This is the Difference Between a Hypothesis and a Theory

What to Know A hypothesis is an assumption made before any research has been done. It is formed so that it can be tested to see if it might be true. A theory is a principle formed to explain the things already shown in data. Because of the rigors of experiment and control, it is much more likely that a theory will be true than a hypothesis.

As anyone who has worked in a laboratory or out in the field can tell you, science is about process: that of observing, making inferences about those observations, and then performing tests to see if the truth value of those inferences holds up. The scientific method is designed to be a rigorous procedure for acquiring knowledge about the world around us.

hypothesis

In scientific reasoning, a hypothesis is constructed before any applicable research has been done. A theory, on the other hand, is supported by evidence: it's a principle formed as an attempt to explain things that have already been substantiated by data.

Toward that end, science employs a particular vocabulary for describing how ideas are proposed, tested, and supported or disproven. And that's where we see the difference between a hypothesis and a theory .

A hypothesis is an assumption, something proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

What is a Hypothesis?

A hypothesis is usually tentative, an assumption or suggestion made strictly for the objective of being tested.

When a character which has been lost in a breed, reappears after a great number of generations, the most probable hypothesis is, not that the offspring suddenly takes after an ancestor some hundred generations distant, but that in each successive generation there has been a tendency to reproduce the character in question, which at last, under unknown favourable conditions, gains an ascendancy. Charles Darwin, On the Origin of Species , 1859 According to one widely reported hypothesis , cell-phone transmissions were disrupting the bees' navigational abilities. (Few experts took the cell-phone conjecture seriously; as one scientist said to me, "If that were the case, Dave Hackenberg's hives would have been dead a long time ago.") Elizabeth Kolbert, The New Yorker , 6 Aug. 2007

What is a Theory?

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, its likelihood as truth is much higher than that of a hypothesis.

It is evident, on our theory , that coasts merely fringed by reefs cannot have subsided to any perceptible amount; and therefore they must, since the growth of their corals, either have remained stationary or have been upheaved. Now, it is remarkable how generally it can be shown, by the presence of upraised organic remains, that the fringed islands have been elevated: and so far, this is indirect evidence in favour of our theory . Charles Darwin, The Voyage of the Beagle , 1839 An example of a fundamental principle in physics, first proposed by Galileo in 1632 and extended by Einstein in 1905, is the following: All observers traveling at constant velocity relative to one another, should witness identical laws of nature. From this principle, Einstein derived his theory of special relativity. Alan Lightman, Harper's , December 2011

Non-Scientific Use

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch (though theory is more common in this regard):

The theory of the teacher with all these immigrant kids was that if you spoke English loudly enough they would eventually understand. E. L. Doctorow, Loon Lake , 1979 Chicago is famous for asking questions for which there can be no boilerplate answers. Example: given the probability that the federal tax code, nondairy creamer, Dennis Rodman and the art of mime all came from outer space, name something else that has extraterrestrial origins and defend your hypothesis . John McCormick, Newsweek , 5 Apr. 1999 In his mind's eye, Miller saw his case suddenly taking form: Richard Bailey had Helen Brach killed because she was threatening to sue him over the horses she had purchased. It was, he realized, only a theory , but it was one he felt certain he could, in time, prove. Full of urgency, a man with a mission now that he had a hypothesis to guide him, he issued new orders to his troops: Find out everything you can about Richard Bailey and his crowd. Howard Blum, Vanity Fair , January 1995

And sometimes one term is used as a genus, or a means for defining the other:

Laplace's popular version of his astronomy, the Système du monde , was famous for introducing what came to be known as the nebular hypothesis , the theory that the solar system was formed by the condensation, through gradual cooling, of the gaseous atmosphere (the nebulae) surrounding the sun. Louis Menand, The Metaphysical Club , 2001 Researchers use this information to support the gateway drug theory — the hypothesis that using one intoxicating substance leads to future use of another. Jordy Byrd, The Pacific Northwest Inlander , 6 May 2015 Fox, the business and economics columnist for Time magazine, tells the story of the professors who enabled those abuses under the banner of the financial theory known as the efficient market hypothesis . Paul Krugman, The New York Times Book Review , 9 Aug. 2009

Incorrect Interpretations of "Theory"

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general use to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

More Differences Explained

  • Epidemic vs. Pandemic
  • Diagnosis vs. Prognosis
  • Treatment vs. Cure

Word of the Day

See Definitions and Examples »

Get Word of the Day daily email!

Games & Quizzes

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Commonly Confused

'canceled' or 'cancelled', 'virus' vs. 'bacteria', your vs. you're: how to use them correctly, is it 'jail' or 'prison', 'deduction' vs. 'induction' vs. 'abduction', grammar & usage, every letter is silent, sometimes: a-z list of examples, how to use em dashes (—), en dashes (–) , and hyphens (-), the difference between 'i.e.' and 'e.g.', plural and possessive names: a guide, 31 useful rhetorical devices, pilfer: how to play and win, 8 words with fascinating histories, flower etymologies for your spring garden, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat.

Incorporate STEM journalism in your classroom

  • Exercise type: Discussion
  • Topic: Earth
  • Category: Research & Design

How a scientific theory is born

Theories, Hypotheses, and Laws: Definitions, examples, and their roles in science

by Anthony Carpi, Ph.D., Anne E. Egger, Ph.D.

Listen to this reading

Did you know that the idea of evolution had been part of Western thought for more than 2,000 years before Charles Darwin was born? Like many theories, the theory of evolution was the result of the work of many different scientists working in different disciplines over a period of time.

A scientific theory is an explanation inferred from multiple lines of evidence for some broad aspect of the natural world and is logical, testable, and predictive.

As new evidence comes to light, or new interpretations of existing data are proposed, theories may be revised and even change; however, they are not tenuous or speculative.

A scientific hypothesis is an inferred explanation of an observation or research finding; while more exploratory in nature than a theory, it is based on existing scientific knowledge.

A scientific law is an expression of a mathematical or descriptive relationship observed in nature.

Imagine yourself shopping in a grocery store with a good friend who happens to be a chemist. Struggling to choose between the many different types of tomatoes in front of you, you pick one up, turn to your friend, and ask her if she thinks the tomato is organic . Your friend simply chuckles and replies, "Of course it's organic!" without even looking at how the fruit was grown. Why the amused reaction? Your friend is highlighting a simple difference in vocabulary. To a chemist, the term organic refers to any compound in which hydrogen is bonded to carbon. Tomatoes (like all plants) are abundant in organic compounds – thus your friend's laughter. In modern agriculture, however, organic has come to mean food items grown or raised without the use of chemical fertilizers, pesticides, or other additives.

So who is correct? You both are. Both uses of the word are correct, though they mean different things in different contexts. There are, of course, lots of words that have more than one meaning (like bat , for example), but multiple meanings can be especially confusing when two meanings convey very different ideas and are specific to one field of study.

  • Scientific theories

The term theory also has two meanings, and this double meaning often leads to confusion. In common language, the term theory generally refers to speculation or a hunch or guess. You might have a theory about why your favorite sports team isn't playing well, or who ate the last cookie from the cookie jar. But these theories do not fit the scientific use of the term. In science, a theory is a well-substantiated and comprehensive set of ideas that explains a phenomenon in nature. A scientific theory is based on large amounts of data and observations that have been collected over time. Scientific theories can be tested and refined by additional research , and they allow scientists to make predictions. Though you may be correct in your hunch, your cookie jar conjecture doesn't fit this more rigorous definition.

All scientific disciplines have well-established, fundamental theories . For example, atomic theory describes the nature of matter and is supported by multiple lines of evidence from the way substances behave and react in the world around us (see our series on Atomic Theory ). Plate tectonic theory describes the large scale movement of the outer layer of the Earth and is supported by evidence from studies about earthquakes , magnetic properties of the rocks that make up the seafloor , and the distribution of volcanoes on Earth (see our series on Plate Tectonic Theory ). The theory of evolution by natural selection , which describes the mechanism by which inherited traits that affect survivability or reproductive success can cause changes in living organisms over generations , is supported by extensive studies of DNA , fossils , and other types of scientific evidence (see our Charles Darwin series for more information). Each of these major theories guides and informs modern research in those fields, integrating a broad, comprehensive set of ideas.

So how are these fundamental theories developed, and why are they considered so well supported? Let's take a closer look at some of the data and research supporting the theory of natural selection to better see how a theory develops.

