is sometimes called the ‘predictor’ or ‘treatment’ variable.

The dependent variable is the outcome (or response) variable. Changes in the dependent variables are presumed to be caused or influenced by the independent variable.

Experimental

In experimental designs, there are often treatment groups and control groups. This study design looks for cause and effect (if A, then B), so it requires having control over at least one of the independent, or treatment variables. Experimental design administers the treatment to some of the subjects (called the ‘experimental group’) and not to others (called the ‘control group’). Subjects are randomly assigned—meaning that they would have an equal chance of being assigned to the control group or the experimental group. This is the strongest design for testing cause and effect relationships because randomization reduces bias. In fact, most researchers believe that a randomized controlled trail is the only kind of research study where we can infer cause (if A, then B). The difficulty with a randomized controlled trial is that the results may not be generalizable in all circumstances with all patient populations, so as with any research study, you need to consider the application of the findings to your patients in your setting. 

Quasi-experimental

Quasi-Experimental studies also seek to identify a cause and effect (causal) relationship, although they are less powerful than experimental designs. This is because they lack one or more characteristics of a true experiment. For instance, they may not include random assignment or they may not have a control group. As is often the case in the ‘real world’, clinical care variables often cannot be controlled due to ethical, practical, or fiscal concerns. So, the quasi experimental approach is utilized when a randomized controlled trial is not possible. For example, if it was found that the new treatment stopped disease progression, it would no longer be ethical to withhold it from others by establishing a control group.

Descriptive

Descriptive studies give us an accurate account of the characteristics of a particular situation or group. They are often used to determine how often something occurs, the likelihood of something occurring, or to provide a way to categorize information. For example, let’s say we wanted to look at the visiting policy in the ICU and describe how implementing an open-visiting policy affected nurse satisfaction. We could use a research tool, such as a Likert scale (5 = very satisfied and 1 = very dissatisfied), to help us gain an understanding of how satisfied nurses are as a group with this policy.

Correlational

Correlational research involves the study of the relationship between two or more variables. The primary purpose is to explain the nature of the relationship, not to determine the cause and effect. For example, if you wanted to examine whether first-time moms who have an elective induction are more likely to have a cesarean birth than first-time moms who go into labor naturally, the independent variables would be ‘elective induction’ and ‘go into labor naturally’ (because they are the variables that ‘vary’) and the outcome variable is ‘cesarean section.’ Even if you find a strong relationship between elective inductions and an increased likelihood of cesarean birth, you cannot state that elective inductions ‘cause’ cesarean births because we have no control over the variables. We can only report an increased likelihood.   

Qualitative design methods

Qualitative methods delve deeply into experiences, social processes, and subcultures. Qualitative study generally falls under three types of designs: phenomenology, ethnography and grounded theory.

Phenomenology

In this approach, we want to understand and describe the lived experience or meaning of persons with a particular condition or situation. For example, phenomenological questions might ask “What is it like for an adolescent to have a younger sibling with a terminal illness?” or “What is the lived experience of caring for an older house-bound dependent parent?”

Ethnography

Ethnographic studies focus on the culture of a group of people. The assumption behind ethnographies is that groups of individuals evolve into a kind of ‘culture’ that guides the way members of that culture or group view the world. In this kind of study, the research focuses on participant observation, where the researcher becomes an active participant in that culture to understand its experiences. For example, nursing could be considered a professional culture, and the unit of a hospital can be viewed as a subculture. One example specific to nursing culture was a study done in 2006 by Deitrick and colleagues . They used ethnographic methods to examine problems related to answering patient call lights on one medical surgical inpatient unit. The single nursing unit was the ‘culture’ under study.

Grounded theory

Grounded theory research begins with a general research problem, selects persons most likely to clarify the initial understanding of the question, and uses a variety of techniques (interviewing, observation, document review to name a few) to discover and develop a theory. For example, one nurse researcher used a grounded theory approach to explain how African American women from different socioeconomic backgrounds make decisions about mammography screening. Because African American women historically have fewer mammograms (and therefore lower survival rates for later stage detection), understanding their decision-making process may help the provider support more effective health promotion efforts. 

Being able to identify the differences between qualitative and quantitative research and becoming familiar with the subtypes of each can make a literature search a little less daunting.

Take the quiz

This article originally appeared July 2, 2020. It was updated to reflect current practice on March 21, 2021.

Barbara Wilson

Mary-jean (gigi) austria, tallie casucci.

Performing a rapid critical appraisal helps evaluate a study for its worth by ensuring validity, meaningful data, and significance to the patient. Contributors Barb Wilson, Mary Jean Austria, and Tallie Casucci share a checklist of questions to complete a rapid critical appraisal efficiently and effectively.

Relationship building isn’t typically the focus of medical training but is a necessary skill for truly excellent clinicians. Deirdre, Joni, Jared and colleagues developed a model to integrate relationship management skills into medical training, helping create a more well-rounded, complete clinician.

Medical students Rachel Tsolinas and Sam Wilkinson, along with SOM professor Kathryn Moore, share a practical tool all health care professionals can use to broaden our understanding of how culture influences decisions and events.

Subscribe to our newsletter

Receive the latest insights in health care impact, improvement, leadership, resilience, and more..

qualitative research independent variables

Contact the Accelerate Team

50 North Medical Drive   |   Salt Lake City, Utah 84132   |   801-587-2157

qualitative research independent variables

Qualitative and Quantitative Research: Glossary of Key Terms

This glossary provides definitions of many of the terms used in the guides to conducting qualitative and quantitative research. The definitions were developed by members of the research methods seminar (E600) taught by Mike Palmquist in the 1990s and 2000s.

Members of the Research Methods Seminar (E600) taught by Mike Palmquist in the 1990s and 2000s. (1994-2022). Glossary of Key Terms. Writing@CSU . Colorado State University. https://writing.colostate.edu/guides/guide.cfm?guideid=90

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.38(37); 2023 Sep 18
  • PMC10506897

Logo of jkms

Conducting and Writing Quantitative and Qualitative Research

Edward barroga.

1 Department of Medical Education, Showa University School of Medicine, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

Atsuko Furuta

Makiko arima, shizuma tsuchiya, chikako kawahara, yusuke takamiya.

Comprehensive knowledge of quantitative and qualitative research systematizes scholarly research and enhances the quality of research output. Scientific researchers must be familiar with them and skilled to conduct their investigation within the frames of their chosen research type. When conducting quantitative research, scientific researchers should describe an existing theory, generate a hypothesis from the theory, test their hypothesis in novel research, and re-evaluate the theory. Thereafter, they should take a deductive approach in writing the testing of the established theory based on experiments. When conducting qualitative research, scientific researchers raise a question, answer the question by performing a novel study, and propose a new theory to clarify and interpret the obtained results. After which, they should take an inductive approach to writing the formulation of concepts based on collected data. When scientific researchers combine the whole spectrum of inductive and deductive research approaches using both quantitative and qualitative research methodologies, they apply mixed-method research. Familiarity and proficiency with these research aspects facilitate the construction of novel hypotheses, development of theories, or refinement of concepts.

Graphical Abstract

An external file that holds a picture, illustration, etc.
Object name is jkms-38-e291-abf001.jpg

INTRODUCTION

Novel research studies are conceptualized by scientific researchers first by asking excellent research questions and developing hypotheses, then answering these questions by testing their hypotheses in ethical research. 1 , 2 , 3 Before they conduct novel research studies, scientific researchers must possess considerable knowledge of both quantitative and qualitative research. 2

In quantitative research, researchers describe existing theories, generate and test a hypothesis in novel research, and re-evaluate existing theories deductively based on their experimental results. 1 , 4 , 5 In qualitative research, scientific researchers raise and answer research questions by performing a novel study, then propose new theories by clarifying their results inductively. 1 , 6

RATIONALE OF THIS ARTICLE

When researchers have a limited knowledge of both research types and how to conduct them, this can result in substandard investigation. Researchers must be familiar with both types of research and skilled to conduct their investigations within the frames of their chosen type of research. Thus, meticulous care is needed when planning quantitative and qualitative research studies to avoid unethical research and poor outcomes.

Understanding the methodological and writing assumptions 7 , 8 underpinning quantitative and qualitative research, especially by non-Anglophone researchers, is essential for their successful conduct. Scientific researchers, especially in the academe, face pressure to publish in international journals 9 where English is the language of scientific communication. 10 , 11 In particular, non-Anglophone researchers face challenges related to linguistic, stylistic, and discourse differences. 11 , 12 Knowing the assumptions of the different types of research will help clarify research questions and methodologies, easing the challenge and help.

SEARCH FOR RELEVANT ARTICLES

To identify articles relevant to this topic, we adhered to the search strategy recommended by Gasparyan et al. 7 We searched through PubMed, Scopus, Directory of Open Access Journals, and Google Scholar databases using the following keywords: quantitative research, qualitative research, mixed-method research, deductive reasoning, inductive reasoning, study design, descriptive research, correlational research, experimental research, causal-comparative research, quasi-experimental research, historical research, ethnographic research, meta-analysis, narrative research, grounded theory, phenomenology, case study, and field research.

AIMS OF THIS ARTICLE

This article aims to provide a comparative appraisal of qualitative and quantitative research for scientific researchers. At present, there is still a need to define the scope of qualitative research, especially its essential elements. 13 Consensus on the critical appraisal tools to assess the methodological quality of qualitative research remains lacking. 14 Framing and testing research questions can be challenging in qualitative research. 2 In the healthcare system, it is essential that research questions address increasingly complex situations. Therefore, research has to be driven by the kinds of questions asked and the corresponding methodologies to answer these questions. 15 The mixed-method approach also needs to be clarified as this would appear to arise from different philosophical underpinnings. 16

This article also aims to discuss how particular types of research should be conducted and how they should be written in adherence to international standards. In the US, Europe, and other countries, responsible research and innovation was conceptualized and promoted with six key action points: engagement, gender equality, science education, open access, ethics and governance. 17 , 18 International ethics standards in research 19 as well as academic integrity during doctoral trainings are now integral to the research process. 20

POTENTIAL BENEFITS FROM THIS ARTICLE

This article would be beneficial for researchers in further enhancing their understanding of the theoretical, methodological, and writing aspects of qualitative and quantitative research, and their combination.

Moreover, this article reviews the basic features of both research types and overviews the rationale for their conduct. It imparts information on the most common forms of quantitative and qualitative research, and how they are carried out. These aspects would be helpful for selecting the optimal methodology to use for research based on the researcher’s objectives and topic.

This article also provides information on the strengths and weaknesses of quantitative and qualitative research. Such information would help researchers appreciate the roles and applications of both research types and how to gain from each or their combination. As different research questions require different types of research and analyses, this article is anticipated to assist researchers better recognize the questions answered by quantitative and qualitative research.

Finally, this article would help researchers to have a balanced perspective of qualitative and quantitative research without considering one as superior to the other.

