Hypothesis testing Infographics by: Mariz Turdanes

Mariz Turdanes

Created on May 10, 2021

More creations to inspire you

How to create the perfect virtual workspace.

Vertical infographics

12 PRINCIPLES OF ANIMATION

Why we like infographics.

Discover more incredible creations here

Infographic

Lorem ipsum dolor sit amet consecteteur

SOLVING PROBLEMS IN HYPOTESISTESTING

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

infographic about solving problems in hypothesis testing

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved April 2, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

Logo for OPENPRESS.USASK.CA

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

9. Hypothesis Testing

9.1 Hypothesis Testing Problem Solving Steps

P(\mbox{test statistic} \mid H_{0})

  • Interpretation : Summarize results in a sentence and/or present a graphic or table.

A generic test statistic may be defined by :

\[\mbox{test value} = \frac{\mbox{(observed value)} - \mbox{(expected }H_{0} \mbox{ value)}}{\mbox{standard error}}.\]

Introduction to Applied Statistics for Psychology Students Copyright © 2022 by Gordon E. Sarty is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

with Answer, Solution | Statistical Inference - Hypothesis Testing: Solved Example Problems | 12th Business Maths and Statistics : Chapter 8 : Sampling Techniques and Statistical Inference

Chapter: 12th business maths and statistics : chapter 8 : sampling techniques and statistical inference, hypothesis testing: solved example problems.

Example 8.14

An auto company decided to introduce a new six cylinder car whose mean petrol consumption is claimed to be lower than that of the existing auto engine. It was found that the mean petrol consumption for the 50 cars was 10 km per litre with a standard deviation of 3.5 km per litre. Test at 5% level of significance, whether the claim of the new car petrol consumption is 9.5 km per litre on the average is acceptable.

infographic about solving problems in hypothesis testing

Population mean μ = 9.5 km

Since population SD is unknown we consider σ = s

The sample is a large sample and so we apply Z-test

Null Hypothesis: There is no significant difference between the sample average and the company’s claim, i.e., H 0 : μ = 9.5

Alternative Hypothesis: There is significant difference between the sample average and the company’s claim, i.e., H 1 : μ ≠ 9.5 (two tailed test)

The level of significance α = 5% = 0.05

Applying the test statistic

infographic about solving problems in hypothesis testing

Thus the calculated value 1.01 and the significant value or table value Z α /2 = 1.96

Comparing the calculated and table value ,Here Z < Z α /2 i.e., 1.01<1.96.

Inference:Since the calculated value is less than table value i.e., Z < Z α /2 at 5% level of sinificance, the null hypothesis H 0 is accepted. Hence we conclude that the company’s claim that the new car petrol consumption is 9.5 km per litre is acceptable.

Example 8.15

A manufacturer of ball pens claims that a certain pen he manufactures has a mean writing life of 400 pages with a standard deviation of 20 pages. A purchasing agent selects a sample of 100 pens and puts them for test. The mean writing life for the sample was 390 pages. Should the purchasing agent reject the manufactures claim at 1% level?

Population SD σ = 20 pages

The sample is a large sample and so we apply Z -test

Null Hypothesis: There is no significant difference between the sample mean and the population mean of writing life of pen he manufactures, i.e., H 0 : μ = 400

Alternative Hypothesis: There is significant difference between the sample mean and the population mean of writing life of pen he manufactures, i.e., H 1 : μ ≠ 400 (two tailed test)

The level of significance a = 1% = 0.01

infographic about solving problems in hypothesis testing

Thus the calculated value |Z| = 5 and the significant value or table value Z α /2 = 2.58

Comparing the calculated and table values, we found Z > Z α /2 i.e., 5 > 2.58

Inference: Since the calculated value is greater than table value i.e., Z > Z α /2 at 1% level of significance, the null hypothesis is rejected and Therefore we concluded that μ ≠ 400 and the manufacturer’s claim is rejected at 1% level of significance.

Example 8.16

(i) A sample of 900 members has a mean 3.4 cm and SD 2.61 cm. Is the sample taken from a large population with mean 3.25 cm. and SD 2.62 cm?

(ii) If the population is normal and its mean is unknown, find the 95% and 98% confidence limits of true mean.

Population mean μ= 3.25 cm, Population SD σ = 2.61 cm

Null Hypothesis H 0 : μ = 3.25 cm (the sample has been drawn from the population mean

μ = 3.25 cm and SD σ = 2.61 cm)

Alternative Hypothesis H 1 : μ ≠ 3.25 cm (two tail) i.e., the sample has not been drawn from the population mean μ = 3.25 cm and SD σ = 2.61 cm.

Teststatistic:

infographic about solving problems in hypothesis testing

∴ Z = 1.724

Thus the calculated and the significant value or table value Z α /2 = 1.96

Comparing the calculated and table values, Z < Z α /2 i.e., 1.724 < 1.96

Inference:Since the calculated value is less than table value i.e., Z > Z α /2 at 5% level of significance, the null hypothesis is accepted. Hence we conclude that the2 data doesn’t provide us any evidence against the null hypothesis. Therefore, the sample has been drawn from the population mean μ = 3.25 cm and SD, σ = 2.61 cm.

(ii) Confidence limits

95% confidential limits for the population mean μ are :

3.4− (1.96× 0.087)≤ μ ≤ 3.4+ (1.96× 0.087)

3.229≤ μ ≤ 3.571

98% confidential limits for the population mean are :

3.4− (2.33× 0.087)≤ μ ≤ 3.4+ (2.33× 0.087)

3.197 ≤ μ≤ 3.603

Therefore,95% confidential limits is (3.229,3.571) and 98% confidential limits is (3.197,3.603).

Example 8.17

The mean weekly sales of soap bars in departmental stores were 146.3 bars per store. After an advertising campaign the mean weekly sales in 400 stores for a typical week increased to 153.7 and showed a standard deviation of 17.2. Was the advertising campaign successful?

Sample size n = 400 stores

Sample SD s = 17.2 bars

Population mean μ = 146.3 bars

Since population SD is unknown we can consider the sample SD s = σ

Null Hypothesis. The advertising campaign is not successful i.e, H 0 : μ = 146.3 (There is no significant difference between the mean weekly sales of soap bars in department stores before and after advertising campaign)

Alternative Hypothesis H 1 : μ > 143.3 (Right tail test). The advertising campaign was successful

Level of significance a = 0.05

Test statistic

infographic about solving problems in hypothesis testing

∴ Z = 8.605

Comparing the calculated value Z = 8.605 and the significant value or table value Z α  = 1.645 . we get 8.605 > 1.645

Inference: Since, the calculated value is much greater than table value i.e., Z > Z α  , it is highly significant at 5% level of significance. Hence we reject the null hypothesis H0 and conclude that the advertising campaign was definitely successful in promoting sales.

Example 8.18

The wages of the factory workers are assumed to be normally distributed with mean and variance 25. A random sample of 50 workers gives the total wages equal to ₹ 2,550. Test the hypothesis μ = 52, against the alternative hypothesis μ = 49 at 1% level of significance.

Sample size n = 50 workers

infographic about solving problems in hypothesis testing

Since alternative hypothesis is of two tailed test we can take | Z | = 1.4142

Critical value at 1% level of significance is Z α /2 = 2.58

Inference: Since the calculated value is less than table value i.e., Z < Za at 1% level of significance, the null hypothesis H 0 is accepted. Therefore, we conclude 2that there is no significant difference between the sample mean and population mean μ= 52 and SD σ = 5.

Example 8.19

An ambulance service claims that it takes on the average 8.9 minutes to reach its destination in emergency calls. To check on this claim, the agency which licenses ambulance services has them timed on 50 emergency calls, getting a mean of 9.3 minutes with a standard deviation of 1.6 minutes. What can they conclude at the level of significance.

infographic about solving problems in hypothesis testing

Calculated value Z = 1.7676

Critical value at 5% level of significance is Z α /2 = 1.96

Inference: Since the calculated value is less than table value i.e., Z < Z α /2 at 5% level of significance, the null hypothesis is accepted. Therefore we conclude that an ambulance service claims on the average 8.9 minutes to reach its destination in emergency calls.

Related Topics

Privacy Policy , Terms and Conditions , DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

8.1: The Elements of Hypothesis Testing

  • Last updated
  • Save as PDF
  • Page ID 130263

Learning Objectives

  • To understand the logical framework of tests of hypotheses.
  • To learn basic terminology connected with hypothesis testing.
  • To learn fundamental facts about hypothesis testing.

Types of Hypotheses

A hypothesis about the value of a population parameter is an assertion about its value. As in the introductory example we will be concerned with testing the truth of two competing hypotheses, only one of which can be true.

Definition: null hypothesis and alternative hypothesis

  • The null hypothesis , denoted \(H_0\), is the statement about the population parameter that is assumed to be true unless there is convincing evidence to the contrary.
  • The alternative hypothesis , denoted \(H_a\), is a statement about the population parameter that is contradictory to the null hypothesis, and is accepted as true only if there is convincing evidence in favor of it.

Definition: statistical procedure

Hypothesis testing is a statistical procedure in which a choice is made between a null hypothesis and an alternative hypothesis based on information in a sample.