Comprehension Checkpoint

  • The development of a scientific theory: Evolution and natural selection

The theory of evolution by natural selection is sometimes maligned as Charles Darwin 's speculation on the origin of modern life forms. However, evolutionary theory is not speculation. While Darwin is rightly credited with first articulating the theory of natural selection, his ideas built on more than a century of scientific research that came before him, and are supported by over a century and a half of research since.

  • The Fixity Notion: Linnaeus

Figure 1: Cover of the 1760 edition of Systema Naturae.

Figure 1: Cover of the 1760 edition of Systema Naturae .

Research about the origins and diversity of life proliferated in the 18th and 19th centuries. Carolus Linnaeus , a Swedish botanist and the father of modern taxonomy (see our module Taxonomy I for more information), was a devout Christian who believed in the concept of Fixity of Species , an idea based on the biblical story of creation. The Fixity of Species concept said that each species is based on an ideal form that has not changed over time. In the early stages of his career, Linnaeus traveled extensively and collected data on the structural similarities and differences between different species of plants. Noting that some very different plants had similar structures, he began to piece together his landmark work, Systema Naturae, in 1735 (Figure 1). In Systema , Linnaeus classified organisms into related groups based on similarities in their physical features. He developed a hierarchical classification system , even drawing relationships between seemingly disparate species (for example, humans, orangutans, and chimpanzees) based on the physical similarities that he observed between these organisms. Linnaeus did not explicitly discuss change in organisms or propose a reason for his hierarchy, but by grouping organisms based on physical characteristics, he suggested that species are related, unintentionally challenging the Fixity notion that each species is created in a unique, ideal form.

  • The age of Earth: Leclerc and Hutton

Also in the early 1700s, Georges-Louis Leclerc, a French naturalist, and James Hutton , a Scottish geologist, began to develop new ideas about the age of the Earth. At the time, many people thought of the Earth as 6,000 years old, based on a strict interpretation of the events detailed in the Christian Old Testament by the influential Scottish Archbishop Ussher. By observing other planets and comets in the solar system , Leclerc hypothesized that Earth began as a hot, fiery ball of molten rock, mostly consisting of iron. Using the cooling rate of iron, Leclerc calculated that Earth must therefore be at least 70,000 years old in order to have reached its present temperature.

Hutton approached the same topic from a different perspective, gathering observations of the relationships between different rock formations and the rates of modern geological processes near his home in Scotland. He recognized that the relatively slow processes of erosion and sedimentation could not create all of the exposed rock layers in only a few thousand years (see our module The Rock Cycle ). Based on his extensive collection of data (just one of his many publications ran to 2,138 pages), Hutton suggested that the Earth was far older than human history – hundreds of millions of years old.

While we now know that both Leclerc and Hutton significantly underestimated the age of the Earth (by about 4 billion years), their work shattered long-held beliefs and opened a window into research on how life can change over these very long timescales.

  • Fossil studies lead to the development of a theory of evolution: Cuvier

Figure 2: Illustration of an Indian elephant jaw and a mammoth jaw from Cuvier's 1796 paper.

Figure 2: Illustration of an Indian elephant jaw and a mammoth jaw from Cuvier's 1796 paper.

With the age of Earth now extended by Leclerc and Hutton, more researchers began to turn their attention to studying past life. Fossils are the main way to study past life forms, and several key studies on fossils helped in the development of a theory of evolution . In 1795, Georges Cuvier began to work at the National Museum in Paris as a naturalist and anatomist. Through his work, Cuvier became interested in fossils found near Paris, which some claimed were the remains of the elephants that Hannibal rode over the Alps when he invaded Rome in 218 BCE . In studying both the fossils and living species , Cuvier documented different patterns in the dental structure and number of teeth between the fossils and modern elephants (Figure 2) (Horner, 1843). Based on these data , Cuvier hypothesized that the fossil remains were not left by Hannibal, but were from a distinct species of animal that once roamed through Europe and had gone extinct thousands of years earlier: the mammoth. The concept of species extinction had been discussed by a few individuals before Cuvier, but it was in direct opposition to the Fixity of Species concept – if every organism were based on a perfectly adapted, ideal form, how could any cease to exist? That would suggest it was no longer ideal.

While his work provided critical evidence of extinction , a key component of evolution , Cuvier was highly critical of the idea that species could change over time. As a result of his extensive studies of animal anatomy, Cuvier had developed a holistic view of organisms , stating that the

number, direction, and shape of the bones that compose each part of an animal's body are always in a necessary relation to all the other parts, in such a way that ... one can infer the whole from any one of them ...

In other words, Cuvier viewed each part of an organism as a unique, essential component of the whole organism. If one part were to change, he believed, the organism could not survive. His skepticism about the ability of organisms to change led him to criticize the whole idea of evolution , and his prominence in France as a scientist played a large role in discouraging the acceptance of the idea in the scientific community.

  • Studies of invertebrates support a theory of change in species: Lamarck

Jean Baptiste Lamarck, a contemporary of Cuvier's at the National Museum in Paris, studied invertebrates like insects and worms. As Lamarck worked through the museum's large collection of invertebrates, he was impressed by the number and variety of organisms . He became convinced that organisms could, in fact, change through time, stating that

... time and favorable conditions are the two principal means which nature has employed in giving existence to all her productions. We know that for her time has no limit, and that consequently she always has it at her disposal.

This was a radical departure from both the fixity concept and Cuvier's ideas, and it built on the long timescale that geologists had recently established. Lamarck proposed that changes that occurred during an organism 's lifetime could be passed on to their offspring, suggesting, for example, that a body builder's muscles would be inherited by their children.

As it turned out, the mechanism by which Lamarck proposed that organisms change over time was wrong, and he is now often referred to disparagingly for his "inheritance of acquired characteristics" idea. Yet despite the fact that some of his ideas were discredited, Lamarck established a support for evolutionary theory that others would build on and improve.

  • Rock layers as evidence for evolution: Smith

In the early 1800s, a British geologist and canal surveyor named William Smith added another component to the accumulating evidence for evolution . Smith observed that rock layers exposed in different parts of England bore similarities to one another: These layers (or strata) were arranged in a predictable order, and each layer contained distinct groups of fossils . From this series of observations , he developed a hypothesis that specific groups of animals followed one another in a definite sequence through Earth's history, and this sequence could be seen in the rock layers. Smith's hypothesis was based on his knowledge of geological principles , including the Law of Superposition.

The Law of Superposition states that sediments are deposited in a time sequence, with the oldest sediments deposited first, or at the bottom, and newer layers deposited on top. The concept was first expressed by the Persian scientist Avicenna in the 11th century, but was popularized by the Danish scientist Nicolas Steno in the 17th century. Note that the law does not state how sediments are deposited; it simply describes the relationship between the ages of deposited sediments.

Figure 3: Engraving from William Smith's 1815 monograph on identifying strata by fossils.

Figure 3: Engraving from William Smith's 1815 monograph on identifying strata by fossils.

Smith backed up his hypothesis with extensive drawings of fossils uncovered during his research (Figure 3), thus allowing other scientists to confirm or dispute his findings. His hypothesis has, in fact, been confirmed by many other scientists and has come to be referred to as the Law of Faunal Succession. His work was critical to the formation of evolutionary theory as it not only confirmed Cuvier's work that organisms have gone extinct , but it also showed that the appearance of life does not date to the birth of the planet. Instead, the fossil record preserves a timeline of the appearance and disappearance of different organisms in the past, and in doing so offers evidence for change in organisms over time.

  • The theory of evolution by natural selection: Darwin and Wallace

It was into this world that Charles Darwin entered: Linnaeus had developed a taxonomy of organisms based on their physical relationships, Leclerc and Hutton demonstrated that there was sufficient time in Earth's history for organisms to change, Cuvier showed that species of organisms have gone extinct , Lamarck proposed that organisms change over time, and Smith established a timeline of the appearance and disappearance of different organisms in the geological record .

Figure 4: Title page of the 1859 Murray edition of the Origin of Species by Charles Darwin.

Figure 4: Title page of the 1859 Murray edition of the Origin of Species by Charles Darwin.

Charles Darwin collected data during his work as a naturalist on the HMS Beagle starting in 1831. He took extensive notes on the geology of the places he visited; he made a major find of fossils of extinct animals in Patagonia and identified an extinct giant ground sloth named Megatherium . He experienced an earthquake in Chile that stranded beds of living mussels above water, where they would be preserved for years to come.

Perhaps most famously, he conducted extensive studies of animals on the Galápagos Islands, noting subtle differences in species of mockingbird, tortoise, and finch that were isolated on different islands with different environmental conditions. These subtle differences made the animals highly adapted to their environments .