TYPES OF RESEARCH

Research can be classified into two general types, quantitative and qualitative. 21 Both types of research entail writing a research question and developing a hypothesis. 22 Quantitative research involves a deductive approach to prove or disprove the hypothesis that was developed, whereas qualitative research involves an inductive approach to create a hypothesis. 23 , 24 , 25 , 26

In quantitative research, the hypothesis is stated before testing. In qualitative research, the hypothesis is developed through inductive reasoning based on the data collected. 27 , 28 For types of data and their analysis, qualitative research usually includes data in the form of words instead of numbers more commonly used in quantitative research. 29

Quantitative research usually includes descriptive, correlational, causal-comparative / quasi-experimental, and experimental research. 21 On the other hand, qualitative research usually encompasses historical, ethnographic, meta-analysis, narrative, grounded theory, phenomenology, case study, and field research. 23 , 25 , 28 , 30 A summary of the features, writing approach, and examples of published articles for each type of qualitative and quantitative research is shown in Table 1 . 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43

ResearchTypeMethodology featureResearch writing pointersExample of published article
QuantitativeDescriptive researchDescribes status of identified variable to provide systematic information about phenomenonExplain how a situation, sample, or variable was examined or observed as it occurred without investigator interferenceÖstlund AS, Kristofferzon ML, Häggström E, Wadensten B. Primary care nurses’ performance in motivational interviewing: a quantitative descriptive study. 2015;16(1):89.
Correlational researchDetermines and interprets extent of relationship between two or more variables using statistical dataDescribe the establishment of reliability and validity, converging evidence, relationships, and predictions based on statistical dataDíaz-García O, Herranz Aguayo I, Fernández de Castro P, Ramos JL. Lifestyles of Spanish elders from supervened SARS-CoV-2 variant onwards: A correlational research on life satisfaction and social-relational praxes. 2022;13:948745.
Causal-comparative/Quasi-experimental researchEstablishes cause-effect relationships among variablesWrite about comparisons of the identified control groups exposed to the treatment variable with unexposed groups : Sharma MK, Adhikari R. Effect of school water, sanitation, and hygiene on health status among basic level students in Nepal. Environ Health Insights 2022;16:11786302221095030.
Uses non-randomly assigned groups where it is not logically feasible to conduct a randomized controlled trialProvide clear descriptions of the causes determined after making data analyses and conclusions, and known and unknown variables that could potentially affect the outcome
[The study applies a causal-comparative research design]
: Tuna F, Tunçer B, Can HB, Süt N, Tuna H. Immediate effect of Kinesio taping® on deep cervical flexor endurance: a non-controlled, quasi-experimental pre-post quantitative study. 2022;40(6):528-35.
Experimental researchEstablishes cause-effect relationship among group of variables making up a study using scientific methodDescribe how an independent variable was manipulated to determine its effects on dependent variablesHyun C, Kim K, Lee S, Lee HH, Lee J. Quantitative evaluation of the consciousness level of patients in a vegetative state using virtual reality and an eye-tracking system: a single-case experimental design study. 2022;32(10):2628-45.
Explain the random assignments of subjects to experimental treatments
QualitativeHistorical researchDescribes past events, problems, issues, and factsWrite the research based on historical reportsSilva Lima R, Silva MA, de Andrade LS, Mello MA, Goncalves MF. Construction of professional identity in nursing students: qualitative research from the historical-cultural perspective. 2020;28:e3284.
Ethnographic researchDevelops in-depth analytical descriptions of current systems, processes, and phenomena or understandings of shared beliefs and practices of groups or cultureCompose a detailed report of the interpreted dataGammeltoft TM, Huyền Diệu BT, Kim Dung VT, Đức Anh V, Minh Hiếu L, Thị Ái N. Existential vulnerability: an ethnographic study of everyday lives with diabetes in Vietnam. 2022;29(3):271-88.
Meta-analysisAccumulates experimental and correlational results across independent studies using statistical methodSpecify the topic, follow reporting guidelines, describe the inclusion criteria, identify key variables, explain the systematic search of databases, and detail the data extractionOeljeklaus L, Schmid HL, Kornfeld Z, Hornberg C, Norra C, Zerbe S, et al. Therapeutic landscapes and psychiatric care facilities: a qualitative meta-analysis. 2022;19(3):1490.
Narrative researchStudies an individual and gathers data by collecting stories for constructing a narrative about the individual’s experiences and their meaningsWrite an in-depth narration of events or situations focused on the participantsAnderson H, Stocker R, Russell S, Robinson L, Hanratty B, Robinson L, et al. Identity construction in the very old: a qualitative narrative study. 2022;17(12):e0279098.
Grounded theoryEngages in inductive ground-up or bottom-up process of generating theory from dataWrite the research as a theory and a theoretical model.Amini R, Shahboulaghi FM, Tabrizi KN, Forouzan AS. Social participation among Iranian community-dwelling older adults: a grounded theory study. 2022;11(6):2311-9.
Describe data analysis procedure about theoretical coding for developing hypotheses based on what the participants say
PhenomenologyAttempts to understand subjects’ perspectivesWrite the research report by contextualizing and reporting the subjects’ experiencesGreen G, Sharon C, Gendler Y. The communication challenges and strength of nurses’ intensive corona care during the two first pandemic waves: a qualitative descriptive phenomenology study. 2022;10(5):837.
Case studyAnalyzes collected data by detailed identification of themes and development of narratives written as in-depth study of lessons from caseWrite the report as an in-depth study of possible lessons learned from the caseHorton A, Nugus P, Fortin MC, Landsberg D, Cantarovich M, Sandal S. Health system barriers and facilitators to living donor kidney transplantation: a qualitative case study in British Columbia. 2022;10(2):E348-56.
Field researchDirectly investigates and extensively observes social phenomenon in natural environment without implantation of controls or experimental conditionsDescribe the phenomenon under the natural environment over timeBuus N, Moensted M. Collectively learning to talk about personal concerns in a peer-led youth program: a field study of a community of practice. 2022;30(6):e4425-32.

QUANTITATIVE RESEARCH

Deductive approach.

The deductive approach is used to prove or disprove the hypothesis in quantitative research. 21 , 25 Using this approach, researchers 1) make observations about an unclear or new phenomenon, 2) investigate the current theory surrounding the phenomenon, and 3) hypothesize an explanation for the observations. Afterwards, researchers will 4) predict outcomes based on the hypotheses, 5) formulate a plan to test the prediction, and 6) collect and process the data (or revise the hypothesis if the original hypothesis was false). Finally, researchers will then 7) verify the results, 8) make the final conclusions, and 9) present and disseminate their findings ( Fig. 1A ).

An external file that holds a picture, illustration, etc.
Object name is jkms-38-e291-g001.jpg

Types of quantitative research

The common types of quantitative research include (a) descriptive, (b) correlational, c) experimental research, and (d) causal-comparative/quasi-experimental. 21

Descriptive research is conducted and written by describing the status of an identified variable to provide systematic information about a phenomenon. A hypothesis is developed and tested after data collection, analysis, and synthesis. This type of research attempts to factually present comparisons and interpretations of findings based on analyses of the characteristics, progression, or relationships of a certain phenomenon by manipulating the employed variables or controlling the involved conditions. 44 Here, the researcher examines, observes, and describes a situation, sample, or variable as it occurs without investigator interference. 31 , 45 To be meaningful, the systematic collection of information requires careful selection of study units by precise measurement of individual variables 21 often expressed as ranges, means, frequencies, and/or percentages. 31 , 45 Descriptive statistical analysis using ANOVA, Student’s t -test, or the Pearson coefficient method has been used to analyze descriptive research data. 46

Correlational research is performed by determining and interpreting the extent of a relationship between two or more variables using statistical data. This involves recognizing data trends and patterns without necessarily proving their causes. The researcher studies only the data, relationships, and distributions of variables in a natural setting, but does not manipulate them. 21 , 45 Afterwards, the researcher establishes reliability and validity, provides converging evidence, describes relationship, and makes predictions. 47

Experimental research is usually referred to as true experimentation. The researcher establishes the cause-effect relationship among a group of variables making up a study using the scientific method or process. This type of research attempts to identify the causal relationships between variables through experiments by arbitrarily controlling the conditions or manipulating the variables used. 44 The scientific manuscript would include an explanation of how the independent variable was manipulated to determine its effects on the dependent variables. The write-up would also describe the random assignments of subjects to experimental treatments. 21

Causal-comparative/quasi-experimental research closely resembles true experimentation but is conducted by establishing the cause-effect relationships among variables. It may also be conducted to establish the cause or consequences of differences that already exist between, or among groups of individuals. 48 This type of research compares outcomes between the intervention groups in which participants are not randomized to their respective interventions because of ethics- or feasibility-related reasons. 49 As in true experiments, the researcher identifies and measures the effects of the independent variable on the dependent variable. However, unlike true experiments, the researchers do not manipulate the independent variable.

In quasi-experimental research, naturally formed or pre-existing groups that are not randomly assigned are used, particularly when an ethical, randomized controlled trial is not feasible or logical. 50 The researcher identifies control groups as those which have been exposed to the treatment variable, and then compares these with the unexposed groups. The causes are determined and described after data analysis, after which conclusions are made. The known and unknown variables that could still affect the outcome are also included. 7

QUALITATIVE RESEARCH

Inductive approach.

Qualitative research involves an inductive approach to develop a hypothesis. 21 , 25 Using this approach, researchers answer research questions and develop new theories, but they do not test hypotheses or previous theories. The researcher seldom examines the effectiveness of an intervention, but rather explores the perceptions, actions, and feelings of participants using interviews, content analysis, observations, or focus groups. 25 , 45 , 51

Distinctive features of qualitative research

Qualitative research seeks to elucidate about the lives of people, including their lived experiences, behaviors, attitudes, beliefs, personality characteristics, emotions, and feelings. 27 , 30 It also explores societal, organizational, and cultural issues. 30 This type of research provides a good story mimicking an adventure which results in a “thick” description that puts readers in the research setting. 52

The qualitative research questions are open-ended, evolving, and non-directional. 26 The research design is usually flexible and iterative, commonly employing purposive sampling. The sample size depends on theoretical saturation, and data is collected using in-depth interviews, focus groups, and observations. 27

In various instances, excellent qualitative research may offer insights that quantitative research cannot. Moreover, qualitative research approaches can describe the ‘lived experience’ perspectives of patients, practitioners, and the public. 53 Interestingly, recent developments have looked into the use of technology in shaping qualitative research protocol development, data collection, and analysis phases. 54

Qualitative research employs various techniques, including conversational and discourse analysis, biographies, interviews, case-studies, oral history, surveys, documentary and archival research, audiovisual analysis, and participant observations. 26

Conducting qualitative research

To conduct qualitative research, investigators 1) identify a general research question, 2) choose the main methods, sites, and subjects, and 3) determine methods of data documentation access to subjects. Researchers also 4) decide on the various aspects for collecting data (e.g., questions, behaviors to observe, issues to look for in documents, how much (number of questions, interviews, or observations), 5) clarify researchers’ roles, and 6) evaluate the study’s ethical implications in terms of confidentiality and sensitivity. Afterwards, researchers 7) collect data until saturation, 8) interpret data by identifying concepts and theories, and 9) revise the research question if necessary and form hypotheses. In the final stages of the research, investigators 10) collect and verify data to address revisions, 11) complete the conceptual and theoretical framework to finalize their findings, and 12) present and disseminate findings ( Fig. 1B ).