The end result of a hypotheses testing procedure is a choice of one of the following two possible conclusions:

  • Reject \(H_0\) (and therefore accept \(H_a\)), or
  • Fail to reject \(H_0\) (and therefore fail to accept \(H_a\)).

The null hypothesis typically represents the status quo, or what has historically been true. In the example of the respirators, we would believe the claim of the manufacturer unless there is reason not to do so, so the null hypotheses is \(H_0:\mu =75\). The alternative hypothesis in the example is the contradictory statement \(H_a:\mu <75\). The null hypothesis will always be an assertion containing an equals sign, but depending on the situation the alternative hypothesis can have any one of three forms: with the symbol \(<\), as in the example just discussed, with the symbol \(>\), or with the symbol \(\neq\). The following two examples illustrate the latter two cases.

Example \(\PageIndex{1}\)

A publisher of college textbooks claims that the average price of all hardbound college textbooks is \(\$127.50\). A student group believes that the actual mean is higher and wishes to test their belief. State the relevant null and alternative hypotheses.

The default option is to accept the publisher’s claim unless there is compelling evidence to the contrary. Thus the null hypothesis is \(H_0:\mu =127.50\). Since the student group thinks that the average textbook price is greater than the publisher’s figure, the alternative hypothesis in this situation is \(H_a:\mu >127.50\).

Example \(\PageIndex{2}\)

The recipe for a bakery item is designed to result in a product that contains \(8\) grams of fat per serving. The quality control department samples the product periodically to insure that the production process is working as designed. State the relevant null and alternative hypotheses.

The default option is to assume that the product contains the amount of fat it was formulated to contain unless there is compelling evidence to the contrary. Thus the null hypothesis is \(H_0:\mu =8.0\). Since to contain either more fat than desired or to contain less fat than desired are both an indication of a faulty production process, the alternative hypothesis in this situation is that the mean is different from \(8.0\), so \(H_a:\mu \neq 8.0\).

In Example \(\PageIndex{1}\), the textbook example, it might seem more natural that the publisher’s claim be that the average price is at most \(\$127.50\), not exactly \(\$127.50\). If the claim were made this way, then the null hypothesis would be \(H_0:\mu \leq 127.50\), and the value \(\$127.50\) given in the example would be the one that is least favorable to the publisher’s claim, the null hypothesis. It is always true that if the null hypothesis is retained for its least favorable value, then it is retained for every other value.

Thus in order to make the null and alternative hypotheses easy for the student to distinguish, in every example and problem in this text we will always present one of the two competing claims about the value of a parameter with an equality. The claim expressed with an equality is the null hypothesis. This is the same as always stating the null hypothesis in the least favorable light. So in the introductory example about the respirators, we stated the manufacturer’s claim as “the average is \(75\) minutes” instead of the perhaps more natural “the average is at least \(75\) minutes,” essentially reducing the presentation of the null hypothesis to its worst case.

The first step in hypothesis testing is to identify the null and alternative hypotheses.

The Logic of Hypothesis Testing

Although we will study hypothesis testing in situations other than for a single population mean (for example, for a population proportion instead of a mean or in comparing the means of two different populations), in this section the discussion will always be given in terms of a single population mean \(\mu\).

The null hypothesis always has the form \(H_0:\mu =\mu _0\) for a specific number \(\mu _0\) (in the respirator example \(\mu _0=75\), in the textbook example \(\mu _0=127.50\), and in the baked goods example \(\mu _0=8.0\)). Since the null hypothesis is accepted unless there is strong evidence to the contrary, the test procedure is based on the initial assumption that \(H_0\) is true. This point is so important that we will repeat it in a display:

The test procedure is based on the initial assumption that \(H_0\) is true.

The criterion for judging between \(H_0\) and \(H_a\) based on the sample data is: if the value of \(\overline{X}\) would be highly unlikely to occur if \(H_0\) were true, but favors the truth of \(H_a\), then we reject \(H_0\) in favor of \(H_a\). Otherwise we do not reject \(H_0\).

Supposing for now that \(\overline{X}\) follows a normal distribution, when the null hypothesis is true the density function for the sample mean \(\overline{X}\) must be as in Figure \(\PageIndex{1}\): a bell curve centered at \(\mu _0\). Thus if \(H_0\) is true then \(\overline{X}\) is likely to take a value near \(\mu _0\) and is unlikely to take values far away. Our decision procedure therefore reduces simply to:

  • if \(H_a\) has the form \(H_a:\mu <\mu _0\) then reject \(H_0\) if \(\bar{x}\) is far to the left of \(\mu _0\);
  • if \(H_a\) has the form \(H_a:\mu >\mu _0\) then reject \(H_0\) if \(\bar{x}\) is far to the right of \(\mu _0\);
  • if \(H_a\) has the form \(H_a:\mu \neq \mu _0\) then reject \(H_0\) if \(\bar{x}\) is far away from \(\mu _0\) in either direction.

b91b73d0dbbd53dc069a390a463118a2.jpg

Think of the respirator example, for which the null hypothesis is \(H_0:\mu =75\), the claim that the average time air is delivered for all respirators is \(75\) minutes. If the sample mean is \(75\) or greater then we certainly would not reject \(H_0\) (since there is no issue with an emergency respirator delivering air even longer than claimed).

If the sample mean is slightly less than \(75\) then we would logically attribute the difference to sampling error and also not reject \(H_0\) either.

Values of the sample mean that are smaller and smaller are less and less likely to come from a population for which the population mean is \(75\). Thus if the sample mean is far less than \(75\), say around \(60\) minutes or less, then we would certainly reject \(H_0\), because we know that it is highly unlikely that the average of a sample would be so low if the population mean were \(75\). This is the rare event criterion for rejection: what we actually observed \((\overline{X}<60)\) would be so rare an event if \(\mu =75\) were true that we regard it as much more likely that the alternative hypothesis \(\mu <75\) holds.

In summary, to decide between \(H_0\) and \(H_a\) in this example we would select a “rejection region” of values sufficiently far to the left of \(75\), based on the rare event criterion, and reject \(H_0\) if the sample mean \(\overline{X}\) lies in the rejection region, but not reject \(H_0\) if it does not.

The Rejection Region

Each different form of the alternative hypothesis Ha has its own kind of rejection region:

  • if (as in the respirator example) \(H_a\) has the form \(H_a:\mu <\mu _0\), we reject \(H_0\) if \(\bar{x}\) is far to the left of \(\mu _0\), that is, to the left of some number \(C\), so the rejection region has the form of an interval \((-\infty ,C]\);
  • if (as in the textbook example) \(H_a\) has the form \(H_a:\mu >\mu _0\), we reject \(H_0\) if \(\bar{x}\) is far to the right of \(\mu _0\), that is, to the right of some number \(C\), so the rejection region has the form of an interval \([C,\infty )\);
  • if (as in the baked good example) \(H_a\) has the form \(H_a:\mu \neq \mu _0\), we reject \(H_0\) if \(\bar{x}\) is far away from \(\mu _0\) in either direction, that is, either to the left of some number \(C\) or to the right of some other number \(C′\), so the rejection region has the form of the union of two intervals \((-\infty ,C]\cup [C',\infty )\).

The key issue in our line of reasoning is the question of how to determine the number \(C\) or numbers \(C\) and \(C′\), called the critical value or critical values of the statistic, that determine the rejection region.

Definition: critical values

The critical value or critical values of a test of hypotheses are the number or numbers that determine the rejection region.

Suppose the rejection region is a single interval, so we need to select a single number \(C\). Here is the procedure for doing so. We select a small probability, denoted \(\alpha\), say \(1\%\), which we take as our definition of “rare event:” an event is “rare” if its probability of occurrence is less than \(\alpha\). (In all the examples and problems in this text the value of \(\alpha\) will be given already.) The probability that \(\overline{X}\) takes a value in an interval is the area under its density curve and above that interval, so as shown in Figure \(\PageIndex{2}\) (drawn under the assumption that \(H_0\) is true, so that the curve centers at \(\mu _0\)) the critical value \(C\) is the value of \(\overline{X}\) that cuts off a tail area \(\alpha\) in the probability density curve of \(\overline{X}\). When the rejection region is in two pieces, that is, composed of two intervals, the total area above both of them must be \(\alpha\), so the area above each one is \(\alpha /2\), as also shown in Figure \(\PageIndex{2}\).

72f0cd42fda04cdfb0341bcfe11601c1.jpg

The number \(\alpha\) is the total area of a tail or a pair of tails.

Example \(\PageIndex{3}\)

In the context of Example \(\PageIndex{2}\), suppose that it is known that the population is normally distributed with standard deviation \(\alpha =0.15\) gram, and suppose that the test of hypotheses \(H_0:\mu =8.0\) versus \(H_a:\mu \neq 8.0\) will be performed with a sample of size \(5\). Construct the rejection region for the test for the choice \(\alpha =0.10\). Explain the decision procedure and interpret it.