This broad spectrum of data led Darwin to propose an idea about how organisms change "by means of natural selection" (Figure 4). But this idea was not based only on his work, it was also based on the accumulation of evidence and ideas of many others before him. Because his proposal encompassed and explained many different lines of evidence and previous work, they formed the basis of a new and robust scientific theory regarding change in organisms – the theory of evolution by natural selection .

Darwin's ideas were grounded in evidence and data so compelling that if he had not conceived them, someone else would have. In fact, someone else did. Between 1858 and 1859, Alfred Russel Wallace , a British naturalist, wrote a series of letters to Darwin that independently proposed natural selection as the means for evolutionary change. The letters were presented to the Linnean Society of London, a prominent scientific society at the time (see our module on Scientific Institutions and Societies ). This long chain of research highlights that theories are not just the work of one individual. At the same time, however, it often takes the insight and creativity of individuals to put together all of the pieces and propose a new theory . Both Darwin and Wallace were experienced naturalists who were familiar with the work of others. While all of the work leading up to 1830 contributed to the theory of evolution , Darwin's and Wallace's theory changed the way that future research was focused by presenting a comprehensive, well-substantiated set of ideas, thus becoming a fundamental theory of biological research.

  • Expanding, testing, and refining scientific theories
  • Genetics and evolution: Mendel and Dobzhansky

Since Darwin and Wallace first published their ideas, extensive research has tested and expanded the theory of evolution by natural selection . Darwin had no concept of genes or DNA or the mechanism by which characteristics were inherited within a species . A contemporary of Darwin's, the Austrian monk Gregor Mendel , first presented his own landmark study, Experiments in Plant Hybridization, in 1865 in which he provided the basic patterns of genetic inheritance , describing which characteristics (and evolutionary changes) can be passed on in organisms (see our Genetics I module for more information). Still, it wasn't until much later that a "gene" was defined as the heritable unit.

In 1937, the Ukrainian born geneticist Theodosius Dobzhansky published Genetics and the Origin of Species , a seminal work in which he described genes themselves and demonstrated that it is through mutations in genes that change occurs. The work defined evolution as "a change in the frequency of an allele within a gene pool" ( Dobzhansky, 1982 ). These studies and others in the field of genetics have added to Darwin's work, expanding the scope of the theory .

  • Evolution under a microscope: Lenski

More recently, Dr. Richard Lenski, a scientist at Michigan State University, isolated a single Escherichia coli bacterium in 1989 as the first step of the longest running experimental test of evolutionary theory to date – a true test meant to replicate evolution and natural selection in the lab.

After the single microbe had multiplied, Lenski isolated the offspring into 12 different strains , each in their own glucose-supplied culture, predicting that the genetic make-up of each strain would change over time to become more adapted to their specific culture as predicted by evolutionary theory . These 12 lines have been nurtured for over 40,000 bacterial generations (luckily bacterial generations are much shorter than human generations) and exposed to different selective pressures such as heat , cold, antibiotics, and infection with other microorganisms. Lenski and colleagues have studied dozens of aspects of evolutionary theory with these genetically isolated populations . In 1999, they published a paper that demonstrated that random genetic mutations were common within the populations and highly diverse across different individual bacteria . However, "pivotal" mutations that are associated with beneficial changes in the group are shared by all descendants in a population and are much rarer than random mutations, as predicted by the theory of evolution by natural selection (Papadopoulos et al., 1999).

  • Punctuated equilibrium: Gould and Eldredge

While established scientific theories like evolution have a wealth of research and evidence supporting them, this does not mean that they cannot be refined as new information or new perspectives on existing data become available. For example, in 1972, biologist Stephen Jay Gould and paleontologist Niles Eldredge took a fresh look at the existing data regarding the timing by which evolutionary change takes place. Gould and Eldredge did not set out to challenge the theory of evolution; rather they used it as a guiding principle and asked more specific questions to add detail and nuance to the theory. This is true of all theories in science: they provide a framework for additional research. At the time, many biologists viewed evolution as occurring gradually, causing small incremental changes in organisms at a relatively steady rate. The idea is referred to as phyletic gradualism , and is rooted in the geological concept of uniformitarianism . After reexamining the available data, Gould and Eldredge came to a different explanation, suggesting that evolution consists of long periods of stability that are punctuated by occasional instances of dramatic change – a process they called punctuated equilibrium .

Like Darwin before them, their proposal is rooted in evidence and research on evolutionary change, and has been supported by multiple lines of evidence. In fact, punctuated equilibrium is now considered its own theory in evolutionary biology. Punctuated equilibrium is not as broad of a theory as natural selection . In science, some theories are broad and overarching of many concepts, such as the theory of evolution by natural selection; others focus on concepts at a smaller, or more targeted, scale such as punctuated equilibrium. And punctuated equilibrium does not challenge or weaken the concept of natural selection; rather, it represents a change in our understanding of the timing by which change occurs in organisms , and a theory within a theory. The theory of evolution by natural selection now includes both gradualism and punctuated equilibrium to describe the rate at which change proceeds.

  • Hypotheses and laws: Other scientific concepts

One of the challenges in understanding scientific terms like theory is that there is not a precise definition even within the scientific community. Some scientists debate over whether certain proposals merit designation as a hypothesis or theory , and others mistakenly use the terms interchangeably. But there are differences in these terms. A hypothesis is a proposed explanation for an observable phenomenon. Hypotheses , just like theories , are based on observations from research . For example, LeClerc did not hypothesize that Earth had cooled from a molten ball of iron as a random guess; rather, he developed this hypothesis based on his observations of information from meteorites.

A scientist often proposes a hypothesis before research confirms it as a way of predicting the outcome of study to help better define the parameters of the research. LeClerc's hypothesis allowed him to use known parameters (the cooling rate of iron) to do additional work. A key component of a formal scientific hypothesis is that it is testable and falsifiable. For example, when Richard Lenski first isolated his 12 strains of bacteria , he likely hypothesized that random mutations would cause differences to appear within a period of time in the different strains of bacteria. But when a hypothesis is generated in science, a scientist will also make an alternative hypothesis , an explanation that explains a study if the data do not support the original hypothesis. If the different strains of bacteria in Lenski's work did not diverge over the indicated period of time, perhaps the rate of mutation was slower than first thought.

So you might ask, if theories are so well supported, do they eventually become laws? The answer is no – not because they aren't well-supported, but because theories and laws are two very different things. Laws describe phenomena, often mathematically. Theories, however, explain phenomena. For example, in 1687 Isaac Newton proposed a Theory of Gravitation, describing gravity as a force of attraction between two objects. As part of this theory, Newton developed a Law of Universal Gravitation that explains how this force operates. This law states that the force of gravity between two objects is inversely proportional to the square of the distance between those objects. Newton 's Law does not explain why this is true, but it describes how gravity functions (see our Gravity: Newtonian Relationships module for more detail). In 1916, Albert Einstein developed his theory of general relativity to explain the mechanism by which gravity has its effect. Einstein's work challenges Newton's theory, and has been found after extensive testing and research to more accurately describe the phenomenon of gravity. While Einstein's work has replaced Newton's as the dominant explanation of gravity in modern science, Newton's Law of Universal Gravitation is still used as it reasonably (and more simply) describes the force of gravity under many conditions. Similarly, the Law of Faunal Succession developed by William Smith does not explain why organisms follow each other in distinct, predictable ways in the rock layers, but it accurately describes the phenomenon.

Theories, hypotheses , and laws drive scientific progress

Theories, hypotheses , and laws are not simply important components of science, they drive scientific progress. For example, evolutionary biology now stands as a distinct field of science that focuses on the origins and descent of species . Geologists now rely on plate tectonics as a conceptual model and guiding theory when they are studying processes at work in Earth's crust . And physicists refer to atomic theory when they are predicting the existence of subatomic particles yet to be discovered. This does not mean that science is "finished," or that all of the important theories have been discovered already. Like evolution , progress in science happens both gradually and in short, dramatic bursts. Both types of progress are critical for creating a robust knowledge base with data as the foundation and scientific theories giving structure to that knowledge.

Table of Contents

  • Theories, hypotheses, and laws drive scientific progress

Activate glossary term highlighting to easily identify key terms within the module. Once highlighted, you can click on these terms to view their definitions.

Activate NGSS annotations to easily identify NGSS standards within the module. Once highlighted, you can click on them to view these standards.