Types of qualitative research

The different types of qualitative research include (a) historical research, (b) ethnographic research, (c) meta-analysis, (d) narrative research, (e) grounded theory, (f) phenomenology, (g) case study, and (h) field research. 23 , 25 , 28 , 30

Historical research is conducted by describing past events, problems, issues, and facts. The researcher gathers data from written or oral descriptions of past events and attempts to recreate the past without interpreting the events and their influence on the present. 6 Data is collected using documents, interviews, and surveys. 55 The researcher analyzes these data by describing the development of events and writes the research based on historical reports. 2

Ethnographic research is performed by observing everyday life details as they naturally unfold. 2 It can also be conducted by developing in-depth analytical descriptions of current systems, processes, and phenomena or by understanding the shared beliefs and practices of a particular group or culture. 21 The researcher collects extensive narrative non-numerical data based on many variables over an extended period, in a natural setting within a specific context. To do this, the researcher uses interviews, observations, and active participation. These data are analyzed by describing and interpreting them and developing themes. A detailed report of the interpreted data is then provided. 2 The researcher immerses himself/herself into the study population and describes the actions, behaviors, and events from the perspective of someone involved in the population. 23 As examples of its application, ethnographic research has helped to understand a cultural model of family and community nursing during the coronavirus disease 2019 outbreak. 56 It has also been used to observe the organization of people’s environment in relation to cardiovascular disease management in order to clarify people’s real expectations during follow-up consultations, possibly contributing to the development of innovative solutions in care practices. 57

Meta-analysis is carried out by accumulating experimental and correlational results across independent studies using a statistical method. 21 The report is written by specifying the topic and meta-analysis type. In the write-up, reporting guidelines are followed, which include description of inclusion criteria and key variables, explanation of the systematic search of databases, and details of data extraction. Meta-analysis offers in-depth data gathering and analysis to achieve deeper inner reflection and phenomenon examination. 58

Narrative research is performed by collecting stories for constructing a narrative about an individual’s experiences and the meanings attributed to them by the individual. 9 It aims to hear the voice of individuals through their account or experiences. 17 The researcher usually conducts interviews and analyzes data by storytelling, content review, and theme development. The report is written as an in-depth narration of events or situations focused on the participants. 2 , 59 Narrative research weaves together sequential events from one or two individuals to create a “thick” description of a cohesive story or narrative. 23 It facilitates understanding of individuals’ lives based on their own actions and interpretations. 60

Grounded theory is conducted by engaging in an inductive ground-up or bottom-up strategy of generating a theory from data. 24 The researcher incorporates deductive reasoning when using constant comparisons. Patterns are detected in observations and then a working hypothesis is created which directs the progression of inquiry. The researcher collects data using interviews and questionnaires. These data are analyzed by coding the data, categorizing themes, and describing implications. The research is written as a theory and theoretical models. 2 In the write-up, the researcher describes the data analysis procedure (i.e., theoretical coding used) for developing hypotheses based on what the participants say. 61 As an example, a qualitative approach has been used to understand the process of skill development of a nurse preceptor in clinical teaching. 62 A researcher can also develop a theory using the grounded theory approach to explain the phenomena of interest by observing a population. 23

Phenomenology is carried out by attempting to understand the subjects’ perspectives. This approach is pertinent in social work research where empathy and perspective are keys to success. 21 Phenomenology studies an individual’s lived experience in the world. 63 The researcher collects data by interviews, observations, and surveys. 16 These data are analyzed by describing experiences, examining meanings, and developing themes. The researcher writes the report by contextualizing and reporting the subjects’ experience. This research approach describes and explains an event or phenomenon from the perspective of those who have experienced it. 23 Phenomenology understands the participants’ experiences as conditioned by their worldviews. 52 It is suitable for a deeper understanding of non-measurable aspects related to the meanings and senses attributed by individuals’ lived experiences. 60

Case study is conducted by collecting data through interviews, observations, document content examination, and physical inspections. The researcher analyzes the data through a detailed identification of themes and the development of narratives. The report is written as an in-depth study of possible lessons learned from the case. 2

Field research is performed using a group of methodologies for undertaking qualitative inquiries. The researcher goes directly to the social phenomenon being studied and observes it extensively. In the write-up, the researcher describes the phenomenon under the natural environment over time with no implantation of controls or experimental conditions. 45

DIFFERENCES BETWEEN QUANTITATIVE AND QUALITATIVE RESEARCH

Scientific researchers must be aware of the differences between quantitative and qualitative research in terms of their working mechanisms to better understand their specific applications. This knowledge will be of significant benefit to researchers, especially during the planning process, to ensure that the appropriate type of research is undertaken to fulfill the research aims.

In terms of quantitative research data evaluation, four well-established criteria are used: internal validity, external validity, reliability, and objectivity. 23 The respective correlating concepts in qualitative research data evaluation are credibility, transferability, dependability, and confirmability. 30 Regarding write-up, quantitative research papers are usually shorter than their qualitative counterparts, which allows the latter to pursue a deeper understanding and thus producing the so-called “thick” description. 29

Interestingly, a major characteristic of qualitative research is that the research process is reversible and the research methods can be modified. This is in contrast to quantitative research in which hypothesis setting and testing take place unidirectionally. This means that in qualitative research, the research topic and question may change during literature analysis, and that the theoretical and analytical methods could be altered during data collection. 44

Quantitative research focuses on natural, quantitative, and objective phenomena, whereas qualitative research focuses on social, qualitative, and subjective phenomena. 26 Quantitative research answers the questions “what?” and “when?,” whereas qualitative research answers the questions “why?,” “how?,” and “how come?.” 64

Perhaps the most important distinction between quantitative and qualitative research lies in the nature of the data being investigated and analyzed. Quantitative research focuses on statistical, numerical, and quantitative aspects of phenomena, and employ the same data collection and analysis, whereas qualitative research focuses on the humanistic, descriptive, and qualitative aspects of phenomena. 26 , 28

Structured versus unstructured processes

The aims and types of inquiries determine the difference between quantitative and qualitative research. In quantitative research, statistical data and a structured process are usually employed by the researcher. Quantitative research usually suggests quantities (i.e., numbers). 65 On the other hand, researchers typically use opinions, reasons, verbal statements, and an unstructured process in qualitative research. 63 Qualitative research is more related to quality or kind. 65

In quantitative research, the researcher employs a structured process for collecting quantifiable data. Often, a close-ended questionnaire is used wherein the response categories for each question are designed in which values can be assigned and analyzed quantitatively using a common scale. 66 Quantitative research data is processed consecutively from data management, then data analysis, and finally to data interpretation. Data should be free from errors and missing values. In data management, variables are defined and coded. In data analysis, statistics (e.g., descriptive, inferential) as well as central tendency (i.e., mean, median, mode), spread (standard deviation), and parameter estimation (confidence intervals) measures are used. 67

In qualitative research, the researcher uses an unstructured process for collecting data. These non-statistical data may be in the form of statements, stories, or long explanations. Various responses according to respondents may not be easily quantified using a common scale. 66

Composing a qualitative research paper resembles writing a quantitative research paper. Both papers consist of a title, an abstract, an introduction, objectives, methods, findings, and discussion. However, a qualitative research paper is less regimented than a quantitative research paper. 27

Quantitative research as a deductive hypothesis-testing design

Quantitative research can be considered as a hypothesis-testing design as it involves quantification, statistics, and explanations. It flows from theory to data (i.e., deductive), focuses on objective data, and applies theories to address problems. 45 , 68 It collects numerical or statistical data; answers questions such as how many, how often, how much; uses questionnaires, structured interview schedules, or surveys 55 as data collection tools; analyzes quantitative data in terms of percentages, frequencies, statistical comparisons, graphs, and tables showing statistical values; and reports the final findings in the form of statistical information. 66 It uses variable-based models from individual cases and findings are stated in quantified sentences derived by deductive reasoning. 24

In quantitative research, a phenomenon is investigated in terms of the relationship between an independent variable and a dependent variable which are numerically measurable. The research objective is to statistically test whether the hypothesized relationship is true. 68 Here, the researcher studies what others have performed, examines current theories of the phenomenon being investigated, and then tests hypotheses that emerge from those theories. 4

Quantitative hypothesis-testing research has certain limitations. These limitations include (a) problems with selection of meaningful independent and dependent variables, (b) the inability to reflect subjective experiences as variables since variables are usually defined numerically, and (c) the need to state a hypothesis before the investigation starts. 61

Qualitative research as an inductive hypothesis-generating design

Qualitative research can be considered as a hypothesis-generating design since it involves understanding and descriptions in terms of context. It flows from data to theory (i.e., inductive), focuses on observation, and examines what happens in specific situations with the aim of developing new theories based on the situation. 45 , 68 This type of research (a) collects qualitative data (e.g., ideas, statements, reasons, characteristics, qualities), (b) answers questions such as what, why, and how, (c) uses interviews, observations, or focused-group discussions as data collection tools, (d) analyzes data by discovering patterns of changes, causal relationships, or themes in the data; and (e) reports the final findings as descriptive information. 61 Qualitative research favors case-based models from individual characteristics, and findings are stated using context-dependent existential sentences that are justifiable by inductive reasoning. 24

In qualitative research, texts and interviews are analyzed and interpreted to discover meaningful patterns characteristic of a particular phenomenon. 61 Here, the researcher starts with a set of observations and then moves from particular experiences to a more general set of propositions about those experiences. 4

Qualitative hypothesis-generating research involves collecting interview data from study participants regarding a phenomenon of interest, and then using what they say to develop hypotheses. It involves the process of questioning more than obtaining measurements; it generates hypotheses using theoretical coding. 61 When using large interview teams, the key to promoting high-level qualitative research and cohesion in large team methods and successful research outcomes is the balance between autonomy and collaboration. 69

Qualitative data may also include observed behavior, participant observation, media accounts, and cultural artifacts. 61 Focus group interviews are usually conducted, audiotaped or videotaped, and transcribed. Afterwards, the transcript is analyzed by several researchers.

Qualitative research also involves scientific narratives and the analysis and interpretation of textual or numerical data (or both), mostly from conversations and discussions. Such approach uncovers meaningful patterns that describe a particular phenomenon. 2 Thus, qualitative research requires skills in grasping and contextualizing data, as well as communicating data analysis and results in a scientific manner. The reflective process of the inquiry underscores the strengths of a qualitative research approach. 2

Combination of quantitative and qualitative research

When both quantitative and qualitative research methods are used in the same research, mixed-method research is applied. 25 This combination provides a complete view of the research problem and achieves triangulation to corroborate findings, complementarity to clarify results, expansion to extend the study’s breadth, and explanation to elucidate unexpected results. 29

Moreover, quantitative and qualitative findings are integrated to address the weakness of both research methods 29 , 66 and to have a more comprehensive understanding of the phenomenon spectrum. 66

For data analysis in mixed-method research, real non-quantitized qualitative data and quantitative data must both be analyzed. 70 The data obtained from quantitative analysis can be further expanded and deepened by qualitative analysis. 23

In terms of assessment criteria, Hammersley 71 opined that qualitative and quantitative findings should be judged using the same standards of validity and value-relevance. Both approaches can be mutually supportive. 52

Quantitative and qualitative research must be carefully studied and conducted by scientific researchers to avoid unethical research and inadequate outcomes. Quantitative research involves a deductive process wherein a research question is answered with a hypothesis that describes the relationship between independent and dependent variables, and the testing of the hypothesis. This investigation can be aptly termed as hypothesis-testing research involving the analysis of hypothesis-driven experimental studies resulting in a test of significance. Qualitative research involves an inductive process wherein a research question is explored to generate a hypothesis, which then leads to the development of a theory. This investigation can be aptly termed as hypothesis-generating research. When the whole spectrum of inductive and deductive research approaches is combined using both quantitative and qualitative research methodologies, mixed-method research is applied, and this can facilitate the construction of novel hypotheses, development of theories, or refinement of concepts.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Data curation: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Formal analysis: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C.
  • Investigation: Barroga E, Matanguihan GJ, Takamiya Y, Izumi M.
  • Methodology: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Project administration: Barroga E, Matanguihan GJ.
  • Resources: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Supervision: Barroga E.
  • Validation: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Visualization: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Search Menu
  • Sign in through your institution
  • Advance articles
  • Themed Collections
  • Editor's Choice
  • Ilona Kickbusch Award
  • Supplements
  • Author Guidelines
  • Submission Online
  • Open Access Option
  • Self-Archiving Policy
  • About Health Promotion International
  • Editorial Board
  • Advertising and Corporate Services
  • Journals on Oxford Academic
  • Books on Oxford Academic

Health Promotion International

Article Contents

Introduction, challenging some common methodological assumptions about online qualitative surveys, ten practical tips for designing, implementing and analysing online qualitative surveys, acknowledgements, conflict of interest statement, data availability, ethical approval.