If \(H_0\) is true then the sample mean \(\overline{X}\) is normally distributed with mean and standard deviation

\[\begin{align} \mu _{\overline{X}} &=\mu \nonumber \\[5pt] &=8.0 \nonumber \end{align} \nonumber \]

\[\begin{align} \sigma _{\overline{X}}&=\dfrac{\sigma}{\sqrt{n}} \nonumber \\[5pt] &= \dfrac{0.15}{\sqrt{5}} \nonumber\\[5pt] &=0.067 \nonumber \end{align} \nonumber \]

Since \(H_a\) contains the \(\neq\) symbol the rejection region will be in two pieces, each one corresponding to a tail of area \(\alpha /2=0.10/2=0.05\). From Figure 7.1.6, \(z_{0.05}=1.645\), so \(C\) and \(C′\) are \(1.645\) standard deviations of \(\overline{X}\) to the right and left of its mean \(8.0\):

\[C=8.0-(1.645)(0.067) = 7.89 \; \; \text{and}\; \; C'=8.0 + (1.645)(0.067) = 8.11 \nonumber \]

The result is shown in Figure \(\PageIndex{3}\). α = 0.1

alt

The decision procedure is: take a sample of size \(5\) and compute the sample mean \(\bar{x}\). If \(\bar{x}\) is either \(7.89\) grams or less or \(8.11\) grams or more then reject the hypothesis that the average amount of fat in all servings of the product is \(8.0\) grams in favor of the alternative that it is different from \(8.0\) grams. Otherwise do not reject the hypothesis that the average amount is \(8.0\) grams.

The reasoning is that if the true average amount of fat per serving were \(8.0\) grams then there would be less than a \(10\%\) chance that a sample of size \(5\) would produce a mean of either \(7.89\) grams or less or \(8.11\) grams or more. Hence if that happened it would be more likely that the value \(8.0\) is incorrect (always assuming that the population standard deviation is \(0.15\) gram).

Because the rejection regions are computed based on areas in tails of distributions, as shown in Figure \(\PageIndex{2}\), hypothesis tests are classified according to the form of the alternative hypothesis in the following way.

Definitions: Test classifications

  • If \(H_a\) has the form \(\mu \neq \mu _0\) the test is called a two-tailed test .
  • If \(H_a\) has the form \(\mu < \mu _0\) the test is called a left-tailed test .
  • If \(H_a\) has the form \(\mu > \mu _0\)the test is called a right-tailed test .

Each of the last two forms is also called a one-tailed test .

Two Types of Errors

The format of the testing procedure in general terms is to take a sample and use the information it contains to come to a decision about the two hypotheses. As stated before our decision will always be either

  • reject the null hypothesis \(H_0\) in favor of the alternative \(H_a\) presented, or
  • do not reject the null hypothesis \(H_0\) in favor of the alternative \(H_0\) presented.

There are four possible outcomes of hypothesis testing procedure, as shown in the following table:

As the table shows, there are two ways to be right and two ways to be wrong. Typically to reject \(H_0\) when it is actually true is a more serious error than to fail to reject it when it is false, so the former error is labeled “ Type I ” and the latter error “ Type II ”.

Definition: Type I and Type II errors

In a test of hypotheses:

  • A Type I error is the decision to reject \(H_0\) when it is in fact true.
  • A Type II error is the decision not to reject \(H_0\) when it is in fact not true.

Unless we perform a census we do not have certain knowledge, so we do not know whether our decision matches the true state of nature or if we have made an error. We reject \(H_0\) if what we observe would be a “rare” event if \(H_0\) were true. But rare events are not impossible: they occur with probability \(\alpha\). Thus when \(H_0\) is true, a rare event will be observed in the proportion \(\alpha\) of repeated similar tests, and \(H_0\) will be erroneously rejected in those tests. Thus \(\alpha\) is the probability that in following the testing procedure to decide between \(H_0\) and \(H_a\) we will make a Type I error.

Definition: level of significance

The number \(\alpha\) that is used to determine the rejection region is called the level of significance of the test. It is the probability that the test procedure will result in a Type I error .

The probability of making a Type II error is too complicated to discuss in a beginning text, so we will say no more about it than this: for a fixed sample size, choosing \(alpha\) smaller in order to reduce the chance of making a Type I error has the effect of increasing the chance of making a Type II error . The only way to simultaneously reduce the chances of making either kind of error is to increase the sample size.

Standardizing the Test Statistic

Hypotheses testing will be considered in a number of contexts, and great unification as well as simplification results when the relevant sample statistic is standardized by subtracting its mean from it and then dividing by its standard deviation. The resulting statistic is called a standardized test statistic . In every situation treated in this and the following two chapters the standardized test statistic will have either the standard normal distribution or Student’s \(t\)-distribution.

Definition: hypothesis test

A standardized test statistic for a hypothesis test is the statistic that is formed by subtracting from the statistic of interest its mean and dividing by its standard deviation.

For example, reviewing Example \(\PageIndex{3}\), if instead of working with the sample mean \(\overline{X}\) we instead work with the test statistic

\[\frac{\overline{X}-8.0}{0.067} \nonumber \]

then the distribution involved is standard normal and the critical values are just \(\pm z_{0.05}\). The extra work that was done to find that \(C=7.89\) and \(C′=8.11\) is eliminated. In every hypothesis test in this book the standardized test statistic will be governed by either the standard normal distribution or Student’s \(t\)-distribution. Information about rejection regions is summarized in the following tables:

Every instance of hypothesis testing discussed in this and the following two chapters will have a rejection region like one of the six forms tabulated in the tables above.

No matter what the context a test of hypotheses can always be performed by applying the following systematic procedure, which will be illustrated in the examples in the succeeding sections.

Systematic Hypothesis Testing Procedure: Critical Value Approach

  • Identify the null and alternative hypotheses.
  • Identify the relevant test statistic and its distribution.
  • Compute from the data the value of the test statistic.
  • Construct the rejection region.
  • Compare the value computed in Step 3 to the rejection region constructed in Step 4 and make a decision. Formulate the decision in the context of the problem, if applicable.

The procedure that we have outlined in this section is called the “Critical Value Approach” to hypothesis testing to distinguish it from an alternative but equivalent approach that will be introduced at the end of Section 8.3.

Key Takeaway

  • A test of hypotheses is a statistical process for deciding between two competing assertions about a population parameter.
  • The testing procedure is formalized in a five-step procedure.

The Genius Blog

Hypothesis Testing Solved Examples(Questions and Solutions)

Here is a list hypothesis testing exercises and solutions. Try to solve a question by yourself first before you look at the solution.

Question 1 In the population, the average IQ is 100 with a standard deviation of 15. A team of scientists want to test a new medication to see if it has either a positive or negative effect on intelligence, or not effect at all. A sample of 30 participants who have taken the medication  has a mean of 140. Did the medication affect intelligence? View Solution to Question 1

A professor wants to know if her introductory statistics class has a good grasp of basic math. Six students are chosen at random from the class and given a math proficiency test. The professor wants the class to be able to score above 70 on the test. The six students get the following scores:62, 92, 75, 68, 83, 95. Can the professor have 90% confidence that the mean score for the class on the test would be above 70. Solution to Question 2

Question 3 In a packaging plant, a machine packs cartons with jars. It is supposed that a new machine would pack faster on the average than the machine currently used. To test the hypothesis, the time it takes each machine to pack ten cartons are recorded. The result in seconds is as follows.

Do the data provide sufficient evidence to conclude that, on the average, the new machine packs faster? Perform  the required hypothesis test at the 5% level of significance. Solution to Question 3 

Question 4 We want to compare the heights in inches of two groups of individuals. Here are the measurements: X: 175, 168, 168, 190, 156, 181, 182, 175, 174, 179 Y:  120, 180, 125, 188, 130, 190, 110, 185, 112, 188 Solution to Question 4 

Question 5 A clinic provides a program to help their clients lose weight and asks a consumer agency to investigate the effectiveness of the program. The agency takes a sample of 15 people, weighing each person in the sample before the program begins and 3 months later. The results a tabulated below

Determine is the program is effective. Solution to Question 5

Question 6 A sample of 20 students were selected and given a diagnostic module prior to studying for a test. And then they were given the test again after completing the module. . The result of the students scores in the test before and after the test is tabulated below.

We want to see if there is significant improvement in the student’s performance due to this teaching method Solution to Question 6 

Question 7 A study was performed to test wether cars get better mileage on premium gas than on regular gas. Each of 10 cars was first filled with regular or premium gas, decided by a coin toss, and the mileage for the tank was recorded. The mileage was recorded again for the same cars using other kind of gasoline. Determine wether cars get significantly better mileage with premium gas.

Mileage with regular gas: 16,20,21,22,23,22,27,25,27,28 Mileage with premium gas: 19, 22,24,24,25,25,26,26,28,32 Solution to Question 7 

Question 8  An automatic cutter machine must cut steel strips of 1200 mm length. From a preliminary data, we checked that the lengths of the pieces produced by the machine can be considered as normal random variables  with a 3mm standard deviation. We want to make sure that the machine is set correctly. Therefore 16 pieces of the products are randomly selected and weight. The figures were in mm: 1193,1196,1198,1195,1198,1199,1204,1193,1203,1201,1196,1200,1191,1196,1198,1191 Examine wether there is any significant deviation from the required size Solution to Question 8

Question 9 Blood pressure reading of ten patients before and after medication for reducing the blood pressure are as follows

Patient: 1,2,3,4,5,6,7,8,9,10 Before treatment: 86,84,78,90,92,77,89,90,90,86 After treatment:    80,80,92,79,92,82,88,89,92,83

Test the null hypothesis of no effect agains the alternate hypothesis that medication is effective. Execute it with Wilcoxon test Solution to Question 9

Question on ANOVA Sussan Sound predicts that students will learn most effectively with a constant background sound, as opposed to an unpredictable sound or no sound at all. She randomly divides 24 students into three groups of 8 each. All students study a passage of text for 30 minutes. Those in group 1 study with background sound at a constant volume in the background. Those in group 2 study with nose that changes volume periodically. Those in group 3 study with no sound at all. After studying, all students take a 10 point multiple choice test over the material. Their scores are tabulated below.