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Scientific Theory Definition and Examples

Scientific Theory Definition

A scientific theory is a well-established explanation of some aspect of the natural world. Theories come from scientific data and multiple experiments. While it is not possible to prove a theory, a single contrary result using the scientific method can disprove it. In other words, a theory is testable and falsifiable.

Examples of Scientific Theories

There are many scientific theory in different disciplines:

  • Astronomy : theory of stellar nucleosynthesis , theory of stellar evolution
  • Biology : cell theory, theory of evolution, germ theory, dual inheritance theory
  • Chemistry : atomic theory, Bronsted Lowry acid-base theory , kinetic molecular theory of gases , Lewis acid-base theory , molecular theory, valence bond theory
  • Geology : climate change theory, plate tectonics theory
  • Physics : Big Bang theory, perturbation theory, theory of relativity, quantum field theory

Criteria for a Theory

In order for an explanation of the natural world to be a theory, it meets certain criteria:

  • A theory is falsifiable. At some point, a theory withstands testing and experimentation using the scientific method.
  • A theory is supported by lots of independent evidence.
  • A theory explains existing experimental results and predicts outcomes of new experiments at least as well as other theories.

Difference Between a Scientific Theory and Theory

Usually, a scientific theory is just called a theory. However, a theory in science means something different from the way most people use the word. For example, if frogs rain down from the sky, a person might observe the frogs and say, “I have a theory about why that happened.” While that theory might be an explanation, it is not based on multiple observations and experiments. It might not be testable and falsifiable. It’s not a scientific theory (although it could eventually become one).

Value of Disproven Theories

Even though some theories are incorrect, they often retain value.

For example, Arrhenius acid-base theory does not explain the behavior of chemicals lacking hydrogen that behave as acids. The Bronsted Lowry and Lewis theories do a better job of explaining this behavior. Yet, the Arrhenius theory predicts the behavior of most acids and is easier for people to understand.

Another example is the theory of Newtonian mechanics. The theory of relativity is much more inclusive than Newtonian mechanics, which breaks down in certain frames of reference or at speeds close to the speed of light . But, Newtonian mechanics is much simpler to understand and its equations apply to everyday behavior.

Difference Between a Scientific Theory and a Scientific Law

The scientific method leads to the formulation of both scientific theories and laws . Both theories and laws are falsifiable. Both theories and laws help with making predictions about the natural world. However, there is a key difference.

A theory explains why or how something works, while a law describes what happens without explaining it. Often, you see laws written in the form of equations or formulas.

Theories and laws are related, but theories never become laws or vice versa.

Theory vs Hypothesis

A hypothesis is a proposition that is tested via an experiment. A theory results from many, many tested hypotheses.

Theory vs Fact

Theories depend on facts, but the two words mean different things. A fact is an irrefutable piece of evidence or data. Facts never change. A theory, on the other hand, may be modified or disproven.

Difference Between a Theory and a Model

Both theories and models allow a scientist to form a hypothesis and make predictions about future outcomes. However, a theory both describes and explains, while a model only describes. For example, a model of the solar system shows the arrangement of planets and asteroids in a plane around the Sun, but it does not explain how or why they got into their positions.

  • Frigg, Roman (2006). “ Scientific Representation and the Semantic View of Theories .”  Theoria . 55 (2): 183–206. 
  • Halvorson, Hans (2012). “What Scientific Theories Could Not Be.”  Philosophy of Science . 79 (2): 183–206. doi: 10.1086/664745
  • McComas, William F. (December 30, 2013).  The Language of Science Education: An Expanded Glossary of Key Terms and Concepts in Science Teaching and Learning . Springer Science & Business Media. ISBN 978-94-6209-497-0.
  • National Academy of Sciences (US) (1999). Science and Creationism: A View from the National Academy of Sciences (2nd ed.). National Academies Press. doi: 10.17226/6024  ISBN 978-0-309-06406-4. 
  • Suppe, Frederick (1998). “Understanding Scientific Theories: An Assessment of Developments, 1969–1998.”  Philosophy of Science . 67: S102–S115. doi: 10.1086/392812

Related Posts

Hypothesis vs. Theory

A hypothesis is either a suggested explanation for an observable phenomenon, or a reasoned prediction of a possible causal correlation among multiple phenomena. In science , a theory is a tested, well-substantiated, unifying explanation for a set of verified, proven factors. A theory is always backed by evidence; a hypothesis is only a suggested possible outcome, and is testable and falsifiable.

Comparison chart

Hypothesis versus Theory comparison chart
HypothesisTheory
Definition A suggested explanation for an observable phenomenon or prediction of a possible causal correlation among multiple phenomena. In , a theory is a well-substantiated, unifying explanation for a set of verified, proven hypotheses.
Based on Suggestion, possibility, projection or prediction, but the result is uncertain. Evidence, verification, repeated testing, wide scientific consensus
Testable Yes Yes
Falsifiable Yes Yes
Is well-substantiated? No Yes
Is well-tested? No Yes
Data Usually based on very limited data Based on a very wide set of data tested under various circumstances.
Instance Specific: Hypothesis is usually based on a very specific observation and is limited to that instance. General: A theory is the establishment of a general principle through multiple tests and experiments, and this principle may apply to various specific instances.
Purpose To present an uncertain possibility that can be explored further through experiments and observations. To explain why a large set of observations are consistently made.

Examples of Theory and Hypothesis

Theory: Einstein's theory of relativity is a theory because it has been tested and verified innumerable times, with results consistently verifying Einstein's conclusion. However, simply because Einstein's conclusion has become a theory does not mean testing of this theory has stopped; all science is ongoing. See also the Big Bang theory , germ theory , and climate change .

Hypothesis: One might think that a prisoner who learns a work skill while in prison will be less likely to commit a crime when released. This is a hypothesis, an "educated guess." The scientific method can be used to test this hypothesis, to either prove it is false or prove that it warrants further study. (Note: Simply because a hypothesis is not found to be false does not mean it is true all or even most of the time. If it is consistently true after considerable time and research, it may be on its way to becoming a theory.)

This video further explains the difference between a theory and a hypothesis:

Common Misconception

People often tend to say "theory" when what they're actually talking about is a hypothesis. For instance, "Migraines are caused by drinking coffee after 2 p.m. — well, it's just a theory, not a rule."

This is actually a logically reasoned proposal based on an observation — say 2 instances of drinking coffee after 2 p.m. caused a migraine — but even if this were true, the migraine could have actually been caused by some other factors.

Because this observation is merely a reasoned possibility, it is testable and can be falsified — which makes it a hypothesis, not a theory.

  • What is a Scientific Hypothesis? - LiveScience
  • Wikipedia:Scientific theory

Related Comparisons

Accuracy vs Precision

Share this comparison via:

If you read this far, you should follow us:

"Hypothesis vs Theory." Diffen.com. Diffen LLC, n.d. Web. 3 Jul 2024. < >

Comments: Hypothesis vs Theory

Anonymous comments (2).

October 11, 2013, 1:11pm "In science, a theory is a well-substantiated, unifying explanation for a set of verified, proven hypotheses." But there's no such thing as "proven hypotheses". Hypotheses can be tested/falsified, they can't be "proven". That's just not how science works. Logical deductions based on axioms can be proven, but not scientific hypotheses. On top of that I find it somewhat strange to claim that a theory doesn't have to be testable, if it's built up from hypotheses, which DO have to be testable... — 80.✗.✗.139
May 6, 2014, 11:45pm "Evolution is a theory, not a fact, regarding the origin of living things." this statement is poorly formed because it implies that a thing is a theory until it gets proven and then it is somehow promoted to fact. this is just a misunderstanding of what the words mean, and of how science progresses generally. to say that a theory is inherently dubious because "it isn't a fact" is pretty much a meaningless statement. no expression which qualified as a mere fact could do a very good job of explaining the complicated process by which species have arisen on Earth over the last billion years. in fact, if you claimed that you could come up with such a single fact, now THAT would be dubious! everything we observe in nature supports the theory of evolution, and nothing we observe contradicts it. when you can say this about a theory, it's a pretty fair bet that the theory is correct. — 71.✗.✗.151
  • Accuracy vs Precision
  • Deductive vs Inductive
  • Subjective vs Objective
  • Subconscious vs Unconscious mind
  • Qualitative vs Quantitative
  • Creationism vs Evolution

Edit or create new comparisons in your area of expertise.

Stay connected

© All rights reserved.

What is a scientific theory?