  • < Previous

Methodological and practical guidance for designing and conducting online qualitative surveys in public health

ORCID logo

  • Article contents
  • Figures & tables
  • Supplementary Data

Samantha L Thomas, Hannah Pitt, Simone McCarthy, Grace Arnot, Marita Hennessy, Methodological and practical guidance for designing and conducting online qualitative surveys in public health, Health Promotion International , Volume 39, Issue 3, June 2024, daae061, https://doi.org/10.1093/heapro/daae061

  • Permissions Icon Permissions

Online qualitative surveys—those surveys that prioritise qualitative questions and interpretivist values—have rich potential for researchers, particularly in new or emerging areas of public health. However, there is limited discussion about the practical development and methodological implications of such surveys, particularly for public health researchers. This poses challenges for researchers, funders, ethics committees, and peer reviewers in assessing the rigour and robustness of such research, and in deciding the appropriateness of the method for answering different research questions. Drawing and extending on the work of other researchers, as well as our own experiences of conducting online qualitative surveys with young people and adults, we describe the processes associated with developing and implementing online qualitative surveys and writing up online qualitative survey data. We provide practical examples and lessons learned about question development, the importance of rigorous piloting strategies, use of novel techniques to prompt detailed responses from participants, and decisions that are made about data preparation and interpretation. We consider reviewer comments, and some ethical considerations of this type of qualitative research for both participants and researchers. We provide a range of practical strategies to improve trustworthiness in decision-making and data interpretation—including the importance of using theory. Rigorous online qualitative surveys that are grounded in qualitative interpretivist values offer a range of unique benefits for public health researchers, knowledge users, and research participants.

Public health researchers are increasingly using online qualitative surveys.

There is still limited practical and methodological information about the design and implementation of these studies.

Building on Braun and Clarke (2013) , Terry and Braun (2017) and Braun et al . (2021) , we reflect on the methodological and practical lessons we have learnt from our own experience with conducting online qualitative surveys.

We provide guidance and practical examples about the design, implementation and analysis processes.

We argue that online qualitative surveys have rich potential for public health researchers and can be an empowering and engaging way to include diverse populations in qualitative research.

Public health researchers mostly engage in experiential (interpretive) qualitative approaches ( Braun and Clarke, 2013 ). These approaches are ‘centred on the exploration of participants’ subjective experiences and sense-making’ [( Braun and Clarke, 2021c ), p. 39]. Given the strong focus in public health on social justice, power and inequality, researchers proactively use the findings from these qualitative studies—often in collaboration with lived experience experts and others who are impacted by key decisions ( Reed et al ., 2024 )—to advocate for changes to public health policy and practice. There is also an important level of theoretical, methodological and empirical reflection that is part of the public health researcher’s role. For example, as qualitative researchers actively construct and interpret meaning from data, they constantly challenge their assumptions, their way of knowing and their way of ‘doing’ research ( Braun and Clarke, 2024 ). This reflexive practice also includes considering how to develop more inclusive opportunities for people to participate in research and to share their opinions and experiences about the issues that matter to them.

While in-depth interviews and focus groups provide rich and detailed narratives that are central to understanding people’s lives, these forms of data collection may sometimes create practical barriers for both researchers and participants. For example, they can be time consuming, and the power dynamics associated with face-to-face interviews (even in online settings) may make them less accessible for groups that are marginalized or stigmatized ( Edwards and Holland, 2020 ). While some population subgroups (and contexts) may suit (or require) face-to-face qualitative data collection approaches, others may lend themselves to different forms of data collection. Young people, for example, may be keen to be civically involved in research about the issues that matter to them, such as the climate crisis, but they may find it more convenient and comfortable using anonymized digital technologies to do so ( Arnot et al ., 2024b ). As such, part of our reflexive practice as public health researchers must be to explore, and be open to, a range of qualitative methodological approaches that could be more convenient, less intimidating and more engaging for a diverse range of population subgroups. This includes thinking about pragmatic ways of operationalizing qualitative data collection methods. How can we develop methods and engagement strategies that enable us to gain insights from a diverse range of participants about new issues or phenomenon that may pose threats to public health, or look at existing issues in new ways?

Advancements in online data collection methods have also created new options for researchers and participants about how they can be involved in qualitative studies ( Hensen et al ., 2021 ; Chen, 2023 ; Fan et al ., 2024 ). Online qualitative surveys—those surveys that prioritize qualitative values and questions—have rich potential for qualitative researchers. Braun and Clarke (2013 , p. 135) state that qualitative surveys:

…consist of a series of open-ended questions about a topic, and participants type or hand-write their responses to each question. They are self-administered; a researcher-administered qualitative survey would basically be an interview.

While these types of studies are increasingly utilized in public health, researchers have highlighted that there is still relatively limited discussion about the methodological and practical implications of these surveys ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ; Braun et al ., 2021 ). This poses challenges for qualitative public health researchers, funders, ethics committees and peer reviewers in assessing the purpose, rigour and contribution of such research, and in deciding the appropriateness of the method for answering different research questions.

Using examples from online qualitative surveys that we have been involved in, this article discusses a range of methodological and practical lessons learnt from developing, implementing and analysing data from these types of surveys. While we do not claim to have all the answers, we aim to develop and extend on the methodological and practical guidance from Braun and Clarke (2013) , Terry and Braun (2017) and Braun et al . (2021) about the potential for online qualitative surveys. This includes how they can provide a rigorous ‘wide-angle picture’ [( Toerien and Wilkinson, 2004 ), p. 70] from a diverse range of participants about contemporary public health phenomena.

Figure 1 aims to develop and extend on the key points made by Braun and Clarke (2013) , Terry and Braun (2017) and Braun et al . (2021) , which provide the methodological and empirical foundation for our article.

: Methodological considerations in conducting online qualitative surveys.

: Methodological considerations in conducting online qualitative surveys.

Harnessing interpretivist approaches and qualitative values in online qualitative surveys

Online qualitative surveys take many forms. They may be fully qualitative or qualitative dominant—mostly qualitative with some quantitative questions ( Terry and Braun, 2017 ). There are also many different ways of conducting these studies—from using a smaller number of questions that engage specific population groups or knowledge users in understanding detailed experiences  ( Hennessy and O’Donoghue, 2024 ), to a larger number of questions (which may use market research panel providers to recruit participants), that seek broader opinions and attitudes about public health issues ( Marko et al ., 2022a ; McCarthy et al ., 2023 ; Arnot et al ., 2024a ). However, based on our experiences of applying for grant funding and conducting, publishing and presenting these studies, there are still clear misconceptions and uncertainties about these types of  surveys.

One of the concerns raised about online qualitative surveys is how they are situated within broader qualitative values and approaches. This includes whether they can provide empirically innovative, rigorous, rich and theoretically grounded qualitative contributions to knowledge. Our experience is that online qualitative surveys have the most potential when they harness the values of interpretivist ‘Big Q’ approaches to collect information from a diverse range of participants about their experiences, opinions and practices ( Braun et al ., 2021 ). The distinction between positivist (small q) and interpretivist (Big Q) approaches to online qualitative surveys is an important one that requires some initial methodological reflection, particularly in considering the (largely unhelpful) critiques that are made about the rigour and usefulness of these surveys. These critiques often overlook the theoretical underpinnings and qualitative values inherent in such surveys. For example, while there may be a tendency to think of surveys and survey data as atheoretical and descriptive, the use of theory is central in informing online qualitative surveys. For example, Varpio and Ellaway (2021 , p. 343) explain that theory can ‘offer explanations and detailed premises that we can wrestle with, agree with, disagree with, reject and/or accept’. This includes the research design, the approach to data collection and analysis, the interpretation of findings and the conclusions that are drawn. Theory is also important in helping researchers to engage in reflexive practice. The use of theory is essential in progressing online qualitative surveys beyond description and towards in-depth interpretation and explanations—thus facilitating a deeper understanding of the studied phenomenon ( Collins and Stockton, 2018 ; Jamie and Rathbone, 2022 ).

Considering the assumptions that online qualitative surveys can only collect ‘thin’ data

The main assumptions about online qualitative surveys are that they can only collect ‘thin’ textual data, and that they are not flexible enough as a data collection tool for researchers to prompt or ask follow-up questions or to co-create detailed and rich data with participants ( Braun and Clarke, 2013 ; Terry and Clarke, 2017 ; Braun et al ., 2021 ). While we acknowledge that the type of data that is collected in these types of studies is different from those in in-depth interview studies, these surveys may be a more accessible and engaging way to collect rich insights from a diverse range of participants who may otherwise not participate in qualitative research ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ; Braun et al ., 2021 ). Despite this, peer reviewers can question the depth of information that may be collected in these studies. Assumptions about large but ‘thin’ datasets may also mean that researchers, funders and reviewers take (and perhaps expect) a more positivist approach to the design and analytical processes associated with these surveys. For example, the multiple topics and questions, larger sample sizes, and the generally smaller textual responses that online qualitative surveys generate may lead researchers to approach these surveys using more descriptive and atheoretical paradigms. This approach may focus on ‘measuring’ phenomena, using variables, developing thinner analytical description and adding numerical values to the number of responses for different categories or themes.

We have found that assumptions can also impact the review processes associated with these types of studies, receiving critiques from those with both positivist and interpretivist positions. Positivist critiques focus on matters associated with whether the samples are ‘representative’, and the flaws associated with ‘self-selecting convenience’ samples. Critiques from interpretivist colleagues question why such large sample sizes are needed for qualitative studies, seeing surveys as a less rigorous method for gaining rich and meaningful data. For example, we have had reviewers query the scope and depth of the analysis of the data that we present from these studies because they are concerned that the type of data collected lacks depth and does not fully contextualize and explain how participants think about issues. We have also had reviewers request that we should return to the study to collect quantitative data to supplement the qualitative findings of the survey. They also question how ‘representative’ the samples are of population groups. These comments, of course, are not unique to online qualitative surveys but do highlight the difficulty that reviewers may have in placing and situating these types of studies in broader qualitative approaches. With this in mind, we have also found that some reviewers can ask for additional information to justify both the use of online qualitative surveys and why we have chosen these over other qualitative approaches. For example, reviewers have asked us to justify why we have chosen an online qualitative survey and also to explain what we may have missed out on by not conducting in-depth interviews or quantitative or mixed methods surveys instead.

Requests for ‘numbers’ and ‘strategies to minimize bias’

While there is now a general understanding that attributing ‘numbers’ to qualitative data is largely unhelpful and inappropriate ( Chowdhury, 2015 ), there may be expectations that the larger sample sizes associated with online qualitative surveys enable researchers to provide numerical indicators of data. Rather than focusing on the ‘artfully interpretive’ techniques used to analyse and construct themes from the data ( Finlay, 2021 ), we have found that reviewers often ask us to provide numerical information about how many people provided different responses to different questions (or constructed themes), and the number at which ‘saturation’ was determined. Reviewer feedback that we have received about analytical processes has asked for detailed explanations about why attempts to ‘minimize bias’ (including calculations of inter-rater reliability and replicability of data quality) were not used. This demonstrates that peer reviewers may misinterpret the interpretivist values that guide online qualitative surveys, asking for information that is essentially ‘meaningless’ in qualitative paradigms in which researchers’ subjectivity ‘sculpts’ the knowledge that is produced ( Braun and Clarke, 2021a ).

The benefits and limitations of online qualitative surveys for participants, researchers and knowledge users

As well as a ‘wide-angle picture’ [( Toerien and Wilkinson, 2004 ), p. 70] on phenomenon, online qualitative surveys can also: (i) generate both rich and focused data about perceptions and practices, and (ii) have multiple participatory and practical advantages—including helping to overcome barriers to research participation ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ; Braun et al ., 2021 ). For researchers , online qualitative surveys can be a more cost-effective alternative ( Braun and Clarke, 2013 ; Terry and Braun, 2017 )—they are generally more time-efficient and less labour-intensive (particularly if working with market research companies to recruit panels). They are also able to reach a broad range of participants—such as those who are geographically dispersed ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ), and those who may not have internet connectivity that is reliable enough to complete online interviews (a common issue for individuals living in regional or rural settings) ( de Villiers et al ., 2022 ). We are also more able to engage young people in qualitative research through online surveys, perhaps partly due to extensive panel company databases but also because they may be a more accessible and familiar way for young people to participate in research. The ability to quickly investigate new public health threats from the perspective of lived experience can also provide important information for researchers, providing justification for new areas of research focus, including setting agendas and advocating for the need for funding (or policy attention). Collecting data from a diverse range of participants—including from those who hold views that we may see as less ‘politically acceptable’, or inconsistent with our own public health reasoning about health and equity—is important in situating and contextualizing community attitudes towards particular issues.