Group1: Constant sound: 7,4,6,8,6,6,2,9 Group 2: Random sound: 5,5,3,4,4,7,2,2 Group 3: No sound at all: 2,4,7,1,2,1,5,5 Solution to Question 10

Question 11 Using the following three groups of data, perform a one-way analysis of variance using α  = 0.05.

Solution to Question 11

Question 12 In a packaging plant, a machine packs cartons with jars. It is supposed that a new machine would pack faster on the average than the machine currently used. To test the hypothesis, the time it takes each machine to pack ten cartons are recorded. The result in seconds is as follows.

New Machine: 42,41,41.3,41.8,42.4,42.8,43.2,42.3,41.8,42.7 Old Machine:  42.7,43.6,43.8,43.3,42.5,43.5,43.1,41.7,44,44.1

Perform an F-test to determine if the null hypothesis should be accepted. Solution to Question 12

Question 13 A random sample 500 U.S adults are questioned about their political affiliation and opinion on a tax reform bill. We need to test if the political affiliation and their opinon on a tax reform bill are dependent, at 5% level of significance. The observed contingency table is given below.

Solution to Question 13

Question 14 Can a dice be considered regular which is showing the following frequency distribution during 1000 throws?

Solution to Question 14

Solution to Question 15

Question 16 A newly developed muesli contains five types of seeds (A, B, C, D and E). The percentage of which is 35%, 25%, 20%, 10% and 10% according to the product information. In a randomly selected muesli, the following volume distribution was found.

Lets us decide about the null hypothesis whether the composition of the sample corresponds to the distribution indicated on the packaging at alpha = 0.1 significance level. Solution to Question 16

Question 17 A research team investigated whether there was any significant correlation between the severity of a certain disease runoff and the age of the patients. During the study, data for n = 200 patients were collected and grouped according to the severity of the disease and the age of the patient. The table below shows the result

Let us decided about the correlation between the age of the patients and the severity of disease progression. Solution to Question 17

Question 18 A publisher is interested in determine which of three book cover is most attractive. He interviews 400 people in each of the three states (California, Illinois and New York), and asks each person which of the  cover he or she prefers. The number of preference for each cover is as follows:

Do these data indicate that there are regional differences in people’s preferences concerning these covers? Use the 0.05 level of significance. Solution to Question 18

Question 19 Trees planted along the road were checked for which ones are healthy(H) or diseased (D) and the following arrangement of the trees were obtained:

H H H H D D D H H H H H H H D D H H D D D

Test at the    = 0.05 significance wether this arrangement may be regarded as random

Solution to Question 19 

Question 20 Suppose we flip a coin n = 15 times and come up with the following arrangements

H T T T H H T T T T H H T H H

(H = head, T = tail)

Test at the alpha = 0.05 significance level whether this arrangement may be regarded as random.

Solution to Question 20

kindsonthegenius

You might also like, hypothesis testing problems – question 10(sussan sound predicts that….), hypothesis testing problem – quesion 7 (test wether cars get better mileage…), welch’s t-test – how and when to use it.

I am really impressed with your writing abilities as well as with the structure to your weblog. Is this a paid subject matter or did you modify it yourself?

Either way stay up the excellent high quality writing, it’s uncommon to look a great blog like this one these days..

Below are given the gain in weights (in lbs.) of pigs fed on two diet A and B Dieta 25 32 30 34 24 14 32 24 30 31 35 25 – – DietB 44 34 22 10 47 31 40 30 32 35 18 21 35 29

We use essential cookies to make Venngage work. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

Manage Cookies

Cookies and similar technologies collect certain information about how you’re using our website. Some of them are essential, and without them you wouldn’t be able to use Venngage. But others are optional, and you get to choose whether we use them or not.

Strictly Necessary Cookies

These cookies are always on, as they’re essential for making Venngage work, and making it safe. Without these cookies, services you’ve asked for can’t be provided.

Show cookie providers

  • Google Login

Functionality Cookies

These cookies help us provide enhanced functionality and personalisation, and remember your settings. They may be set by us or by third party providers.

Performance Cookies

These cookies help us analyze how many people are using Venngage, where they come from and how they're using it. If you opt out of these cookies, we can’t get feedback to make Venngage better for you and all our users.

  • Google Analytics

Targeting Cookies

These cookies are set by our advertising partners to track your activity and show you relevant Venngage ads on other sites as you browse the internet.

  • Google Tag Manager
  • Infographics
  • Daily Infographics
  • Graphic Design
  • Graphs and Charts
  • Data Visualization
  • Human Resources
  • Training and Development
  • Beginner Guides

Blog Infographics

25+ Statistical Infographic Templates To Help Visualize Your Data

By Sara McGuire , Oct 21, 2019

statistical infographic templates

A good statistic can be a powerful backup for an argument you’re making. A statistic can make people pause and think about a problem, or a solution.

But to get people to stop and pay attention to statistics, you need to present them in a visually engaging way.

Infographics are one of the most popular ways to share statistics with your audience, and for a good reason. Not only are statistical infographics eye-catching, they also make data more engaging and impactful.

NEW! Introducing: Marketing Statistics Report 2022

It’s 2022 already. Marketers, are you still using data from pre-COVID times?

Don’t make decisions based on outdated data that no longer applies. It’s time you keep yourself informed of the latest marketing statistics and trends during the past two years, and learn how COVID-19 has affected marketing efforts in different industries — with this FREE marketing statistics report put together by Venngage and HubSpot .

The report uses data gathered from over 100,000 customers of HubSpot CRM. In addition to that, you’ll also know about the trends in using visuals in content marketing and the impacts of the pandemic on visual content, from 200+ marketers all over the world interviewed by Venngage.

marketing statistics report 2022 Venngage Hubspot

There are plenty of examples of statistical infographics that have gone viral. Remember the World’s Deadliest Animal infographic that Bill Gates posted on his blog a few years back? It went viral because it presented a shocking statistic in such an impactful way.

statistical infographic templates

Meanwhile, in the business world, we were excited to see one of our statistical infographics gain some serious traction: 10 Visual Content Marketing Statistics . Years after being published, this infographic still pulls in some of the highest traffic on our blog.

visual marketing statistical infographic

That’s because the infographic is highly relevant to marketers. It’s easy to scan for stats that marketers can cite in their own blog posts, ebooks, and infographics.

Not a marketer? You might have seen our viral  Games of Thrones post where we mapped every single betrayal within the show… (and there were A LOT).

Game of thrones statistical infographic

One of the best things about infographics? Anyone can make them, even if you don’t have a design background. Plus infographics are fun  and easy to share on social media or in your own blog!

How to create a statistical infographic:

  • Pick an infographic template that fits your topic.
  • Customize the icons , charts , pictograms and maps to fit your data.
  • Customize the color scheme , fonts and decorative visuals to fit your brand.
  • Share your infographic design in a blog post , on social media , in a white paper –anywhere you need to communicate data in an engaging way!

Keep reading for 20 statistical infographic templates to get you started, along with some helpful infographic design tips and inspirational statistical infographic ideas. &nbsp:

1. Use icons to illustrate and emphasize key statistics in your infographic

Icons are simple vector visuals that convey concepts. They’re perfect for illustrating and reinforcing statistics on your infographic.

  • Pick an icon that reflects the theme of your statistic.
  • Place the icon beside your statistic to draw attention to it.
  • Pick a font style and color that matches your icon for the statistic text.

For example, look at how these infographic templates use icons to draw attention to each statistic:

Real Estate Market Report Business Infographic Template

New to the world of icons? Watch: Everything you need to know about ICONS in less than 3 minutes

2.  Divide your statistical infographic into sections using colored blocks

A simple but effective way to organize your statistical infographic, while also making the information pop, is to divide the data into segments using solid colored blocks.

You can pick a different color for every section, or alternate between two. Take a look at what this infographic example does to emphasize each of the 6 infographic statistics:

statistical infographic templates

In this presentation design statistics example white blocks have been  used on a blue background to help break up the sections of the statistical infographic. This helps achieve a clean and professional look.

3. Create a pictogram to visualize your statistic

Pictograms are data visualization where each unit is represented by an icon. They’re a creative way to visualize a statistic, especially if you’re creating an infographic for social media.

How to make a pictogram:

  • Focus on one shocking, surprising or empowering statistic.
  • Use icons with a darker shade and a lighter shade of the same color to show a percentage.
  • Include descriptive text under the pictogram and pick a bold font to emphasize the number.