A scientific theory is based on careful examination of facts.

scientific theory: a chalkboard being drawn on

  • The process
  • Good theory characteristics

The difference between theories, facts and laws

Additional resources, bibliography.

A scientific theory is a structured explanation to explain a group of facts or phenomena in the natural world that often incorporates a scientific hypothesis and scientific laws . The scientific definition of a theory contrasts with the definition most people use in casual language.

"The way that scientists use the word 'theory' is a little different than how it is commonly used in the lay public," said Jaime Tanner, a professor of biology at Emerson College in Boston. "Most people use the word 'theory' to mean an idea or hunch that someone has, but in science the word 'theory' refers to the way that we interpret facts."

Related: 5 sci-fi concepts that are possible (in theory)

The process of becoming a scientific theory

Every scientific theory relies on the scientific method . A scientist may make an observation and devise a hypothesis to explain that observation, then design an experiment to test that hypothesis. If the hypothesis is shown to be incorrect, the scientist will develop a new hypothesis and begin the process again. If the hypothesis is supported by the results of the experiment, it will go on to be tested again. If the hypothesis isn't disproven or surpassed by a better explanation, the scientist may incorporate it into a larger theory that helps to explain the observed phenomenon and relates it to other phenomena, according to the Field Museum . 

A scientific theory is not the end result of the scientific method; theories can be proven or rejected, just like hypotheses . And theories are continually improved or modified as more information is gathered, so that the accuracy of the prediction becomes greater over time.

Theories are foundations for furthering scientific knowledge and for putting the information gathered to practical use. Scientists use theories to develop inventions or find a cure for a disease.

Furthermore, a scientific theory is the framework for observations and facts, Tanner said. Theories may change, or the way that they are interpreted may change, but the facts themselves don't change. Tanner likens theories to a basket in which scientists keep facts and observations that they find. The shape of that basket may change as the scientists learn more and include more facts. "For example, we have ample evidence of traits in populations becoming more or less common over time (evolution), so evolution is a fact, but the overarching theories about evolution, the way that we think all of the facts go together might change as new observations of evolution are made," Tanner told Live Science.

Characteristics of a good theory

The University of California, Berkeley , defines a theory as "a broad, natural explanation for a wide range of phenomena. Theories are concise, coherent, systematic, predictive, and broadly applicable, often integrating and generalizing many hypotheses." 

According to Columbia University emeritus professor of philosophy Philip Kitcher, a good scientific theory has three characteristics. First, it has unity, which means it consists of a limited number of problem-solving strategies that can be applied to a wide range of scientific circumstances. Second, a good scientific theory leads to new questions and new areas of research. This means that a theory doesn't need to explain everything in order to be useful. And finally, a good theory is formed from a number of hypotheses that can be tested independently from the theory itself.

Any scientific theory must be based on a careful and rational examination of the facts. Facts and theories are two different things. In the scientific method, there is a clear distinction between facts, which can be observed and/or measured, and theories, which are scientists' explanations and interpretations of the facts. 

Some think that theories become laws, but theories and laws have separate and distinct roles in the scientific method. A law is a description of an observed phenomenon in the natural world that holds true every time it is tested. It doesn't explain why something is true; it just states that it is true. A theory, on the other hand, explains observations that are gathered during the scientific process. So, while law and theory are part of the scientific process, they are two different aspects, according to the National Center for Science Education . 

A good example of the difference between a theory and a law is the case of Gregor Mendel . In his research, Mendel discovered that two separate genetic traits would appear independently of each other in different offspring. "Yet, Mendel knew nothing of DNA or chromosomes . It wasn't until a century later that scientists discovered DNA and chromosomes — the biochemical explanation of Mendel's laws," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "It was only then that scientists, such as T.H. Morgan working with fruit flies, explained the Law of Independent Assortment using the theory of chromosomal inheritance. Still today, this is the universally accepted explanation [theory] for Mendel's Law."

  • When does a theory become a fact? This article from Arizona State University says you're asking the wrong question! 
  • Learn the difference between the casual and scientific uses of "theory" and "law" from the cartoony stars of the Amoeba Sisters on Youtube.
  • Can a scientific theory be falsified? This article from Scientific American says no. 

Kenneth Angielczyk, "What Do We Mean by "Theory" in Science?" Field Museum, March 10, 2017. https://www.fieldmuseum.org/blog/what-do-we-mean-theory-science

University of California, Berkeley, "Science at multiple levels." https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19  

Philip Kitcher, "Abusing Science: The Case Against Creationism," MIT Press, 1982. 

National Center for Science Education, "Definitions of Fact, Theory, and Law in Scientific Work," March 16, 2016 https://ncse.ngo/definitions-fact-theory-and-law-scientific-work  

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Live Science x HowTheLightGetsIn — Get discounted tickets to the world’s largest ideas and music festival

Do opposites really attract in relationships?

1,700-year-old 'barbarian' burial discovered along Roman Empire's frontier in Germany

Most Popular

  • 2 Why do dogs' paws smell like Fritos?
  • 3 Scientists just made mice 'see-through' using food dye — and humans are next
  • 4 Roman coin trove discovered on Mediterranean island may have been hidden during ancient pirate attack
  • 5 One of the universe's biggest paradoxes could be even weirder than we thought, James Webb telescope study reveals

how could your hypothesis become a theory

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

experiments disproving spontaneous generation

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

scientific hypothesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Center for Biotechnology Information - PubMed Central - On the scope of scientific hypotheses
  • LiveScience - What is a scientific hypothesis?
  • The Royal Society - Open Science - On the scope of scientific hypotheses

experiments disproving spontaneous generation

scientific hypothesis , an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an “If…then” statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation. The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper .

The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience. Therefore, although scientific hypotheses commonly are described as educated guesses, they actually are more informed than a guess. In addition, scientists generally strive to develop simple hypotheses, since these are easier to test relative to hypotheses that involve many different variables and potential outcomes. Such complex hypotheses may be developed as scientific models ( see scientific modeling ).

Depending on the results of scientific evaluation, a hypothesis typically is either rejected as false or accepted as true. However, because a hypothesis inherently is falsifiable, even hypotheses supported by scientific evidence and accepted as true are susceptible to rejection later, when new evidence has become available. In some instances, rather than rejecting a hypothesis because it has been falsified by new evidence, scientists simply adapt the existing idea to accommodate the new information. In this sense a hypothesis is never incorrect but only incomplete.

The investigation of scientific hypotheses is an important component in the development of scientific theory . Hence, hypotheses differ fundamentally from theories; whereas the former is a specific tentative explanation and serves as the main tool by which scientists gather data, the latter is a broad general explanation that incorporates data from many different scientific investigations undertaken to explore hypotheses.

Countless hypotheses have been developed and tested throughout the history of science . Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation , a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi , and later in 1859, with the experiments of French chemist and microbiologist Louis Pasteur ); the concept proposed in the late 19th century that microorganisms cause certain diseases (now known as germ theory ); and the notion that oceanic crust forms along submarine mountain zones and spreads laterally away from them ( seafloor spreading hypothesis ).