For participants , benefits include having a degree of autonomy and control over their participation, including completing the survey at a time and place that suits them, and the anonymous nature of participation (that may be helpful for people from highly stigmatized groups). Participants can take time to reflect on their responses or complete the survey, and may feel more able to ‘talk back’ to the researcher about the framing of questions or the purpose of the research ( Braun et al ., 2021 ). We would also add that a benefit of these types of studies is that participants can also drop out of the study easily if the survey does not interest them or meet their expectations—something that we think might be more onerous or uncomfortable for participants in an interview or focus group.

For knowledge users, including advocates, service providers and decision-makers, qualitative research provides an important form of evidence, and the ‘wide-angle picture' [( Toerien and Wilkinson, 2004 ), p. 70] on issues from a diverse range of individuals in a community or population can be a powerful advocacy tool. Online qualitative surveys can also provide rapid insights into how changes to policy and practice may impact population subgroups in different ways.

There are, of course, some limitations associated with online qualitative surveys ( Braun et al ., 2021 ; Marko et al ., 2022b ). For example, there is no ability to engage individuals in a ‘traditional’ conversation or to prompt or probe meaning in the interactive ways that we are familiar with in interview studies. There is less ability to refine the questions that we ask participants in an iterative way throughout a study based on participant responses (particularly when working with market research panel companies). There may also be barriers associated with written literacy, access to digital technologies and stable internet connections ( Braun et al ., 2021 ). They may also not be the most suitable for individuals who have different ways of ‘knowing, being and doing’ qualitative research—including Indigenous populations [( Kennedy et al ., 2022 ), p. 1]. All of these factors should be taken into consideration when deciding whether online qualitative surveys are an appropriate way of collecting data. Finally, while these types of surveys can collect data quickly ( Marko et al ., 2022b ), there can also be additional decision-making processes related to data preparation and inclusion that can be time-consuming.

There are a range of practical considerations that can improve the rigour, trustworthiness and quality of online qualitative survey data. Again, developing and expanding on ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ; Braun et al ., 2021 ), Figure 2 gives an overview of some key practical considerations associated with the design, implementation and analysis of these surveys. We would also note that before starting your survey design, you should be aware that people may use different types of technology to complete the survey, and in different spaces. For example, we cannot assume that people will be sitting in front of a computer or laptop at home or in the office, with people more likely to complete surveys on a mobile phone, perhaps on a train or bus on the way to work or school.

: Top ten practical tips for conducting online qualitative surveys.

: Top ten practical tips for conducting online qualitative surveys.

Survey design

Creating an appropriate and accessible structure

The first step in designing an online qualitative survey is to plan the structure of your survey. This step is important because the structure influences the way that participants interact with and participate through the survey. The survey structure helps to create an ‘environment’ that helps participants to share their perspectives, prompt their views and develop their ideas ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ). Similar to an interview study, the structure of the survey guides participants from one set of questions (and topics) to the next. It is important to consider the ordering of topics to enable participants to complete a survey that has a logical flow, introduces participants to concepts and allows them to develop their depth of responses.

Before participants start the survey, we provide a clear and simple lay language summary of the survey. Because many individuals will be familiar with completing quantitative surveys, we include a welcoming statement and reiterate the qualitative nature of the survey, stating that their answers can be about their own experiences:

Thank you for agreeing to take part in this survey about [topic] . This survey involves writing responses to questions rather than checking boxes.

We then clearly reiterate the purpose of the survey, providing a short description of the topic that we are investigating. We state that we do not seek to collect any data that is identifiable, that we are interested in participants perspectives, that there are no right or wrong answers, and that participants can withdraw from the survey at any time without giving a reason.

Similar to Braun et al . (2021) , we start our surveys with questions about demographic and related characteristics (which we often call ‘ participant/general characteristics ’). These can be discrete choice questions, but can also utilize open text—for example, in relation to gender identity. We have found that there is always a temptation with surveys to ask many questions about the demographic characteristics of participants. However, we caution that too many questions can be intrusive for participants and can take away valuable time from open-text questions, which are the core focus of the survey. We recommend asking participant characteristic and demographic questions that situate and contextualize the sample ( Elliott et al ., 1999 ).

We generally start the open-text sections of these surveys by asking broad introductory questions about the topic. This might include questions such as: ‘Please describe the main reasons you drink alcohol ’, and ‘W hat do you think are the main impacts of climate change on the world? ’ We have found that these types of questions get participants used to responding to open-text questions relevant to the study’s research questions and aims. For each new topic of investigation (which are based on our theoretical concepts and overall study aims and research questions), we provide a short explanation about what we will ask participants. We also use tools and text to signpost participant progress through the survey. This can be a valuable way to avoid high attrition rates where participants exit the survey because they are getting fatigued and are unclear when the survey will end:

Great! We are just over half-way through the survey.

We ask more detailed questions that are more aligned with our theoretical concepts in the middle of the survey. For example, we may start with broad questions about a harmful industry and their products (such as gambling, vaping or alcohol) and then in the middle of the survey ask more detailed questions about the commercial determinants of health and the specific tactics that these industries use (for example, about product design, political tactics, public relations strategies or how these practices may influence health and equity). In relation to these more complex questions, it is particularly important that we reiterate that there are no wrong answers and try to include encouraging text throughout the survey:

There are no right or wrong answers—we are curious to hear your opinions .

We always try to end the survey on a positive. While these types of questions depend on the study, we try to ask questions which enable participants to reflect on what could be done to address or improve an issue. This might include their attitudes about policy, or what they would say to those in positions of power:

What do you think should be done to protect young people from sports betting advertising on social media? If there was one thing that could be done to prevent young people from being exposed to the risks associated with alcohol, cigarettes, vaping, or gambling, what would it be? If you could say one thing to politicians about climate change, what would it be?

Finally, we ask participants if there is anything we have missed or if they have anything else to add, sometimes referred to as a ‘clean-up’ question ( Braun and Clarke, 2013 ). The following provides a few examples of how we have framed these questions in some of our studies:

Is there anything you would like to say about alcohol, cigarettes, vaping, and gambling products that we have not covered? Is there anything we haven’t asked you about the advertising of alcohol to women that you would like us to know?

Considering the impact of the length of the survey on responses

The length of the survey (both the number of questions and the time it takes an individual to complete the survey) is guided by a range of methodological and practical considerations and will vary between studies ( Braun and Clarke, 2013 ). Many factors will influence completion times. We try to give individuals a guide at the start of the survey about how long we think it will take to complete the survey (for example, between 20 and 30 minutes). We highlight that it may take people a little longer or shorter and that people are able to leave their browser open or save the survey and come back to finish it later. For our first few online qualitative surveys, we found that we asked lots of questions because we felt less in control of being able to prompt or ask follow-up questions from participants. However, we have learned that less is more! Asking too many questions may lead to more survey dropouts, and may significantly reduce the textual quality of the information that you receive from participants ( Braun and Clarke, 2013 ; Terry and Clarke, 2017 ). This includes considering how the survey questions might lead to repetition, which may be annoying for participants, leading to responses such as ‘like I’ve already said’ , ‘I’ve already answered that’ or ‘see above’ .

Providing clear and simple guidance

When designing an online qualitative survey, we try to think of ways to make participation in the survey engaging. We do not want individuals to feel that we are ‘mining’ them for data. Rather we want to demonstrate that we are genuinely interested in their perspectives and views. We use a range of mechanisms to do this. Because there is no opportunity to verbally explain or clarify concepts to participants, there is a particular need to ensure that the language used is clear and accessible ( Braun and Clarke, 2013 ; Terry and Clarke, 2017 ). If language or concepts are complex, you are more likely to receive ‘I don’t know’ responses to your questions. We need to remember that participants have a range of written and comprehension skills, and inclusive and accessible language is important. We also never try to assume a level of knowledge about an issue (unless we have specifically asked for participants who are aware and engaged in an issue—such as women who drink alcohol) ( Pitt et al ., 2023 ). This includes avoiding highly technical or academic language and not making assumptions that the individuals completing the survey will understand concepts in the same way that researchers do ( Braun and Clarke, 2013 ). Clearly explaining concepts or using text or images to prompt memories can help to overcome this:

Some big corporations (such as the tobacco, vaping, alcohol, junk food, or gambling industries) sponsor women's sporting teams or clubs, or other events. You might see sponsor logos on sporting uniforms, or at sporting grounds, or sponsoring a concert or arts event.

At all times, we try to centre the language that we use with the population from which we are seeking responses. Advisory groups can be particularly helpful in framing language for different population subgroups. We often use colloquial language, even if it might not be seen as the ‘correct’ academic language or terminology. Where possible, we also try to define theoretical concepts in a clear and easy to understand way. For example, in our study investigating parent perceptions of the impact of harmful products on young people, we tried to clearly define ‘normalization’:

In this section we ask you about some of the perceived health impacts of the above products on young people. We also ask you about the normalisation of these products for young people. When we talk about normalisation, we are thinking about the range of factors that might make these products more acceptable for young people to use. These factors might include individual factors, such as young people being attracted to risk, the influence of family or peers, the accessibility and availability of these products, or the way the industry advertises and promotes these products.

Using innovative approaches to improve accessibility and prompt responses

Online qualitative surveys can include features beyond traditional question-and-answer formats ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ). For example, we often use a range of photo elicitation techniques (using images or videos) to make surveys more accessible to participate in, address different levels of literacy, and overcome the assumption that we are not able to ‘prompt’ responses. These types of visual methodologies enable a collaborative and creative research experience by asking the participant to reflect on aspects of the visual materials, such as symbolic representations, and discuss these in relation to the research objectives ( Glaw et al ., 2017 ). The combination of visual images and clear descriptions helps to provide a focus for responses about different issues, as well as prompting nuanced information such as participant memories and emotions ( Glaw et al ., 2017 ). We use different types of visuals in our studies, such as photographs (including of the public health issues we’re investigating); screenshots from websites and social media posts (including newspaper headlines) and videos (including short videos from social media sites such as TikTok) ( Arnot et al ., 2024b ). For example, when talking about government responses to the climate crisis, we used a photograph of former Australian Prime Minister Scott Morrison holding a piece of coal in the Australian parliament to prompt participants’ thinking about the government’s relationship with fossil fuels and to provide a focal point for their answer. However, we would caution against using any images that may be confronting for participants or deliberately provocative. The purpose of using visuals must always be in the interests of the participants—to clarify, prompt and reflect on concepts. Ethics committees should carefully review the images used in surveys to ensure that they have a clear purpose and are unlikely to cause any discomfort.

Survey implementation

Thinking carefully about your criteria for recruitment

Determining the sample size of online qualitative studies is not an exact science. The sample sizes for recent studies have ranged from n = 46 in a study about pregnancy loss ( Hennessy and O’Donoghue, 2024 ), to n = 511 in a study with young people about the climate crisis ( Arnot et al ., 2023b ). We follow ‘rules of thumb’ [( Braun and Clarke, 2021b ), p. 211] which try to balance the needs of the research and data richness with key practical considerations (such as funding and time constraints), funder expectations, discipline-specific norms and our knowledge and experience of designing and implementing online qualitative surveys. However, we have found that peer reviewers expect much more justification of sample sizes than they do for other types of qualitative research. Robust justification of sample sizes are often needed to prevent any ‘concerns’ that reviewers may raise. Our response to these reviews often reiterates that our focus (as with all qualitative research) is not to produce a ‘generalisable’ or ‘representative’ sample but to recruit participants who will help to provide ‘rich, complex and textured data’ [( Terry and Braun, 2017 ), p. 15] about an issue. Instead of focusing on data saturation, a contested concept which is incongruent with reflexive thematic analysis in particular ( Braun and Clarke, 2021b ), we find it useful to consider information power to determine the sample size for these surveys ( Malterud et al ., 2016 ). Information power prioritizes the adequacy, quality and variability of the data collected over the number of participants.