Take a look at how this social media infographic combines a pictogram with big, bold text to create an infographic with impact:

statistical infographic templates

You can use a pictochart as the main focus of an infographic, like in the statistical infographic template above, or as a smaller section with a template like in this example:

Vintage agriculture statistics infograph template

4. Use a variety of chart types to give your statistical infographic variety

Looking at a row of bar charts with the same style can make it easy for your eyes to skim and miss information. Finding different ways to visualize your statistics will help make your infographic design more engaging.

Try using a bar chart or pie chart for one section and a map for another section, or a pictogram to highlight a particularly important statistic. Check out our full guide on how to pick the right type of charts for your data.

For example, this statistical infographic combines two types of charts and a timeline to make the information engaging:

statistical infographic template

5. Clearly frame the problem or question that your statistic addresses

It’s important to give your audience context for why they should care about your statistic. That’s why, if you’re presenting your data in a chart, it’s good practice to include a description under your chart. If you’re pressed for space, at least include a descriptive header.

For example, this powerpoint slide template provides context for the chart in the side bar by explaining the problem (dealing with customer complaints). Then, a description under the chart describes the data and suggests what readers should take away from it:

statistical infographic templates

You can use a combination of text and icons, as well as numbers in a bold font to help express to readers why your statistic is important. For this Fireworks Safety infographic this approach of icons and text helps convey the seriousness of the situation to readers instantly.

Fireworks safety statistical infographic template.

6. Use a contrasting color to highlight a point on a chart that you want readers to notice

If you’re using data to back up an argument you’re making, then you want to make sure that people take away the right information from your charts. In that case, using a color that highlights the particular data point you want them to look at can help.

Pick one color for the rest of the bars, sections or points on your chart, and pick one contrasting color for the particular point you want to emphasize.

Take a look at how this statistical infographic chart uses a contrasting color and an icon to draw attention to “Big Data”:

statistical infographic templates

If you are creating your statistical infographic for a brand or company make sure to use their brand colors and brand fonts in the design. Making sure that you use the same colors and fonts throughout all of the materials you produce is really important for professional looking designs.

It’s super easy with Venngage’s My Brand Kit tool. Business users can upload their logos and fonts, and select a color palette and see it instantly applied to their designs.

7. Annotate your charts clearly so that your data is easy to understand

While you should generally include a description of your chart to give your readers context, you may also want to annotate your charts to give readers a deeper understanding of particular points.

This is particularly helpful if you want to explain outlier points on a chart. You can annotate your charts by simply as adding a label or brief description and highlighting particular points.

For example, look at how this statistical infographic template uses a red circle to highlight two particular points, and a label to explain why the numbers dip so much at that one point:

travel statistical infographic

8. Don’t be afraid to give your statistical infographic personality with quirky icons and visual motifs

Just because you’re working with statistics, doesn’t mean you infographic design has to be dry. Especially if your brand is known for being fun and approachable!

Icons are the perfect way to introduce some personality to your design. Pick icons that reflect the theme of your data, with colors that match your brand and/or the mood you want your statistical infographic to convey.

For a fun example, take a look at how speech bubble icons are used in this coffee infographic:

coffee infographic statistical infographic templates

If you are creating a statistical infographic about a serious or sensitive subject, you can still use icons to create bold visual elements. In this LBGTQ infographic example, the stat “ 4/10 LGBT Youth believe their community is not accepting of LGBT persons”  uses pink crosses and simple black icons to add impact to that statement.

9. Create an illustration about your infographic statistics using icons

Another creative way you can use icons is to use them as the building blocks for an illustration. Search for icons (Venngage has a library of over 40,000….) of objects you want to include, and arrange the icons the same way you would arrange parts of a drawing.

For example, this statistical infographic template uses speech bubble icons to illustrate conversations happening:

statistical infographic template

In this coffee infographic various icons have been used to illustrate the whole story of coffee in a visual appealing way. The use of arrows really helps propel the journey forward, and we can see the progression of the seeds to the plants really easily.

Coffee infographic statistical infographic example

10. Group your statistics into sections based on the topic, key information, or region of the data

To encourage people to find patterns and make connections with your data, it can be helpful to group the data into sections. Look for connecting characteristics or theme in your statistics and group them into sections in your infographic, with descriptive section headers.

Ways you can group data in your statistical infographic:

  • By demographic
  • By time period

For example, this statistical infographic template groups data by region and topic:

statistical infographic template

In this statistical infographic example, we’ve grouped information into specific “company culture myths”, and then used a combination of charts, graphs, and text as well as visual cues like green fonts and check marks.

Company culture myths statistical infographic

Breaking the infographic up like this into “sections” helps the reader digest information more easily. Want to see how we used this infographic? Check out our Busting 8 Company Culture Myths blog post.

11. Use directional cues in your statistical infograph to guide readers’ eyes to the most important data

Smart infographic design means thinking about how your audience will read your infographic.  

Things to think about it when you design your infographic:

  • What is the biggest thing you want them to take away from reading your infographic?
  • What information do you absolutely not want them to miss?
  • What order do you want them to read the information in?

In all of those cases, directional cues can guide readers to the information you want.

Directional cues are visual indicators of where a reader should look. Think visuals like arrows, lines, pointing, numbers, and eyes looking in a certain direction.

For example, this statistical infographic template uses lines to guide readers from section to section. The zig-zag layout also helps keep readers engaged, since it’s a break from your typical right-to-left layout:

statistical infographic template

Directional cues don’t always have to be as obvious as arrows or connecting lines though. Sometimes adding bold headers is enough to guide the readers eyes down the page.

In the statistical infographic we created for our Marketing Strategies blog post , we used bold colors in the header banners to help break up the sections, and to entice our audience to keep reading.

Marketing Strategy Statistics Infographic template

12. Use one bold color on a neutral background to make numbers, icons and key text pop

When set against a neutral or greyscale background, color highlights really stand out. If you want specific number or text to stand out, make those key parts a bold, bright color. That way, even if someone is just skimming over your infographic, they won’t likely miss those parts.

Take a look at how this infographic template uses color to make a few key elements pop out at you:

statistical infographic template

13. Use color highlights and matching flat icons for a modern, minimalist design

Do you want to put your statistics forward, without too many distractions? Then you may want to opt for a more minimalist design.

Use a neutral background color and make fonts and a few flat icons the backbone of your design. For example, this infographic uses a light blue accent color to emphasize the statistics:

statistical infographic templates

14. Overlay charts on a background image that reflects the theme of the data you are representing

A simple hack for making charts more engaging is to place them over a background image.

Make sure the background image has muted colors, so the chart numbers and points stand out. You can do that by selecting the background image and adjusting the image opacity to make it more see-through.

Adjust image opacity on your statistical infographic venngage

The result is a chart with a background image that reflects the theme of the data, but doesn’t take away from the data.

statistical infographic templates

15. Pick one shocking or game-changing statistic for a social media infographic

When you’re creating infographics specifically for social media, the key is to not go overboard with your design. Since people will probably be looking at your infographic on mobile, you need to optimize your image for mobile viewing.

A few key things to keep in mind when designing a social media infographic for social media:

  • Keep your infographic brief and focused on one key statistic.
  • Use brief text in bold, easy to read fonts.
  • Use one focal visual to stop readers in their tracks and draw them in.

For example, this social media infographic template uses an eye icon to grab people’s attention. Then, the infographic pulls them in with a relevant statistic to the audience (in this case, marketers):

statistical infographic templates

Got too many interesting statistics to just pick one? If you want to share multiple statistics within your infographic make sure that you differentiate each statistic with a different design. Separating statistics this way helps each statistic deliver impact without your infographic becoming confusing.

Obesity childhood statistical infographic template

16. Number your list of statistics to make it easier for readers to scan your infographic

Articles with numbers in the titles  are popular. Using the same token, you can number the points on your infographic to encourage people to want to read it.

Something about a numbered list just feels nice and organized!

According to our  study on blog titles , 3, 4, 5, 7 and 10 are actually the best numbers to use in a blog article title or an infographic. This statistical infographic template uses the number 7:

statistical infographic templates

17. Try using a light text and visuals on a dark background for a boldly contrasting design

We’re all used to designs with stark white backgrounds and cool, metallic accents. If you want your design to stand out, try making your infographic design unexpected.

One way to do that is to use a dark background, with light accent colors. Just make sure that your text is easy to read!

For example, this statistical infographic template uses a bold color scheme of white text and charts on a black background, with shadow-like grey icons.

walking your dog statistical infographic

18. Use statistical infographics as a marketing material

Infographics are highly visual, highly shareable graphics that are perfect to use as a marketing material for your business. Adding extra value for your customers or clients is a great way to help build your reputation and stand out amongst your competitors.

Since statistical infographics are used to visualize complex ideas or data, a real estate infographic can be used to help explain the current market, the real estate progress or specific features of the property.

In this real estate infographic example a variety of icons, data, and design styles are used to help clearly and easily explain a complicated element of rental properties.

Real estate statistical infographic template

Using a statistical infographic is also a great way to promote your website. Blog posts or articles can easily be turned into infographics which can then be shared on social media. It’s something that we at Venngage do so often that we even wrote an entire blog post on repurposing content !