  • Skip to Page Content
  • Skip to Navigation
  • Skip to Search
  • Skip to Footer
  • COVID-19 Health and Safety
  • Admissions and Ticketing
  • Temporary Hall Closures
  • Accessibility
  • Field Trips
  • Adult Group Visits
  • Guided Tours
  • Transportation
  • Davis Family Butterfly Vivarium
  • Invisible Worlds: Immersive Experience
  • The Secret World of Elephants
  • Turtle Odyssey
  • Worlds Beyond Earth: Space Show
  • Extinct and Endangered: Insects in Peril
  • Grounded by Our Roots
  • Ice Cold: An Exhibition of Hip-Hop Jewelry
  • Opulent Oceans
  • What's in a Name?
  • Children & Family Programs
  • Teen Programs
  • Higher Education
  • Adult Programs
  • Educator Programs
  • Evaluation, Research, & Policy
  • Master of Arts in Teaching
  • Online Courses for Educators
  • Urban Advantage
  • Climate Week NYC
  • Viruses, Vaccines, and COVID-19
  • The Science of COVID-19
  • OLogy: The Science Website for Kids
  • News & Blogs
  • Science Topics
  • Margaret Mead Festival
  • Origami at the Museum
  • Astrophysics
  • Earth and Planetary Sciences
  • Herpetology
  • Ichthyology
  • Ornithology
  • Richard Gilder Graduate School
  • Hayden Planetarium
  • Center for Biodiversity and Conservation
  • Institute for Comparative Genomics
  • Southwestern Research Station
  • Research Library
  • Darwin Manuscripts Project
  • Microscopy and Imaging Facility
  • Science Conservation
  • Computational Sciences
  • Staff Directory
  • Scientific Publications
  • Ways to Donate
  • Membership FAQ
  • Benefit Events
  • Corporate Support
  • Planned Giving
  • How Old is Earth?
  • Not Just Another Animal
  • The Nature of Species
  • The Wedgwood Family
  • The Darwin Family
  • A World of Change
  • A Lifelong Passion
  • A Stunning Invitation
  • A Very Small Vessel
  • A Five-Year Journey
  • But What to Bring?
  • Green Iguanas
  • Wide-Eyed Wonder
  • Strange New World
  • Black on Black
  • An Ever-Changing Earth
  • Meet the Beetles
  • Observing Adaptations
  • A Ship and its Captain
  • Ancient Shells
  • Armored Ancestors?
  • Fabulous Fossils
  • A Long Way From Home
  • Neighboring Species
  • Different On Each Island
  • Giant Daisies
  • Galapagos Mockingbirds
  • Solving a Mystery
  • An Idea Takes Hold
  • A New Perspective
  • A Man To Watch
  • A Wife, That Most Interesting Specimen
  • Infinite Variety
  • A Theory by Which to Work
  • Adding it Up
  • Men and Apes
  • Family Circle
  • From Pigeons to Potatoes
  • A Grand Amusement
  • Wonderful Creatures, These Orchids
  • The World Reacts
  • Where It Happened
  • The Highest and Most Interesting Problem
  • How Does Natural Selection Work?
  • Tree of Life
  • Vestigial Organs
  • An Ancient History
  • Right Before Our Eyes
  • Darwin's Finches Today
  • Extinction or Opportunity
  • What About Us?

What Is a Theory?

  • Social Darwinism
  • Social Responses
  • Controversies Timeline
  • From So Simple A Beginning
  • Interview Transcript
  • Behind the Scenes
  • Collaborators
  • Resources For Educators: Darwin

Part of the Darwin exhibition.

But for scientists, a theory has nearly the opposite meaning. A theory is a well-substantiated explanation of an aspect of the natural world that can incorporate laws, hypotheses and facts. The theory of gravitation, for instance, explains why apples fall from trees and astronauts float in space. Similarly, the theory of evolution explains why so many plants and animals—some very similar and some very different—exist on Earth now and in the past, as revealed by the fossil record.

A theory not only explains known facts; it also allows scientists to make predictions of what they should observe if a theory is true. Scientific theories are testable. New evidence should be compatible with a theory. If it isn't, the theory is refined or rejected. The longer the central elements of a theory hold—the more observations it predicts, the more tests it passes, the more facts it explains—the stronger the theory.

Many advances in science—the development of genetics after Darwin's death, for example—have greatly enhanced evolutionary thinking. Yet even with these new advances, the theory of evolution still persists today, much as Darwin first described it, and is universally accepted by scientists.

Christopher Dwyer Ph.D.

What Is a "Theory" and Why Is It Important to Know?

Critically thinking about epistemology and the notion of "theory.".

Posted July 31, 2020 | Reviewed by Ekua Hagan

When asked the question, "What is a theory?" most of my students (regardless of age or educational level) respond with an explanation that is akin to "a reasonable, educated/informed guess."

Indeed, consistent with this perspective, the phrase "it’s just a theory" (be it in reference to one’s humility regarding their own standpoint or trying to denigrate another) is one I’m sure many of you have heard thrown around from time to time. The problem is that these common perspectives are not correct—which makes me wonder, is the majority of the population misinformed as to what theory refers to?

While many conceptualise a theory as a reasonable, educated guess, what they’re really describing is a hypothesis (i.e. a proposed outcome, explained on the basis of limited evidence or a thread of logic as a starting point for further investigation). A theory is more concrete than an educated guess. In order to appropriately explain the concept of theory, it’s important to first set the scene:

For centuries, it was believed that all swans are white. Then one day, a black swan (cygnus atratus) was spotted and "knowledge" had to be amended. The original perspective was falsified (e.g. see Popper, 1934/1959). More recently, knowledge once again required amendment—there are no longer nine planets, but rather eight. The more knowledge we obtain, the better our understanding becomes; and as we come to understand more, further amendments may be required to what we once thought we knew. Critical thought is cautious and accounts for amendment when necessary (e.g. see discussion on reflective judgmen t and "proof ").

Let’s consider another example. We are familiar with the "Law of Gravity"—a crude description of its function on Earth being the acceleration of objects to the ground at 9.81 m/s 2 . However, calling gravity a "law" is a misnomer. Gravity, as I imagine many readers will know, is actually a theory. But why?

Let’s be clear, if I’m holding a coffee bean in my hand and release it, I’m going to bet my house that the outcome will be that it falls to the ground. However, we can never be 100% certain that this event will occur; and there are numerous reasons for this. Let’s discuss two here.

First, what if our understanding of gravity is incorrect? What if there are, as of yet, unobserved characteristics of our current conceptualisation of gravity? What if there’s more to it than we think? You might say, "Surely, we would have seen such characteristics by now?" Well, the same could be said about being able to count planets. Remember, neither of these examples/potentialities is a function of being wrong about a phenomenon, rather they are a function of learning more.

Second, we cannot see into the future—we can never be entirely certain that something will happen; though we might have a strong theory as to what will happen (e.g. the coffee bean will likely fall to the ground). Our hypothesis is one of extreme confidence . Why? Well, gravity is a strong theory. But what happens if an asteroid hits the Earth tomorrow, knocks us off-axis, changes our polarity, and plays games with our planet’s electromagnetism? Perhaps "gravity" will then behave differently. Of course, this is extremely unlikely; but, there is still the possibility, no matter how minute; and as a chance exists (regardless of how minute), that means that we cannot be 100% certain of the original premise.

Again, this talk of gravity is a rather extreme analogy for my point; and in no way, shape or form do I question or will I test the force of gravity, but it does provide a good example for consideration. So, then, is a theory a law? No, simply, this example makes the point that the use of "laws," in this context, is inaccurate. So, what actually is a theory?

A theory is an established model for why or how a given phenomenon occurs—it is an explanation of observed regularities. The terms "established" and "observed regularities" are important here. Theories are developed based on observing similar outcomes over and over again. This is a fundamental reason why replication in research is so important. It is also why any one piece or even bodies of research cannot "prove" a theory true; rather replication provides further evidence to support a theory—it strengthens a theory. Returning to the example of gravity, it is such a strong theory because it has been observed time and time again without ever being falsified.

Okay, so a theory is a much stronger notion than many may have thought. It’s certainly stronger than an educated guess. But, how does that affect your day-to-day life? Well, knowing what a theory actually is will help your decision-making in terms of navigating the terrain of what research says in relation to how society and media represent it. For example, when someone you know states that "evolution is just a theory," you know that it actually means that the concept of evolution is based on a model of replicated data observed time and time again; thus making it a leading explanation for why events in that particular context occur—it’s not just some unestablished guess.

how could your hypothesis become a theory

Likewise, you may have in the past said to yourself or explained to your friend that some notion is "just my theory" – unless the phenomenon has been observed regularly, over and over, you know that such a perspective is inaccurate. Notably, if it’s something that you, alone, have observed time and time again, it’s still inaccurate—your personal experience and anecdotal evidence are not sufficient grounds to develop a theory. The observation requires replication by others as well. Truly understanding what a theory is and the mechanics behind falsification are fantastic ways for individuals to begin embracing the concept of intellectual humility, through engaging in epistemological consideration regarding the nature of knowledge and the concept of "certainty."

In conclusion, a theory is much more than a hypothesis—it comes from a strong evidence base and should not be cast aside as if it were a guess. If you truly care about the topic you are thinking about, you will consider empirically-based theories. However, just because you know that a theory is an established model for why or how a given phenomenon occurs, doesn’t mean that everyone else does. Be cautious in interpreting how people throw the term around and strive for clarification.

Popper, K.R. (1934/1959). The logic of scientific discovery. London: Routledge.

Christopher Dwyer Ph.D.