Recruitment for online qualitative surveys can be influenced by a range of factors. Monetary and time constraints will impact the size and, if using market research company panels, the specificity of participant quotas. Recruitment strategies must be developed to ensure that the data provides enough information to answer the research questions of the study. For our research purposes, we often try to ensure that participants with a range of socio-demographic characteristics are invited to participate in the sample. We set soft quotas for age, gender and geographic location to ensure some diversity. We have found that some population subgroups may also be recruited more easily than others—although this may depend on the topic of the survey. For example, we have found that quotas for women and those living in metropolitan areas may fill more quickly. In these scenarios, the research team must weigh up the timelines associated with recruitment and data collection (e.g. How long do we want to run data collection for? How much of our budget can be spent on achieving a more equally split sample? Are quotas necessary?) versus the purpose and goals of the research (i.e. to generate ideas rather than data representativeness), and the study-specific aims and research questions.

There are, of course, concerns about not being able to ‘see’ the people that are completing these surveys. There is an increasing focus in the academic literature on ‘false’ respondents, particularly in quantitative online surveys ( Levi et al ., 2021 ; Wang et al ., 2023 ). This will be an important ongoing discussion for qualitative researchers, and we do not claim to have the answers for how to overcome these issues. For example, some individuals may say that they meet the inclusion criteria to access the survey, while others may not understand or misinterpret the inclusion criteria. There is also a level of discomfort about who and how we judge who may be a ‘legitimate’ participant or not. However, we can talk practically about some of the strategies that we use to ensure the rigour of data. For example, we find that screening questions can provide a ‘double-check’ in relation to inclusion criteria and can also help with ensuring that there is consistency between the information an individual provides about how they meet the inclusion criteria and subsequent responses. For example, in a recent survey of parents of young people, a participant stated that they were 18 years old and were a parent to a 16-year-old and 15-year-old. Their overall responses were inconsistent with being a parent of children these ages. Similarly, in our gambling studies, people may tick that they have gambled in the last year but then in subsequent questions say they have not gambled at all. This highlights the importance of checking data across all questions, although it should be noted that time and cost constraints associated with comprehensively scanning the data for such responses are not always feasible and can result in overlooking these participants.

Ensuring that there are strategies to create agency and engage participants in the research

One of the benefits of online qualitative surveys compared to traditional quantitative surveys is the scope for participants to explain their answers and to disagree with the research team’s position. An indication that participants are feeling able to do this is when they are asked for any additional comments at the end of the survey. For example, in a survey about women’s attitudes towards alcohol marketing, the following participant concluded the survey by writing: ‘I think you have covered everything. I think that you need to stop shaming women for having fun’. Other participants demonstrate their engagement and interest in the survey by reaffirming the perspectives they have shared throughout the survey. For example, in a study with young people on climate, participants responded at the end that ‘it’s one of the few things I actually care about’ , while another commented on the quality of the survey questions, stating, ‘I think this survey did a great job with probing questions to prompt all the thoughts I have on it’ .

We also think that online qualitative surveys may lead to less social desirability in participants’ responses. Participants seem less wary about communicating less politically correct opinions than they may do in a face-to-face interview. For example, at times, participants communicate attitudes that may not align with public health values (e.g. supporting personal responsibility, anti-nanny state, and neoliberal ideologies of health and wellbeing), that we rarely see communicated to us in in-depth interview or focus group studies. We would argue that these perspectives are valuable for public health researchers because they capture a different community voice that may not otherwise be represented in research. This may show where there is a lack of support for health interventions and policy reforms and may indicate where further awareness-raising needs to occur. These types of responses also contribute to reflexive practice by challenging our assumptions and positions about how we think people should think or feel about responses to particular public health issues. Examples of such responses from our surveys include:

"Like I have already said, if you try to hide it you will only make it more attractive. This nanny-state attitude of the elite drives me crazy. People must be allowed to decide for themselves."

Ethical issues for participants and researchers

Researchers should also be aware that some of the ethical issues associated with online qualitative surveys may be different from those in in-depth interviews—and it is important that these are explained in any ethical consideration of the study. Providing a clear and simply worded Plain Language Statement (in written or video form) is important in establishing informed consent and willingness to participate. While participants are given information about who to contact if they have further questions about the study, this may be an extra step for participants, and they may not feel as able to ask for clarification about the study. Because of this, we try to provide multiple examples of the types of questions that we will ask, as well as providing downloadable support details (for example, for mental health support lines). A positive aspect of surveys is that participants are able to easily ignore recruitment notices to participate in the study. They are also able to stop the survey at any time by exiting out of the browser if they feel discomfort without having to give a reason in person to a researcher.

While the anonymous nature of the survey may be empowering for some participants ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ; Braun et al. , 2021 ), it can also make it difficult for researchers to ascertain if people need any further support after completing the survey. Participants may also fill in surveys with someone else and may be influenced about how they should respond to questions (with the exception of some studies in which people may require assistance from someone to type their responses). Because of the above, some researchers, ethics committees and funders may be more cautious about using these studies for highly sensitive subjects. However, we would argue that the important point is that the studies follow ethical principles and take the lack of direct contact with participants into the ethical considerations of the study. It is also important to ensure that platforms used to collect survey data are trusted and secure. Here, we would argue that universities have an obligation to investigate and, where possible, approve survey providers to ensure that researchers are using platforms that meet rigorous standards for data and privacy.

It is also important to note that there may be responses from participants that may be challenging ( Terry and Braun, 2017 ; Braun and Clarke, 2021 ). Online spaces are rife with trolling due to their anonymous nature, and online surveys are not immune to this behaviour. Naturally, this leads to some silly responses—‘ Deakin University is responsible for all of this ’, but researchers should also be aware that the anonymity of surveys can (although in our experience not often) lead to responses that may cause discomfort for the researchers. For example, when asked if participants had anything else to add to a climate survey ( Arnot et al ., 2024c ), one responded ‘ nope, but you sure asked a lot of dumbass questions’ . Just as with interview-based studies, there must be processes built into the research for debriefing—particularly for students and early career researchers—as well as clear decisions about whether to include or exclude these types of responses when preparing the dataset for analysis and in writing up the results from the survey.

The importance of piloting the survey

Because of the lack of ability to explain and clarify concepts, piloting is particularly important ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ; Braun et al. , 2021 ) to ensure that: (i) the technical aspects of the survey work as intended; (ii) the survey is eliciting quality responses (with limited ‘nonsensical’ responses such as random characters); (iii) the survey responses indicate comprehension of the survey questions; and (vi) there is not a substantial number of people who ‘drop-out’ of the study. Typically, we pilot our survey with 10% of the intended sample size. After piloting, we often change question wording, particularly to address questions that elicit very small text responses, the length of the survey and sometimes refine definitions or language to ensure increased comprehension. Researchers should remember that changes to the survey questions may need to be reviewed by ethics committees before launching the full survey. It is important to build in time for piloting and the revision of the survey to ensure you get this right as once you launch the full survey, there is no going back!

Survey analysis and write-up

Preparing the dataset

Once launching the full survey, the quality of data and types of responses you receive in these types of surveys can vary. There is very limited transparency around how the dataset was prepared (more familiar to some as ‘data cleaning’) in published papers, including the decisions about which (if any) participants (or indeed responses) were excluded from the dataset and why. Nonsensical responses can be common—and can take a range of forms ( Figure 3 ). These can include random numbers or letters, a chunk of text that has been copied and pasted from elsewhere, predictive text or even repeat emojis. In one study, we had a participant quote the script of The Bee Movie in response to questions.

: Visual examples of nonsensical responses in online qualitative surveys.

: Visual examples of nonsensical responses in online qualitative surveys.

Part of our familiarization with the dataset [Phase One in Braun and Clarke’s reflexive approach to thematic analysis ( Braun and Clarke, 2013 ; Braun et al ., 2021 )] includes preparing the dataset for analysis. We use this phase to help make decisions about what to include and exclude from the final dataset. While a row of emojis in the data file can easily be spotted and removed from the dataset, sometimes responses can look robust until you read, become familiar and engage with the data. For example, when asked about what they thought about collective climate action ( Arnot et al ., 2023a , 2024c ), some participants entered random yet related terms such as ‘ plastic ’, or repeated similar phrases across multiple questions:

“ why do we need paper straws ”, “ paper straws are terrible ”, “ papers straws are bad for you ”, “ paper straws are gross .”

Participants can also provide comprehensive answers for the first few questions and then nonsensical responses for the rest, which may also be due to question fatigue [( Braun and Clarke, 2013 ), p. 138]. Therefore, it is important to closely go through each participant’s response to ensure they have attempted to provide bone-fide responses. For example, in one of our young people and climate surveys ( Arnot et al ., 2023a , 2024c ), one participant responded genuinely to the first half of the survey before their quality dropped dramatically:

“I can’t even be bothered to read that question ”, “ why so many questions ”, “ bro too many sections. ”

Some market research panel providers may complete an initial quality screen of data. However, this does not replace the need for the research teams’ own data preparation processes. Researchers should ensure they are checking that responses are coherent—for example, not giving information that contradicts or is not credible. In our more recent studies, we have increasingly seen responses cut and pasted from ChatGPT and other AI tools—providing a new challenge in assessing the quality of responses. If you are seeing these types of responses, it might be an opportunity to think about the style and suitability of the questions being asked. For example, the use of AI tools might suggest that people are finding it difficult to answer questions or may feel that they have to present a ‘correct’ answer. We would also note that because of the volume of data in these surveys, the preparation of data involves multiple members of the team. In many cases, decisions need to be made about participants who may not have provided authentic responses across the survey. The research team should make clear in any paper their decisions about their choices to include or exclude participants from the study. There is a careful balancing act that can require assessing the quality of the participants’ responses across the whole dataset to determine if the overall quality of responses contributes to the research.

Navigating the volume of data and writing up results

Finally, discussions about how to navigate the volume of data that these types of studies produce could be a standalone paper. In general, principles of reflexive practices apply to the analysis of data from these studies. However, as a starting point, here are a few considerations when approaching these datasets.

We would argue that online qualitative surveys lend themselves to some types of analytical approaches over others—for example, reflexive thematic analysis, as compared to grounded theory or interpretive phenomenological analysis (though it can be used with these) ( Braun and Clarke, 2013 ; Terry and Braun, 2017 ).

While initial familiarization, coding and analysis can focus on specific questions and associated responses, it is important to analyse the dataset as a whole (or as clusters associated with particular topics) as participants may provide relevant data to a topic under multiple questions ( Terry and Braun, 2017 ). We initially focus our coding on specific questions or a group of survey questions under a topic of investigation. Once we have developed and constructed preliminary themes from the data associated with these clusters of questions, we then move to looking at responses across the dataset as we review themes further.

Researchers should think carefully about how to manage the data—which may not be available as ‘individual participant transcripts’ but rather as a ‘whole’ dataset in an Excel spreadsheet. Some may prefer qualitative data analysis software (QDAS) to manage and navigate data. However, many of us find that Excel (and particularly the use of labelled Tabs) is useful in grouping data and moving from codes to constructing themes.

As with all rigorous qualitative research, coding and theme development should be guided by the research questions. A clear record of decision-making about analytical choices (and being reflexive about these) should be kept. In any write-up, we would recommend that researchers are clear about which survey questions they used in the analysis [researchers could consider providing a supplementary file of some or all of the survey questions—see, for example Hennessy and O’Donoghue (2024) ].