For this healthy living website, they created a food infographic to help share their findings about healthy countries around the world:

Healthy eating around the world infographic statistical template

When you set out to create a statistical infographic, the most important thing to focus on is making the data easy to understand. When in doubt, ask someone to look your infographic over and see if they understand the information.

Want more infographic design tips? Here are some more guides:

9 Infographic Templates to Help You Present Data Visually

10 Flow Chart Templates, Design Tips and Examples

20 Timeline Template Examples and Design Tips

6 Comparison Infographic Templates

9 Engaging Process Infographic Template Examples

infographic about solving problems in hypothesis testing

Snapsolve any problem by taking a picture. Try it in the Numerade app?

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

8.4: Hypothesis Test Examples for Proportions

  • Last updated
  • Save as PDF
  • Page ID 11533

  • In a hypothesis test problem, you may see words such as "the level of significance is 1%." The "1%" is the preconceived or preset \(\alpha\).
  • The statistician setting up the hypothesis test selects the value of α to use before collecting the sample data.
  • If no level of significance is given, a common standard to use is \(\alpha = 0.05\).
  • When you calculate the \(p\)-value and draw the picture, the \(p\)-value is the area in the left tail, the right tail, or split evenly between the two tails. For this reason, we call the hypothesis test left, right, or two tailed.
  • The alternative hypothesis, \(H_{a}\), tells you if the test is left, right, or two-tailed. It is the key to conducting the appropriate test.
  • \(H_{a}\) never has a symbol that contains an equal sign.
  • Thinking about the meaning of the \(p\)-value: A data analyst (and anyone else) should have more confidence that he made the correct decision to reject the null hypothesis with a smaller \(p\)-value (for example, 0.001 as opposed to 0.04) even if using the 0.05 level for alpha. Similarly, for a large p -value such as 0.4, as opposed to a \(p\)-value of 0.056 (\(\alpha = 0.05\) is less than either number), a data analyst should have more confidence that she made the correct decision in not rejecting the null hypothesis. This makes the data analyst use judgment rather than mindlessly applying rules.

Full Hypothesis Test Examples

Example \(\PageIndex{7}\)

Joon believes that 50% of first-time brides in the United States are younger than their grooms. She performs a hypothesis test to determine if the percentage is the same or different from 50% . Joon samples 100 first-time brides and 53 reply that they are younger than their grooms. For the hypothesis test, she uses a 1% level of significance.

Set up the hypothesis test:

The 1% level of significance means that α = 0.01. This is a test of a single population proportion .

\(H_{0}: p = 0.50\)  \(H_{a}: p \neq 0.50\)

The words "is the same or different from" tell you this is a two-tailed test.

Calculate the distribution needed:

Random variable: \(P′ =\) the percent of of first-time brides who are younger than their grooms.

Distribution for the test: The problem contains no mention of a mean. The information is given in terms of percentages. Use the distribution for P′ , the estimated proportion.

\[P' - N\left(p, \sqrt{\frac{p-q}{n}}\right)\nonumber \]

\[P' - N\left(0.5, \sqrt{\frac{0.5-0.5}{100}}\right)\nonumber \]

where \(p = 0.50, q = 1−p = 0.50\), and \(n = 100\)

Calculate the p -value using the normal distribution for proportions:

\[p\text{-value} = P(p′ < 0.47 or p′ > 0.53) = 0.5485\nonumber \]

where \[x = 53, p' = \frac{x}{n} = \frac{53}{100} = 0.53\nonumber \].

Interpretation of the \(p\text{-value})\: If the null hypothesis is true, there is 0.5485 probability (54.85%) that the sample (estimated) proportion \(p'\) is 0.53 or more OR 0.47 or less (see the graph in Figure).

Normal distribution curve of the percent of first time brides who are younger than the groom with values of 0.47, 0.50, and 0.53 on the x-axis. Vertical upward lines extend from 0.47 and 0.53 to the curve. 1/2(p-values) are calculated for the areas on outsides of 0.47 and 0.53.

\(\mu = p = 0.50\) comes from \(H_{0}\), the null hypothesis.

\(p′ = 0.53\). Since the curve is symmetrical and the test is two-tailed, the \(p′\) for the left tail is equal to \(0.50 – 0.03 = 0.47\) where \(\mu = p = 0.50\). (0.03 is the difference between 0.53 and 0.50.)

Compare \(\alpha\) and the \(p\text{-value}\):

Since \(\alpha = 0.01\) and \(p\text{-value} = 0.5485\). \(\alpha < p\text{-value}\).

Make a decision: Since \(\alpha < p\text{-value}\), you cannot reject \(H_{0}\).

Conclusion: At the 1% level of significance, the sample data do not show sufficient evidence that the percentage of first-time brides who are younger than their grooms is different from 50%.

The \(p\text{-value}\) can easily be calculated.

Press STAT and arrow over to TESTS . Press 5:1-PropZTest . Enter .5 for \(p_{0}\), 53 for \(x\) and 100 for \(n\). Arrow down to Prop and arrow to not equals \(p_{0}\). Press ENTER . Arrow down to Calculate and press ENTER . The calculator calculates the \(p\text{-value}\) (\(p = 0.5485\)) and the test statistic (\(z\)-score). Prop not equals .5 is the alternate hypothesis. Do this set of instructions again except arrow to Draw (instead of Calculate ). Press ENTER . A shaded graph appears with \(\(z\) = 0.6\) (test statistic) and \(p = 0.5485\) (\(p\text{-value}\)). Make sure when you use Draw that no other equations are highlighted in \(Y =\) and the plots are turned off.

The Type I and Type II errors are as follows:

The Type I error is to conclude that the proportion of first-time brides who are younger than their grooms is different from 50% when, in fact, the proportion is actually 50%. (Reject the null hypothesis when the null hypothesis is true).

The Type II error is there is not enough evidence to conclude that the proportion of first time brides who are younger than their grooms differs from 50% when, in fact, the proportion does differ from 50%. (Do not reject the null hypothesis when the null hypothesis is false.)

Exercise \(\PageIndex{7}\)

A teacher believes that 85% of students in the class will want to go on a field trip to the local zoo. She performs a hypothesis test to determine if the percentage is the same or different from 85%. The teacher samples 50 students and 39 reply that they would want to go to the zoo. For the hypothesis test, use a 1% level of significance.

First, determine what type of test this is, set up the hypothesis test, find the \(p\text{-value}\), sketch the graph, and state your conclusion.

Since the problem is about percentages, this is a test of single population proportions.

  • \(H_{0} : p = 0.85\)
  • \(H_{a}: p \neq 0.85\)
  • \(p = 0.7554\)

9.6.13.png

Because \(p > \alpha\), we fail to reject the null hypothesis. There is not sufficient evidence to suggest that the proportion of students that want to go to the zoo is not 85%.

Example \(\PageIndex{8}\)

Suppose a consumer group suspects that the proportion of households that have three cell phones is 30%. A cell phone company has reason to believe that the proportion is not 30%. Before they start a big advertising campaign, they conduct a hypothesis test. Their marketing people survey 150 households with the result that 43 of the households have three cell phones.

Set up the Hypothesis Test:

\(H_{0}: p = 0.30, H_{a}: p \neq 0.30\)

Determine the distribution needed:

The random variable is \(P′ =\) proportion of households that have three cell phones.

The distribution for the hypothesis test is \(P' - N\left(0.30, \sqrt{\frac{(0.30 \cdot 0.70)}{150}}\right)\)

Exercise 9.6.8.2

a. The value that helps determine the \(p\text{-value}\) is \(p′\). Calculate \(p′\).

a. \(p' = \frac{x}{n}\) where \(x\) is the number of successes and \(n\) is the total number in the sample.

\(x = 43, n = 150\)

\(p′ = 43150\)

Exercise 9.6.8.3

b. What is a success for this problem?

b. A success is having three cell phones in a household.

Exercise 9.6.8.4

c. What is the level of significance?

c. The level of significance is the preset \(\alpha\). Since \(\alpha\) is not given, assume that \(\alpha = 0.05\).

Exercise 9.6.8.5

d. Draw the graph for this problem. Draw the horizontal axis. Label and shade appropriately.

Calculate the \(p\text{-value}\).

d. \(p\text{-value} = 0.7216\)

Exercise 9.6.8.6

e. Make a decision. _____________(Reject/Do not reject) \(H_{0}\) because____________.

e. Assuming that \(\alpha = 0.05, \alpha < p\text{-value}\). The decision is do not reject \(H_{0}\) because there is not sufficient evidence to conclude that the proportion of households that have three cell phones is not 30%.

Exercise \(\PageIndex{8}\)

Marketers believe that 92% of adults in the United States own a cell phone. A cell phone manufacturer believes that number is actually lower. 200 American adults are surveyed, of which, 174 report having cell phones. Use a 5% level of significance. State the null and alternative hypothesis, find the p -value, state your conclusion, and identify the Type I and Type II errors.

  • \(H_{0}: p = 0.92\)
  • \(H_{a}: p < 0.92\)
  • \(p\text{-value} = 0.0046\)

Because \(p < 0.05\), we reject the null hypothesis. There is sufficient evidence to conclude that fewer than 92% of American adults own cell phones.