Christopher Dwyer, Ph.D., is a lecturer at the Technological University of the Shannon in Athlone, Ireland.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

September 2024 magazine cover

It’s increasingly common for someone to be diagnosed with a condition such as ADHD or autism as an adult. A diagnosis often brings relief, but it can also come with as many questions as answers.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience
  • Anatomy & Physiology
  • Astrophysics
  • Earth Science
  • Environmental Science
  • Organic Chemistry
  • Precalculus
  • Trigonometry
  • English Grammar
  • U.S. History
  • World History

... and beyond

  • Socratic Meta
  • Featured Answers

Search icon

What is the relationship between a hypothesis and a theory?

how could your hypothesis become a theory

Logo for Portland State University Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Developing a Hypothesis

Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton

Learning Objectives

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.3  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

how could your hypothesis become a theory

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation.  Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

A coherent explanation or interpretation of one or more phenomena.

A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.

A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.

The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.

Developing a Hypothesis Copyright © by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Scientific Method Flow Chart
  • Six Steps of the Scientific Method
  • What Are the Elements of a Good Hypothesis?
  • What Are Examples of a Hypothesis?
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • Scientific Hypothesis Examples
  • Scientific Variable
  • Scientific Method Vocabulary Terms
  • Understanding Simple vs Controlled Experiments
  • What Is an Experimental Constant?
  • What Is a Controlled Experiment?
  • What Is the Difference Between a Control Variable and Control Group?
  • DRY MIX Experiment Variables Acronym
  • Random Error vs. Systematic Error
  • The Role of a Controlled Variable in an Experiment

StatAnalytica

Step-by-step guide to hypothesis testing in statistics

hypothesis testing in statistics

Hypothesis testing in statistics helps us use data to make informed decisions. It starts with an assumption or guess about a group or population—something we believe might be true. We then collect sample data to check if there is enough evidence to support or reject that guess. This method is useful in many fields, like science, business, and healthcare, where decisions need to be based on facts.

Learning how to do hypothesis testing in statistics step-by-step can help you better understand data and make smarter choices, even when things are uncertain. This guide will take you through each step, from creating your hypothesis to making sense of the results, so you can see how it works in practical situations.

What is Hypothesis Testing?

Table of Contents

Hypothesis testing is a method for determining whether data supports a certain idea or assumption about a larger group. It starts by making a guess, like an average or a proportion, and then uses a small sample of data to see if that guess seems true or not.

For example, if a company wants to know if its new product is more popular than its old one, it can use hypothesis testing. They start with a statement like “The new product is not more popular than the old one” (this is the null hypothesis) and compare it with “The new product is more popular” (this is the alternative hypothesis). Then, they look at customer feedback to see if there’s enough evidence to reject the first statement and support the second one.

Simply put, hypothesis testing is a way to use data to help make decisions and understand what the data is really telling us, even when we don’t have all the answers.

Importance Of Hypothesis Testing In Decision-Making And Data Analysis

Hypothesis testing is important because it helps us make smart choices and understand data better. Here’s why it’s useful:

  • Reduces Guesswork : It helps us see if our guesses or ideas are likely correct, even when we don’t have all the details.
  • Uses Real Data : Instead of just guessing, it checks if our ideas match up with real data, which makes our decisions more reliable.
  • Avoids Errors : It helps us avoid mistakes by carefully checking if our ideas are right so we don’t make costly errors.
  • Shows What to Do Next : It tells us if our ideas work or not, helping us decide whether to keep, change, or drop something. For example, a company might test a new ad and decide what to do based on the results.
  • Confirms Research Findings : It makes sure that research results are accurate and not just random chance so that we can trust the findings.

Here’s a simple guide to understanding hypothesis testing, with an example:

1. Set Up Your Hypotheses

Explanation: Start by defining two statements:

  • Null Hypothesis (H0): This is the idea that there is no change or effect. It’s what you assume is true.
  • Alternative Hypothesis (H1): This is what you want to test. It suggests there is a change or effect.

Example: Suppose a company says their new batteries last an average of 500 hours. To check this:

  • Null Hypothesis (H0): The average battery life is 500 hours.
  • Alternative Hypothesis (H1): The average battery life is not 500 hours.

2. Choose the Test

Explanation: Pick a statistical test that fits your data and your hypotheses. Different tests are used for various kinds of data.

Example: Since you’re comparing the average battery life, you use a one-sample t-test .

3. Set the Significance Level

Explanation: Decide how much risk you’re willing to take if you make a wrong decision. This is called the significance level, often set at 0.05 or 5%.

Example: You choose a significance level of 0.05, meaning you’re okay with a 5% chance of being wrong.

4. Gather and Analyze Data

Explanation: Collect your data and perform the test. Calculate the test statistic to see how far your sample result is from what you assumed.

Example: You test 30 batteries and find they last an average of 485 hours. You then calculate how this average compares to the claimed 500 hours using the t-test.

5. Find the p-Value

Explanation: The p-value tells you the probability of getting a result as extreme as yours if the null hypothesis is true.

Example: You find a p-value of 0.0001. This means there’s a very small chance (0.01%) of getting an average battery life of 485 hours or less if the true average is 500 hours.

6. Make Your Decision

Explanation: Compare the p-value to your significance level. If the p-value is smaller, you reject the null hypothesis. If it’s larger, you do not reject it.

Example: Since 0.0001 is much less than 0.05, you reject the null hypothesis. This means the data suggests the average battery life is different from 500 hours.

7. Report Your Findings

Explanation: Summarize what the results mean. State whether you rejected the null hypothesis and what that implies.

Example: You conclude that the average battery life is likely different from 500 hours. This suggests the company’s claim might not be accurate.

Hypothesis testing is a way to use data to check if your guesses or assumptions are likely true. By following these steps—setting up your hypotheses, choosing the right test, deciding on a significance level, analyzing your data, finding the p-value, making a decision, and reporting results—you can determine if your data supports or challenges your initial idea.

Understanding Hypothesis Testing: A Simple Explanation

Hypothesis testing is a way to use data to make decisions. Here’s a straightforward guide:

1. What is the Null and Alternative Hypotheses?

  • Null Hypothesis (H0): This is your starting assumption. It says that nothing has changed or that there is no effect. It’s what you assume to be true until your data shows otherwise. Example: If a company says their batteries last 500 hours, the null hypothesis is: “The average battery life is 500 hours.” This means you think the claim is correct unless you find evidence to prove otherwise.
  • Alternative Hypothesis (H1): This is what you want to find out. It suggests that there is an effect or a difference. It’s what you are testing to see if it might be true. Example: To test the company’s claim, you might say: “The average battery life is not 500 hours.” This means you think the average battery life might be different from what the company says.

2. One-Tailed vs. Two-Tailed Tests

  • One-Tailed Test: This test checks for an effect in only one direction. You use it when you’re only interested in finding out if something is either more or less than a specific value. Example: If you think the battery lasts longer than 500 hours, you would use a one-tailed test to see if the battery life is significantly more than 500 hours.
  • Two-Tailed Test: This test checks for an effect in both directions. Use this when you want to see if something is different from a specific value, whether it’s more or less. Example: If you want to see if the battery life is different from 500 hours, whether it’s more or less, you would use a two-tailed test. This checks for any significant difference, regardless of the direction.

3. Common Misunderstandings

  • Clarification: Hypothesis testing doesn’t prove that the null hypothesis is true. It just helps you decide if you should reject it. If there isn’t enough evidence against it, you don’t reject it, but that doesn’t mean it’s definitely true.
  • Clarification: A small p-value shows that your data is unlikely if the null hypothesis is true. It suggests that the alternative hypothesis might be right, but it doesn’t prove the null hypothesis is false.
  • Clarification: The significance level (alpha) is a set threshold, like 0.05, that helps you decide how much risk you’re willing to take for making a wrong decision. It should be chosen carefully, not randomly.
  • Clarification: Hypothesis testing helps you make decisions based on data, but it doesn’t guarantee your results are correct. The quality of your data and the right choice of test affect how reliable your results are.

Benefits and Limitations of Hypothesis Testing

  • Clear Decisions: Hypothesis testing helps you make clear decisions based on data. It shows whether the evidence supports or goes against your initial idea.
  • Objective Analysis: It relies on data rather than personal opinions, so your decisions are based on facts rather than feelings.
  • Concrete Numbers: You get specific numbers, like p-values, to understand how strong the evidence is against your idea.
  • Control Risk: You can set a risk level (alpha level) to manage the chance of making an error, which helps avoid incorrect conclusions.
  • Widely Used: It can be used in many areas, from science and business to social studies and engineering, making it a versatile tool.