In writing up the results, researchers should still seek to present a rich description of the data, as demonstrated in the presentation of results in the following papers ( Marko et al ., 2022a , 2022b ; McCarthy et al ., 2023 ; Pitt et al ., 2023 ; Hennessy and O’Donoghue, 2024 ). We have found the use of tables with additional examples of quotes as they relate to themes and subthemes can be a practical way of providing the reader with further examples of the data, particularly when constrained by journal word count limits [see, for example, Table 2 in Arnot et al ., (2024c) ]. However, these tables do not replace a full and complete presentation of the interpretation of the data.

This article offers methodological reflections and practical guidance around online qualitative survey design, implementation and analysis. While online qualitative surveys engage participants in a different type of conversation, they have design features that enable the collection of rich data. We recognize that we have much to learn and that while no survey of ours has been perfect, each new experience with developing and conducting online qualitative surveys has brought new understandings and lessons for future studies. In recognizing that we are learning, we also feel that our experience to date could be valuable for progressing the conversation about the rigour of online qualitative surveys and maximizing this method for public health gains.

H.P. is funded through a VicHealth Postdoctoral Research Fellowship. S.M. is funded through a Deakin University Faculty of Health Deans Postdoctoral Fellowship. G.A. is funded by an Australian Government Research Training Program Scholarship. M.H. is funded through an Irish Research Council Government of Ireland Postdoctoral Fellowship Award [GOIPD/2023/1168].

The pregnancy loss study was funded by the Irish Research Council through its New Foundations Awards and in partnership with the Irish Hospice Foundation as civil society partner [NF/2021/27123063].

S.T. is Editor in Chief of Health Promotion International, H.P. is a member of the Editorial Board of Health Promotion International, S.M. and G.A. are Social Media Coordinators for Health Promotion International, M.H. is an Associate Editor for Health Promotion International. They were not involved in the review process or in any decision-making on the manuscript.

The data used in this study are not available.

Ethical approval for studies conducted by Deakin University include the climate crisis (HEAG-H 55_2020, HEAG-H 162_2021); parents perceptions of harmful industries on young people (HEAG-H 158_2022); women and alcohol marketing (HEAG-H 123_2022) and gambling (HEAG 227_2020).

Arnot , G. , Pitt , H. , McCarthy , S. , Cordedda , C. , Marko , S. and Thomas , S. L. ( 2024a ) Australian youth perspectives on the role of social media in climate action . Australian and New Zealand Journal of Public Health , 48 , 100111 .

Google Scholar

Arnot , G. , Pitt , H. , McCarthy , S. , Cordedda , C. , Marko , S. and Thomas , S. L. ( 2024b ) Australian youth perspectives on the role of social media in climate action . Australian and New Zealand Journal of Public Health , 48 , 100111 .

Arnot , G. , Thomas , S. , Pitt , H. and Warner , E. ( 2023a ) Australian young people’s perceptions of the commercial determinants of the climate crisis . Health Promotion International , 38 , daad058 .

Arnot , G. , Thomas , S. , Pitt , H. and Warner , E. ( 2023b ) ‘It shows we are serious’: young people in Australia discuss climate justice protests as a mechanism for climate change advocacy and action . Australian and New Zealand Journal of Public Health , 47 , 100048 .

Arnot , G. , Thomas , S. , Pitt , H. and Warner , E. ( 2024c ) Australian young people’s perspectives about the political determinants of the climate crisis . Health Promotion Journal of Australia , 35 , 196 – 206 .

Braun , V. and Clarke , V. ( 2013 ) Successful Qualitative Research: A Practical Guide for Beginners . Sage , London .

Google Preview

Braun , V. and Clarke , V. ( 2021a ) One size fits all? What counts as quality practice in (reflexive) thematic analysis ? Qualitative Research in Psychology , 18 , 328 – 352 .

Braun , V. and Clarke , V. ( 2021b ) To saturate or not to saturate? Questioning data saturation as a useful concept for thematic analysis and sample-size rationales . Qualitative Research in Sport, Exercise and Health , 13 , 201 – 216 .

Braun , V. and Clarke , V. ( 2021c ) Can I use TA? Should I use TA? Should I not use TA? Comparing reflexive thematic analysis and other pattern‐based qualitative analytic approaches . Counselling and Psychotherapy Research , 21 , 37 – 47 .

Braun , V. and Clarke , V. ( 2024 ) A critical review of the reporting of reflexive thematic analysis in Health Promotion International . Health Promotion International , 39 , daae049 .

Braun , V. , Clarke , V. , Boulton , E. , Davey , L. and McEvoy , C. ( 2021 ) The online survey as a qualitative research tool . International Journal of Social Research Methodology , 24 , 641 – 654 .

Chen , J. ( 2023 ) Digitally dispersed, remotely engaged: interrogating participation in virtual photovoice . Qualitative Research , 23 , 1535 – 1555 .

Chowdhury , M. F. ( 2015 ) Coding, sorting and sifting of qualitative data analysis: debates and discussion . Quality & Quantity , 49 , 1135 – 1143 .

Collins , C. S. and Stockton , C. M. ( 2018 ) The central role of theory in qualitative research . International Journal of Qualitative Methods , 17 , 160940691879747 .

de Villiers , C. , Farooq , M. B. and Molinari , M. ( 2022 ) Qualitative research interviews using online video technology—challenges and opportunities . Meditari Accountancy Research , 30 , 1764 – 1782 .

Edwards , R. and Holland , J. ( 2020 ) Reviewing challenges and the future for qualitative interviewing . International Journal of Social Research Methodology , 23 , 581 – 592 .

Elliott , R. , Fischer , C. T. and Rennie , D. L. ( 1999 ) Evolving guidelines for publication of qualitative research studies in psychology and related fields . British Journal of Clinical Psychology , 38 , 215 – 229 .

Fan , H. , Li , B. , Pasaribu , T. and Chowdhury , R. ( 2024 ) Online interviews as new methodological normalcy and a space of ethics: an autoethnographic investigation into Covid-19 educational research . Qualitative Inquiry , 30 , 333 – 344 .

Finlay , L. ( 2021 ) Thematic analysis: the ‘good’, the ‘bad’ and the ‘ugly’ . European Journal for Qualitative Research in Psychotherapy , 11 , 103 – 116 .

Glaw , X. , Inder , K. , Kable , A. and Hazelton , M. ( 2017 ) Visual methodologies in qualitative research: autophotography and photo elicitation applied to mental health research . International Journal of Qualitative Methods , 16 , 160940691774821 .

Hennessy , M. and O’Donoghue , K. ( 2024 ) Bridging the gap between pregnancy loss research and policy and practice: insights from a qualitative survey with knowledge users . Health Research Policy and Systems , 22 , 15 .

Hensen , B. , Mackworth-Young , C. R. S. , Simwinga , M. , Abdelmagid , N. , Banda , J. , Mavodza , C. et al. . ( 2021 ) Remote data collection for public health research in a COVID-19 era: ethical implications, challenges and opportunities . Health Policy and Planning , 36 , 360 – 368 .

Jamie , K. and Rathbone , A. P. ( 2022 ) Using theory and reflexivity to preserve methodological rigour of data collection in qualitative research . Research Methods in Medicine & Health Sciences , 3 , 11 – 21 .

Kennedy , M. , Maddox , R. , Booth , K. , Maidment , S. , Chamberlain , C. and Bessarab , D. ( 2022 ) Decolonising qualitative research with respectful, reciprocal, and responsible research practice: a narrative review of the application of Yarning method in qualitative Aboriginal and Torres Strait Islander health research . International Journal for Equity in Health , 21 , 134 .

Levi , R. , Ridberg , R. , Akers , M. and Seligman , H. ( 2021 ) Survey fraud and the integrity of web-based survey research . American Journal of Health Promotion , 36 , 18 – 20 .

Malterud , K. , Siersma , V. D. and Guassora , A. D. ( 2016 ) Sample size in qualitative interview studies: guided by information power . Qualitative Health Research , 26 , 1753 – 1760 .

Marko , S. , Thomas , S. , Pitt , H. and Daube , M. ( 2022a ) ‘Aussies love a bet’: gamblers discuss the social acceptance and cultural accommodation of gambling in Australia . Australian and New Zealand Journal of Public Health , 46 , 829 – 834 .

Marko , S. , Thomas , S. L. , Robinson , K. and Daube , M. ( 2022b ) Gamblers’ perceptions of responsibility for gambling harm: a critical qualitative inquiry . BMC Public Health , 22 , 725 .

McCarthy , S. , Thomas , S. L. , Pitt , H. , Warner , E. , Roderique-Davies , G. , Rintoul , A. et al. . ( 2023 ) ‘They loved gambling more than me’. Women’s experiences of gambling-related harm as an affected other . Health Promotion Journal of Australia , 34 , 284 – 293 .

Pitt , H. , McCarthy , S. , Keric , D. , Arnot , G. , Marko , S. , Martino , F. et al. . ( 2023 ) The symbolic consumption processes associated with ‘low-calorie’ and ‘low-sugar’ alcohol products and Australian women . Health Promotion International , 38 , 1 – 13 .

Reed , M. S. , Merkle , B. G. , Cook , E. J. , Hafferty , C. , Hejnowicz , A. P. , Holliman , R. et al. . ( 2024 ) Reimagining the language of engagement in a post-stakeholder world . Sustainability Science .

Terry , G. and Braun , V. ( 2017 ) Short but often sweet: the surprising potential of qualitative survey methods . In Braun , V. , Clarke , V. and Gray , D. (eds), Collecting Qualitative Data: A Practical Guide to Textual, Media and Virtual Techniques . Cambridge University Press , Cambridge .

Toerien , M. and Wilkinson , S. ( 2004 ) Exploring the depilation norm: a qualitative questionnaire study of women’s body hair removal . Qualitative Research in Psychology , 1 , 69 – 92 .

Varpio , L. and Ellaway , R. H. ( 2021 ) Shaping our worldviews: a conversation about and of theory . Advances in Health Sciences Education: Theory and Practice , 26 , 339 – 345 .

Wang , J. , Calderon , G. , Hager , E. R. , Edwards , LV , Berry , A. A. , Liu , Y. et al. . ( 2023 ) Identifying and preventing fraudulent responses in online public health surveys: lessons learned during the COVID-19 pandemic . PLOS Global Public Health , 3 , e0001452 .

Month: Total Views:
June 2024 790

Email alerts

Citing articles via.

  • Recommend to Your Librarian
  • Journals Career Network

Affiliations

  • Online ISSN 1460-2245
  • Print ISSN 0957-4824
  • Copyright © 2024 Oxford University Press
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Monash University Logo

  • Help & FAQ

Academic Struggle: A Case Study of Undergraduate First Year Medical Students

Research output : Contribution to journal › Article › Research › peer-review

Academic struggle is a concern for students, medical schools, and the society. As academic struggle is not idiopathic and instantaneous, qualitative research could provide an in-depth understanding on why it occurs. This qualitative research aimed to explore reasons of failure among Malaysian Year 1 struggling medical students through the lens of Theories of Action. This study adopted a single, embedded case design. Six medical students repeating their Year 1 studies performed a written reflection describing their experiences and behaviours during Year 1. Then, semi-structured interviews were conducted with each student, and data were analysed by two researchers. Independent analysis was compared, and discrepancies were resolved through discussions between the researchers. Each student narrative demonstrated difference in behaviours and experiences. Students showed limited learning engagement or demonstrated ineffective learning methods. Narratives indicated various reasons such as being overconfident or unmotivated to study for these behaviours. However, interpreting based on Theories of Action, the students’ failures could be explained by three types of invalid governing variables found in the data. Students may have performed their actions based on inadequate knowledge, possessing misbeliefs, or demonstrating no rationales at all. Invalid governing variables may have led to ineffective actions, and subsequently, resulting in unintended consequences. Hence, all students failed the mid-year and/or end-year assessments. Struggling students lacked the valid governing variables in rationalising their actions. Based on the Theories of Action, to deeply assess and alter their governing variables, struggling students are recommended to perform double loop learning.