  • Type I Error: To conclude that fewer than 92% of American adults own cell phones when, in fact, 92% of American adults do own cell phones (reject the null hypothesis when the null hypothesis is true).
  • Type II Error: To conclude that 92% of American adults own cell phones when, in fact, fewer than 92% of American adults own cell phones (do not reject the null hypothesis when the null hypothesis is false).

The next example is a poem written by a statistics student named Nicole Hart. The solution to the problem follows the poem. Notice that the hypothesis test is for a single population proportion. This means that the null and alternate hypotheses use the parameter \(p\). The distribution for the test is normal. The estimated proportion \(p′\) is the proportion of fleas killed to the total fleas found on Fido. This is sample information. The problem gives a preconceived \(\alpha = 0.01\), for comparison, and a 95% confidence interval computation. The poem is clever and humorous, so please enjoy it!

Example \(\PageIndex{9}\)

My dog has so many fleas,

They do not come off with ease. As for shampoo, I have tried many types Even one called Bubble Hype, Which only killed 25% of the fleas, Unfortunately I was not pleased.

I've used all kinds of soap, Until I had given up hope Until one day I saw An ad that put me in awe.

A shampoo used for dogs Called GOOD ENOUGH to Clean a Hog Guaranteed to kill more fleas.

I gave Fido a bath And after doing the math His number of fleas Started dropping by 3's! Before his shampoo I counted 42.

At the end of his bath, I redid the math And the new shampoo had killed 17 fleas. So now I was pleased.

Now it is time for you to have some fun With the level of significance being .01, You must help me figure out

Use the new shampoo or go without?

\(H_{0}: p \leq 0.25\)   \(H_{a}: p > 0.25\)

In words, CLEARLY state what your random variable \(\bar{X}\) or \(P′\) represents.

\(P′ =\) The proportion of fleas that are killed by the new shampoo

State the distribution to use for the test.

\[N\left(0.25, \sqrt{\frac{(0.25){1-0.25}}{42}}\right)\nonumber \]

Test Statistic: \(z = 2.3163\)

Calculate the \(p\text{-value}\) using the normal distribution for proportions:

\[p\text{-value} = 0.0103\nonumber \]

In one to two complete sentences, explain what the p -value means for this problem.

If the null hypothesis is true (the proportion is 0.25), then there is a 0.0103 probability that the sample (estimated) proportion is 0.4048 \(\left(\frac{17}{42}\right)\) or more.

Use the previous information to sketch a picture of this situation. CLEARLY, label and scale the horizontal axis and shade the region(s) corresponding to the \(p\text{-value}\).

Normal distribution graph of the proportion of fleas killed by the new shampoo with values of 0.25 and 0.4048 on the x-axis. A vertical upward line extends from 0.4048 to the curve and the area to the left of this is shaded in. The test statistic of the sample proportion is listed.

Indicate the correct decision (“reject” or “do not reject” the null hypothesis), the reason for it, and write an appropriate conclusion, using complete sentences.

Conclusion: At the 1% level of significance, the sample data do not show sufficient evidence that the percentage of fleas that are killed by the new shampoo is more than 25%.

Construct a 95% confidence interval for the true mean or proportion. Include a sketch of the graph of the situation. Label the point estimate and the lower and upper bounds of the confidence interval.

Normal distribution graph of the proportion of fleas killed by the new shampoo with values of 0.26, 17/42, and 0.55 on the x-axis. A vertical upward line extends from 0.26 and 0.55. The area between these two points is equal to 0.95.

Confidence Interval: (0.26,0.55) We are 95% confident that the true population proportion p of fleas that are killed by the new shampoo is between 26% and 55%.

This test result is not very definitive since the \(p\text{-value}\) is very close to alpha. In reality, one would probably do more tests by giving the dog another bath after the fleas have had a chance to return.

Example \(\PageIndex{11}\)

In a study of 420,019 cell phone users, 172 of the subjects developed brain cancer. Test the claim that cell phone users developed brain cancer at a greater rate than that for non-cell phone users (the rate of brain cancer for non-cell phone users is 0.0340%). Since this is a critical issue, use a 0.005 significance level. Explain why the significance level should be so low in terms of a Type I error.

We will follow the four-step process.

  • \(H_{0}: p \leq 0.00034\)
  • \(H_{a}: p > 0.00034\)

If we commit a Type I error, we are essentially accepting a false claim. Since the claim describes cancer-causing environments, we want to minimize the chances of incorrectly identifying causes of cancer.

  • We will be testing a sample proportion with \(x = 172\) and \(n = 420,019\). The sample is sufficiently large because we have \(np = 420,019(0.00034) = 142.8\), \(nq = 420,019(0.99966) = 419,876.2\), two independent outcomes, and a fixed probability of success \(p = 0.00034\). Thus we will be able to generalize our results to the population.

Figure 9.6.11.

Figure 9.6.12.

  • Since the \(p\text{-value} = 0.0073\) is greater than our alpha value \(= 0.005\), we cannot reject the null. Therefore, we conclude that there is not enough evidence to support the claim of higher brain cancer rates for the cell phone users.

Example \(\PageIndex{12}\)

According to the US Census there are approximately 268,608,618 residents aged 12 and older. Statistics from the Rape, Abuse, and Incest National Network indicate that, on average, 207,754 rapes occur each year (male and female) for persons aged 12 and older. This translates into a percentage of sexual assaults of 0.078%. In Daviess County, KY, there were reported 11 rapes for a population of 37,937. Conduct an appropriate hypothesis test to determine if there is a statistically significant difference between the local sexual assault percentage and the national sexual assault percentage. Use a significance level of 0.01.

We will follow the four-step plan.

  • We need to test whether the proportion of sexual assaults in Daviess County, KY is significantly different from the national average.
  • \(H_{0}: p = 0.00078\)
  • \(H_{a}: p \neq 0.00078\)

Figure 9.6.13.

Figure 9.6.14.

  • Since the \(p\text{-value}\), \(p = 0.00063\), is less than the alpha level of 0.01, the sample data indicates that we should reject the null hypothesis. In conclusion, the sample data support the claim that the proportion of sexual assaults in Daviess County, Kentucky is different from the national average proportion.

The hypothesis test itself has an established process. This can be summarized as follows:

  • Determine \(H_{0}\) and \(H_{a}\). Remember, they are contradictory.
  • Determine the random variable.
  • Determine the distribution for the test.
  • Draw a graph, calculate the test statistic, and use the test statistic to calculate the \(p\text{-value}\). (A z -score and a t -score are examples of test statistics.)
  • Compare the preconceived α with the p -value, make a decision (reject or do not reject H 0 ), and write a clear conclusion using English sentences.

Notice that in performing the hypothesis test, you use \(\alpha\) and not \(\beta\). \(\beta\) is needed to help determine the sample size of the data that is used in calculating the \(p\text{-value}\). Remember that the quantity \(1 – \beta\) is called the Power of the Test . A high power is desirable. If the power is too low, statisticians typically increase the sample size while keeping α the same.If the power is low, the null hypothesis might not be rejected when it should be.

  • Data from Amit Schitai. Director of Instructional Technology and Distance Learning. LBCC.
  • Data from Bloomberg Businessweek . Available online at http://www.businessweek.com/news/2011- 09-15/nyc-smoking-rate-falls-to-record-low-of-14-bloomberg-says.html.
  • Data from energy.gov. Available online at http://energy.gov (accessed June 27. 2013).
  • Data from Gallup®. Available online at www.gallup.com (accessed June 27, 2013).
  • Data from Growing by Degrees by Allen and Seaman.
  • Data from La Leche League International. Available online at www.lalecheleague.org/Law/BAFeb01.html.
  • Data from the American Automobile Association. Available online at www.aaa.com (accessed June 27, 2013).
  • Data from the American Library Association. Available online at www.ala.org (accessed June 27, 2013).
  • Data from the Bureau of Labor Statistics. Available online at http://www.bls.gov/oes/current/oes291111.htm .
  • Data from the Centers for Disease Control and Prevention. Available online at www.cdc.gov (accessed June 27, 2013)
  • Data from the U.S. Census Bureau, available online at quickfacts.census.gov/qfd/states/00000.html (accessed June 27, 2013).
  • Data from the United States Census Bureau. Available online at www.census.gov/hhes/socdemo/language/.
  • Data from Toastmasters International. Available online at http://toastmasters.org/artisan/deta...eID=429&Page=1 .
  • Data from Weather Underground. Available online at www.wunderground.com (accessed June 27, 2013).
  • Federal Bureau of Investigations. “Uniform Crime Reports and Index of Crime in Daviess in the State of Kentucky enforced by Daviess County from 1985 to 2005.” Available online at http://www.disastercenter.com/kentucky/crime/3868.htm (accessed June 27, 2013).
  • “Foothill-De Anza Community College District.” De Anza College, Winter 2006. Available online at research.fhda.edu/factbook/DA...t_da_2006w.pdf.
  • Johansen, C., J. Boice, Jr., J. McLaughlin, J. Olsen. “Cellular Telephones and Cancer—a Nationwide Cohort Study in Denmark.” Institute of Cancer Epidemiology and the Danish Cancer Society, 93(3):203-7. Available online at http://www.ncbi.nlm.nih.gov/pubmed/11158188 (accessed June 27, 2013).
  • Rape, Abuse & Incest National Network. “How often does sexual assault occur?” RAINN, 2009. Available online at www.rainn.org/get-information...sexual-assault (accessed June 27, 2013).