Limitations

  • Sample Size Matters: The results can be affected by the size of the sample. Small samples might give unreliable results, while large samples might find differences that aren’t meaningful in real life.
  • Risk of Misinterpretation: A small p-value means the results are unlikely if the null hypothesis is true, but it doesn’t show how important the effect is.
  • Needs Assumptions: Hypothesis testing requires certain conditions, like data being normally distributed . If these aren’t met, the results might not be accurate.
  • Simple Decisions: It often results in a basic yes or no decision without giving detailed information about the size or impact of the effect.
  • Can Be Misused: Sometimes, people misuse hypothesis testing, tweaking data to get a desired result or focusing only on whether the result is statistically significant.
  • No Absolute Proof: Hypothesis testing doesn’t prove that your hypothesis is true. It only helps you decide if there’s enough evidence to reject the null hypothesis, so the conclusions are based on likelihood, not certainty.

Final Thoughts 

Hypothesis testing helps you make decisions based on data. It involves setting up your initial idea, picking a significance level, doing the test, and looking at the results. By following these steps, you can make sure your conclusions are based on solid information, not just guesses.

This approach lets you see if the evidence supports or contradicts your initial idea, helping you make better decisions. But remember that hypothesis testing isn’t perfect. Things like sample size and assumptions can affect the results, so it’s important to be aware of these limitations.

In simple terms, using a step-by-step guide for hypothesis testing is a great way to better understand your data. Follow the steps carefully and keep in mind the method’s limits.

What is the difference between one-tailed and two-tailed tests?

 A one-tailed test assesses the probability of the observed data in one direction (either greater than or less than a certain value). In contrast, a two-tailed test looks at both directions (greater than and less than) to detect any significant deviation from the null hypothesis.

How do you choose the appropriate test for hypothesis testing?

The choice of test depends on the type of data you have and the hypotheses you are testing. Common tests include t-tests, chi-square tests, and ANOVA. You get more details about ANOVA, you may read Complete Details on What is ANOVA in Statistics ?  It’s important to match the test to the data characteristics and the research question.

What is the role of sample size in hypothesis testing?  

Sample size affects the reliability of hypothesis testing. Larger samples provide more reliable estimates and can detect smaller effects, while smaller samples may lead to less accurate results and reduced power.

Can hypothesis testing prove that a hypothesis is true?  

Hypothesis testing cannot prove that a hypothesis is true. It can only provide evidence to support or reject the null hypothesis. A result can indicate whether the data is consistent with the null hypothesis or not, but it does not prove the alternative hypothesis with certainty.

Related Posts

how-to-find-the=best-online-statistics-homework-help

How to Find the Best Online Statistics Homework Help

why-spss-homework-help-is-an-important-aspects-for-students

Why SPSS Homework Help Is An Important aspect for Students?

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

IMAGES

  1. Research Hypothesis: Definition, Types, Examples and Quick Tips

    how could your hypothesis become a theory

  2. How to Write a Hypothesis: The Ultimate Guide with Examples

    how could your hypothesis become a theory

  3. PPT

    how could your hypothesis become a theory

  4. Difference Between Hypothesis and Theory

    how could your hypothesis become a theory

  5. How to Write a Hypothesis

    how could your hypothesis become a theory

  6. How to Write a Hypothesis: The Ultimate Guide with Examples

    how could your hypothesis become a theory

VIDEO

  1. 5 Mind-Blowing Facts Part 73: Unsolved Mathematical Problems

  2. Theoretical framework and hypothesis development

  3. What Is A Hypothesis?

  4. What is a Hypothesis?

  5. 🤯 Discover the Mind-Bending Concept! 🌌⏳ #space #universe #simulationtheory

  6. What is the difference between Fact, Hypothesis, Theory, Law and Principle? [IN HINDI] || EXPLAIN #1

COMMENTS

  1. Hypothesis vs. Theory

    A hypothesis can become a theory. The hypothesis will be published, tested, peer reviewed by the scientific community, and finally accepted as a scientific theory.

  2. Hypothesis vs. Theory: The Difference Explained

    This is the Difference Between a Hypothesis and a Theory

  3. Theory vs. Hypothesis: Basics of the Scientific Method

    Level Up Your Team. See why leading organizations rely on MasterClass for learning & development. Though you may hear the terms "theory" and "hypothesis" used interchangeably, these two scientific terms have drastically different meanings in the world of science.

  4. How a scientific theory is born

    A scientific theory is an explanation for how and why a natural phenomenon occurs based on evidence. 2. Think about a scientific hypothesis that you have written or look up an example of a hypothesis.

  5. Scientific Hypothesis, Model, Theory, and Law

    A scientific theory summarizes a hypothesis or group of hypotheses that have been supported with repeated testing. A theory is valid as long as there is no evidence to dispute it. Therefore, theories can be disproven. Basically, if evidence accumulates to support a hypothesis, then the hypothesis can become accepted as a good explanation of a ...

  6. Theories, Hypotheses, and Laws

    In science, a theory is a well-substantiated and comprehensive set of ideas that explains a phenomenon in nature. A scientific theory is based on large amounts of data and observations that have been collected over time. Scientific theories can be tested and refined by additional research, and they allow scientists to make predictions. Though ...

  7. Scientific Theory Definition and Examples

    Theories and laws are related, but theories never become laws or vice versa. Theory vs Hypothesis. A hypothesis is a proposition that is tested via an experiment. A theory results from many, many tested hypotheses. Theory vs Fact. Theories depend on facts, but the two words mean different things. A fact is an irrefutable piece of evidence or data.

  8. Hypothesis vs Theory

    A hypothesis is either a suggested explanation for an observable phenomenon, or a reasoned prediction of a possible causal correlation among multiple phenomena. In science, a theory is a tested, well-substantiated, unifying explanation for a set of verified, proven factors. A theory is always backed by evidence; a hypothesis is only a suggested possible outcome, and is testable and falsifiable.

  9. PDF Understanding Hypotheses, Predictions, Laws, and Theories

    becomes a theory. This is wrong! Instead a hypothesis that gains support becomes a supported hypothesis—what some may want to call a fact. Regardless of the amount of support that a hypothesis may gain, it can never become a theory. This is because . . . hypotheses and theories differ in complexity, generality, and abstractness, not in the amount

  10. What is a scientific theory?

    What is a scientific theory?

  11. Theory vs. Law: Basics of the Scientific Method

    Theory vs. Law: Basics of the Scientific Method. The scientific method involves formulating hypotheses and testing them to see if they hold up to the realities of the natural world. Successfully proven hypotheses can lead to either scientific theories or scientific laws, which are similar in character but are not synonymous terms.

  12. How does a hypothesis becomes a theory? + Example

    Actually a hypothesis is a prediction based on a theory. If the Hypothesis comes true the theory is more accepted. An example Avogardo's Hypothesis ( famous) that equal volumes of gases would contain equal numbers of particles ( molecules or atoms) was based on the kinetic theory of gases. Avogardo's Hypothesis remained a hypothesis for over 100 years before definitive empirical experiments ...

  13. Theories and Hypotheses

    The four basic spokes to the wheel are theory, hypotheses, observation, and empirical generalization. Theory is the basic building block of social science, helping to structure the ways in which we view how and why things work together. The main task for theory is to link concepts. Hypotheses follow from theories, stating relationships between ...

  14. Scientific hypothesis

    Scientific hypothesis | Definition, Formulation, & Example

  15. What Is a Theory? A Scientific Definition

    What Is a Theory? A Scientific Definition

  16. What Is a "Theory" and Why Is It Important to Know?

    A theory is an established model for why or how a given phenomenon occurs—it is an explanation of observed regularities. The terms "established" and "observed regularities" are important here ...

  17. What is the relationship between a hypothesis and a theory?

    A theory is a hypothesis (or a group of hypotheses) with significantly large amount of evidence (consisting of repetitions of the experimental results in by different groups of scientists). Then the theory is able to explain verified proven facts. Answer link. A hypothesis is just a plausible explanation for an observable phenomenon.

  18. Theory vs. Hypothesis vs. Law

    Understand the difference between a hypothesis and a theory. Learn how a theory can become a law. Explore examples of theories, hypotheses, and...

  19. Developing a Hypothesis

    Theories and Hypotheses. Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes ...

  20. What Is a Hypothesis? The Scientific Method

    What Is a Hypothesis? (Science) - Scientific Method

  21. Step-by-step guide to hypothesis testing in statistics

    Misunderstanding 2: A Small p-value Means the Null Hypothesis is False. Clarification: A small p-value shows that your data is unlikely if the null hypothesis is true. It suggests that the alternative hypothesis might be right, but it doesn't prove the null hypothesis is false. Misunderstanding 3: The Significance Level (Alpha) Can Be Chosen ...