Original languageEnglish
Pages (from-to)75-92
Number of pages18
Journal
Volume16
Issue number1
DOIs
Publication statusPublished - 2024
Externally publishedYes
  • Academic struggle
  • Medical students
  • Qualitative
  • Theories of Action
  • Undergraduate

Access to Document

  • 10.21315/eimj2024.16.1.6 Licence: CC BY

Other files and links

  • Link to publication in Scopus

T1 - Academic Struggle

T2 - A Case Study of Undergraduate First Year Medical Students

AU - Holder, Nurul Atira Khairul Anhar

AU - Nazri, Nik Nadia Nik

AU - Foong, Chan Choong

AU - Pallath, Vinod

AU - Sim, Joong Hiong

AU - Hong, Wei Han

AU - Vadivelu, Jamuna

N1 - Funding Information: The research was funded by the University of Malaya Research Fund Assistance (BKP) (BK023-2016), the High Impact Research Chancellery Grant (UM.C/625/1/HIR/ASH/025), and the Geran Penyelidikan Tabung UMSC C.A.R.E (PV045-2019). The authors would like to thank all the participants for their willingness in sharing their learning experiences. We would also like to thank Miss Lye An Jie for reading the manuscript and providing feedback. Last \uFFFD in memoriam of late Dr Sim Joong Hiong \uFFFD she has made signi \u9F00cant contributions in the preparation of the manuscript. Publisher Copyright: © 2024 Penerbit Universiti Sains Malaysia. All rights reserved.

N2 - Academic struggle is a concern for students, medical schools, and the society. As academic struggle is not idiopathic and instantaneous, qualitative research could provide an in-depth understanding on why it occurs. This qualitative research aimed to explore reasons of failure among Malaysian Year 1 struggling medical students through the lens of Theories of Action. This study adopted a single, embedded case design. Six medical students repeating their Year 1 studies performed a written reflection describing their experiences and behaviours during Year 1. Then, semi-structured interviews were conducted with each student, and data were analysed by two researchers. Independent analysis was compared, and discrepancies were resolved through discussions between the researchers. Each student narrative demonstrated difference in behaviours and experiences. Students showed limited learning engagement or demonstrated ineffective learning methods. Narratives indicated various reasons such as being overconfident or unmotivated to study for these behaviours. However, interpreting based on Theories of Action, the students’ failures could be explained by three types of invalid governing variables found in the data. Students may have performed their actions based on inadequate knowledge, possessing misbeliefs, or demonstrating no rationales at all. Invalid governing variables may have led to ineffective actions, and subsequently, resulting in unintended consequences. Hence, all students failed the mid-year and/or end-year assessments. Struggling students lacked the valid governing variables in rationalising their actions. Based on the Theories of Action, to deeply assess and alter their governing variables, struggling students are recommended to perform double loop learning.

AB - Academic struggle is a concern for students, medical schools, and the society. As academic struggle is not idiopathic and instantaneous, qualitative research could provide an in-depth understanding on why it occurs. This qualitative research aimed to explore reasons of failure among Malaysian Year 1 struggling medical students through the lens of Theories of Action. This study adopted a single, embedded case design. Six medical students repeating their Year 1 studies performed a written reflection describing their experiences and behaviours during Year 1. Then, semi-structured interviews were conducted with each student, and data were analysed by two researchers. Independent analysis was compared, and discrepancies were resolved through discussions between the researchers. Each student narrative demonstrated difference in behaviours and experiences. Students showed limited learning engagement or demonstrated ineffective learning methods. Narratives indicated various reasons such as being overconfident or unmotivated to study for these behaviours. However, interpreting based on Theories of Action, the students’ failures could be explained by three types of invalid governing variables found in the data. Students may have performed their actions based on inadequate knowledge, possessing misbeliefs, or demonstrating no rationales at all. Invalid governing variables may have led to ineffective actions, and subsequently, resulting in unintended consequences. Hence, all students failed the mid-year and/or end-year assessments. Struggling students lacked the valid governing variables in rationalising their actions. Based on the Theories of Action, to deeply assess and alter their governing variables, struggling students are recommended to perform double loop learning.

KW - Academic struggle

KW - Medical students

KW - Qualitative

KW - Theories of Action

KW - Undergraduate

UR - http://www.scopus.com/inward/record.url?scp=85191885878&partnerID=8YFLogxK

U2 - 10.21315/eimj2024.16.1.6

DO - 10.21315/eimj2024.16.1.6

M3 - Article

AN - SCOPUS:85191885878

SN - 2180-1932

JO - Education in Medicine Journal

JF - Education in Medicine Journal

IMAGES

  1. How to identify independent and dependent research variables

    qualitative research independent variables

  2. Independent and Dependent Variables

    qualitative research independent variables

  3. Types of Research Variable in Research with Example

    qualitative research independent variables

  4. Can I use these two variables in a qualitative research?

    qualitative research independent variables

  5. Qualitative Variable

    qualitative research independent variables

  6. qualitative variables in Independent variable.

    qualitative research independent variables

VIDEO

  1. VARIABLES IN QUANTITATIVE RESEARCH !!!!!!!

  2. Unlocking the Secrets of a Critical Literature

  3. Causal Comparative Research Decoded: How It Works

  4. Variables

  5. Type E & Type S Independent Variable || Experimental Research || Research Aptitude by Naveen Sakh ||

  6. Variables In Research || Part 13 || By Sunil Tailor Sir ||

COMMENTS

  1. Independent and Dependent Variables

    In qualitative research, independent variables can be qualitative in nature, such as individual experiences, cultural factors, or social contexts, influencing the phenomenon of interest. The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable.

  2. A Practical Guide to Writing Quantitative and Qualitative Research

    In quantitative research, hypotheses predict the expected relationships among variables.15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable (simple hypothesis) or 2) between two or more independent and dependent variables (complex hypothesis).4,11 Hypotheses may ...

  3. Qualitative Variable

    Qualitative variables are used in many applications in different fields, including: Market research: Qualitative variables are often used in market research to understand consumer behavior and preferences. For example, a company might use qualitative variables such as age, gender, and income to segment their target market and create customized ...

  4. Independent vs. Dependent Variables

    The independent variable is the cause. Its value is independent of other variables in your study. The dependent variable is the effect. Its value depends on changes in the independent variable. Example: Independent and dependent variables. You design a study to test whether changes in room temperature have an effect on math test scores.

  5. Independent & Dependent Variables (With Examples)

    While the independent variable is the " cause ", the dependent variable is the " effect " - or rather, the affected variable. In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable. Keeping with the previous example, let's look at some dependent variables ...

  6. PDF Research Questions and Hypotheses

    tifying specific, narrow questions or hypotheses based on a few variables. In qualitative research, the intent is to explore the complex set of factors surrounding the central phenomenon and present the varied perspectives or meanings that participants hold. The following are guidelines for writ-ing broad, qualitative research questions:

  7. Variables

    When naming QUALITATIVE variables, it is important to name the category rather than the levels (i.e., gender is the variable name, not male and female). ... "In a research study, independent variables are antecedent conditions that are presumed to affect a dependent variable. They are either manipulated by the researcher or are observed by ...

  8. Independent vs Dependent Variables: Definitions & Examples

    Qualitative independent variables are non-numerical variables. A few qualitative independent variables examples are listed below: Different strains of a species: Useful in identifying the strain of a crop that is most resistant to a specific disease. Varying methods of how a treatment is administered—oral or intravenous.

  9. Independent and Dependent Variables

    Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent. The variables should be outlined in the introduction of your paper and explained in more detail in the methods section. There are no ...

  10. Independent vs Dependent Variables

    Independent vs Dependent Variables | Definition & Examples. Published on 4 May 2022 by Pritha Bhandari.Revised on 17 October 2022. In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores. Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  11. Dependent & Independent Variables

    Independent and dependent variables in research. In experimental research, a variable refers to the phenomenon, person, or thing that is being measured and observed by the researcher. A researcher conducts a study to see how one variable affects another and make assertions about the relationship between different variables.

  12. Roles of Independent and Dependent Variables in Research

    The relationship between independent and dependent variables can manifest in various forms—direct, indirect, linear, nonlinear, and may be moderated or mediated by other variables. At its most basic, this relationship is often conceptualized as cause and effect: the independent variable (the cause) influences the dependent variable (the effect).

  13. Types of Variables in Research & Statistics

    Example (salt tolerance experiment) Independent variables (aka treatment variables) Variables you manipulate in order to affect the outcome of an experiment. The amount of salt added to each plant's water. Dependent variables (aka response variables) Variables that represent the outcome of the experiment.

  14. Systematic Reviews in the Health Sciences

    Types of Research within Qualitative and Quantitative ; Differences Between Quantitative and Qualitative Research ; Building an Evidence Table; ... Here the independent variable is the dose and the dependent variable is the frequency/intensity of symptoms. << Previous: Types of Studies; Next: ...

  15. What is an Independent Variable?

    The independent variable is the involvement in after-school math tutoring sessions. Organization context: You may want to know if the color of an office affects work efficiency. Your research will consider a group of employees working in white or yellow rooms. The independent variable is the color of the office.

  16. 8.2 Multiple Independent Variables

    7.4 Qualitative Research. Chapter 8: Complex Research Designs. 8.1 Multiple Dependent Variables. 8.2 Multiple Independent Variables. ... One independent variable was disgust, which the researchers manipulated by testing participants in a clean room or a messy room. The other was private body consciousness, which the researchers simply measured.

  17. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which involves collecting and ...

  18. Variables in Research

    The independent variable in a research study or experiment is what the researcher is changing in the study or experiment. It is the variable that is being manipulated. ... Qualitative Research ...

  19. Independent Variable

    Definition: Independent variable is a variable that is manipulated or changed by the researcher to observe its effect on the dependent variable. It is also known as the predictor variable or explanatory variable. The independent variable is the presumed cause in an experiment or study, while the dependent variable is the presumed effect or outcome.

  20. Understanding Quantitative and Qualitative Approaches

    Qualitative research is generally preferred when the clinical question centers around life experiences or meaning. Qualitative research explores the complexity, depth, and richness of a particular situation from the perspective of the informants—referring to the person or persons providing the information. ... The independent variable is the ...

  21. Qualitative and Quantitative Research: Glossary of Key Terms

    The independent variables are usually nominal, and the dependent variable is usual an interval. Apparency: Clear, understandable representation of the data. ... Qualitative Research: Empirical research in which the researcher explores relationships using textual, rather than quantitative data. Case study, observation, and ethnography are ...

  22. Can I use these two variables in a qualitative research?

    McPherson College. I think you could use these two variables in qualitative research, as long as you provide independent argumentation as to why the first is the cause and the second is the effect ...

  23. Conducting and Writing Quantitative and Qualitative Research

    Describe how an independent variable was manipulated to determine its effects on dependent variables: Hyun C, Kim K, Lee S, Lee HH, Lee J. Quantitative evaluation of the consciousness level of patients in a vegetative state using virtual reality and an eye-tracking system: a single-case experimental design study. ... Qualitative research ...

  24. Methodological and practical guidance for designing and conducting

    Harnessing interpretivist approaches and qualitative values in online qualitative surveys. Online qualitative surveys take many forms. They may be fully qualitative or qualitative dominant—mostly qualitative with some quantitative questions (Terry and Braun, 2017).There are also many different ways of conducting these studies—from using a smaller number of questions that engage specific ...

  25. Academic Struggle: A Case Study of Undergraduate First Year Medical

    As academic struggle is not idiopathic and instantaneous, qualitative research could provide an in-depth understanding on why it occurs. This qualitative research aimed to explore reasons of failure among Malaysian Year 1 struggling medical students through the lens of Theories of Action. This study adopted a single, embedded case design.