Contributors and Attributions

Barbara Illowsky and Susan Dean (De Anza College) with many other contributing authors. Content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/[email protected] .

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Statistics and probability

Course: statistics and probability   >   unit 12, simple hypothesis testing.

  • Idea behind hypothesis testing
  • Examples of null and alternative hypotheses
  • Writing null and alternative hypotheses
  • P-values and significance tests
  • Comparing P-values to different significance levels
  • Estimating a P-value from a simulation
  • Estimating P-values from simulations
  • Using P-values to make conclusions
  • Your answer should be
  • an integer, like 6 ‍  
  • an exact decimal, like 0.75 ‍  
  • a simplified proper fraction, like 3 / 5 ‍  
  • a simplified improper fraction, like 7 / 4 ‍  
  • a mixed number, like 1   3 / 4 ‍  
  • a percent, like 12.34 % ‍  
  • (Choice A)   We cannot reject the hypothesis. A We cannot reject the hypothesis.
  • (Choice B)   We should reject the hypothesis. B We should reject the hypothesis.

IMAGES

  1. SDS 303: Proper Hypothesis Testing For Every Field

    infographic about solving problems in hypothesis testing

  2. Hypothesis testing Infographics by: Mariz Turdanes

    infographic about solving problems in hypothesis testing

  3. How to do Hypothesis Testing in Data Science in 2021

    infographic about solving problems in hypothesis testing

  4. Hypothesis Testing Infographic

    infographic about solving problems in hypothesis testing

  5. Hypothesis testing Infographics by: Mariz Turdanes

    infographic about solving problems in hypothesis testing

  6. Hypothesis testing Infographics by: Mariz Turdanes

    infographic about solving problems in hypothesis testing

VIDEO

  1. problem solving involving hypothesis testing

  2. Animated Infographic

  3. The Math Hypothesis That Could Break the World! #maths #riemann #curiousminds #mystery

  4. CP_1 Investigating the motion of everyday objects (ESQ 1)

  5. Practice Problems 8 (Nonparametric Hypothesis Testing)

  6. Steps in Hypothesis testing

COMMENTS

  1. Hypothesis testing Infographics by: Mariz Turdanes

    Infographic. Lorem ipsum dolor sit amet consecteteur. SOLVING PROBLEMS IN HYPOTESISTESTING. INFO. INFO + INFO + INFO

  2. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  3. Hypothesis Testing Solved Problems

    This statistics video tutorial provides practice problems on hypothesis testing. It explains how to tell if you should Reject the Null Hypothesis or Fail to...

  4. 1.2: The 7-Step Process of Statistical Hypothesis Testing

    Step 7: Based on steps 5 and 6, draw a conclusion about H0. If the F\calculated F \calculated from the data is larger than the Fα F α, then you are in the rejection region and you can reject the null hypothesis with (1 − α) ( 1 − α) level of confidence. Note that modern statistical software condenses steps 6 and 7 by providing a p p -value.

  5. 9.E: Hypothesis Testing with One Sample (Exercises)

    An Introduction to Statistics class in Davies County, KY conducted a hypothesis test at the local high school (a medium sized-approximately 1,200 students-small city demographic) to determine if the local high school's percentage was lower. One hundred fifty students were chosen at random and surveyed.

  6. 9.1 Hypothesis Testing Problem Solving Steps

    Hypothesis testing is based directly on sampling theory and the probabilities that the sampling theory gives. Here are the steps we will follow : Hypotheses: Formulate and . State which is the claim; Critical statistic: Find the critical values and regions. (Use tables of , , , etc. values). Test statistic: Compute the {\em test statistic} from ...

  7. Introduction to Hypothesis Testing with Examples

    In binary hypothesis testing problems, we'll often be presented with two choices which we call hypotheses, and we'll have to decide whether to pick one or the other. The hypotheses are represented by H₀ and H₁ and are called null and alternate hypotheses respectively. In hypothesis testing, we either reject or accept the null hypothesis.

  8. 9.1: Introduction to Hypothesis Testing

    This page titled 9.1: Introduction to Hypothesis Testing is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist ( Random Services) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request. In hypothesis testing, the goal is ...

  9. Significance tests (hypothesis testing)

    Unit test. Significance tests give us a formal process for using sample data to evaluate the likelihood of some claim about a population value. Learn how to conduct significance tests and calculate p-values to see how likely a sample result is to occur by random chance. You'll also see how we use p-values to make conclusions about hypotheses.

  10. Hypothesis Testing In Real Life. Real world problems solved with Math

    Hypothesis Testing. Hypothesis Tests, or Statistical Hypothesis Testing, is a technique used to compare two datasets, or a sample from a dataset. It is a statistical inference method so, in the end of the test, you'll draw a conclusion — you'll infer something — about the characteristics of what you're comparing.

  11. PDF Hypothesis Testing

    23.1 How Hypothesis Tests Are Reported in the News 1. Determine the null hypothesis and the alternative hypothesis. 2. Collect and summarize the data into a test statistic. 3. Use the test statistic to determine the p-value. 4. The result is statistically significant if the p-value is less than or equal to the level of significance.

  12. PDF Hypothesis Testing I & II

    4. Understand the relation between hypothesis testing, confidence intervals, likelihood and Bayesian methods and their uses for inference purposes. II. The Hypothesis Testing Paradigm and One-Sample Tests A. One-Sample Tests . To motivate the hypothesis testing paradigm we review first two problems. In both cases there is a single sample of data.

  13. Hypothesis Testing: Solved Example Problems

    Statistical Inference : Hypothesis Testing: Solved Example Problems. Example 8.14. An auto company decided to introduce a new six cylinder car whose mean petrol consumption is claimed to be lower than that of the existing auto engine. It was found that the mean petrol consumption for the 50 cars was 10 km per litre with a standard deviation of ...

  14. 8.1: The Elements of Hypothesis Testing

    Hypothesis testing is a statistical procedure in which a choice is made between a null hypothesis and an alternative hypothesis based on information in a sample. The end result of a hypotheses testing procedure is a choice of one of the following two possible conclusions: Reject H0. H 0. (and therefore accept Ha.

  15. Hypothesis Testing Solved Examples(Questions and Solutions)

    View Solution to Question 1. Question 2. A professor wants to know if her introductory statistics class has a good grasp of basic math. Six students are chosen at random from the class and given a math proficiency test. The professor wants the class to be able to score above 70 on the test. The six students get the following scores:62, 92, 75 ...

  16. Solved Directions: Create an infographic chart about the

    Expert-verified. Directions: Create an infographic chart about the steps in solving problems involving hypothesis testing on a short bond paper. Note: Be creative! If you have the resources, you may use different mobile applications (ex: Canva) in creating an infographic. Criteria for Creating an Infographic Chart Equivalent Points 10 Content ...

  17. 25+ Statistical Infographic Templates To Help Visualize Your Data

    2. Divide your statistical infographic into sections using colored blocks. A simple but effective way to organize your statistical infographic, while also making the information pop, is to divide the data into segments using solid colored blocks. You can pick a different color for every section, or alternate between two.

  18. Infographic chart about the steps in solving problems involving

    Step 1/8. 1. State the null hypothesis (H0) and the alternative hypothesis (H1) - H0: There is no significant difference or effect. - H1: There is a significant difference or effect. Step 2/8. 2. Choose the appropriate test statistic - Depending on the data type and distribution, choose the appropriate test (e.g., t-test, chi-square test, ANOVA ...

  19. 8.4: Hypothesis Test Examples for Proportions

    First, determine what type of test this is, set up the hypothesis test, find the p-value p -value, sketch the graph, and state your conclusion. Answer. Since the problem is about percentages, this is a test of single population proportions. H0: p = 0.85 H 0: p = 0.85. Ha: p ≠ 0.85 H a: p ≠ 0.85. p = 0.7554 p = 0.7554.

  20. Simple hypothesis testing (practice)

    Simple hypothesis testing. Niels has a Magic 8 -Ball, which is a toy used for fortune-telling or seeking advice. To consult the ball, you ask the ball a question and shake it. One of 5 different possible answers then appears at random in the ball. Niels sensed that the ball answers " Ask again later " too frequently.

  21. Answered: Make an infographic chart about solving…

    Publisher: HOLT MCDOUGAL. Glencoe Algebra 1, Student Edition, 9780079039897... Algebra. ISBN: 9780079039897. Author: Carter. Publisher: McGraw Hill. SEE MORE TEXTBOOKS. Solution for Make an infographic chart about solving problems in hypothesis testing.

  22. Question: Infographic chart about the steps in solving problems ...

    Infographic chart about the steps in solving problems involving hypothesis testing This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.

  23. Answered: work Infographic chart about the steps…

    work Infographic chart about the steps in solving problems involving hypothesis testing. A First Course in Probability (10th Edition) 10th Edition. ISBN: 9780134753119. Author: Sheldon Ross. Publisher: Sheldon Ross. Chapter1: Combinatorial Analysis. Section: Chapter Questions. Problem 1.1P: a.