Grad Coach

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

research design meaning and components

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

research design meaning and components

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

research design meaning and components

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

research design meaning and components

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Survey Design 101: The Basics

10 Comments

Wei Leong YONG

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

ali

how can I put this blog as my reference(APA style) in bibliography part?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE: Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: May 30, 2024 9:38 AM
  • URL: https://libguides.usc.edu/writingguide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 31 May 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research design meaning and components

Home Market Research Research Tools and Apps

Research Design: What it is, Elements & Types

Research Design

Can you imagine doing research without a plan? Probably not. When we discuss a strategy to collect, study, and evaluate data, we talk about research design. This design addresses problems and creates a consistent and logical model for data analysis. Let’s learn more about it.

What is Research Design?

Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success.

Creating a research topic explains the type of research (experimental,  survey research ,  correlational , semi-experimental, review) and its sub-type (experimental design, research problem , descriptive case-study). 

There are three main types of designs for research:

  • Data collection
  • Measurement
  • Data Analysis

The research problem an organization faces will determine the design, not vice-versa. The design phase of a study determines which tools to use and how they are used.

The Process of Research Design

The research design process is a systematic and structured approach to conducting research. The process is essential to ensure that the study is valid, reliable, and produces meaningful results.

  • Consider your aims and approaches: Determine the research questions and objectives, and identify the theoretical framework and methodology for the study.
  • Choose a type of Research Design: Select the appropriate research design, such as experimental, correlational, survey, case study, or ethnographic, based on the research questions and objectives.
  • Identify your population and sampling method: Determine the target population and sample size, and choose the sampling method, such as random , stratified random sampling , or convenience sampling.
  • Choose your data collection methods: Decide on the data collection methods , such as surveys, interviews, observations, or experiments, and select the appropriate instruments or tools for collecting data.
  • Plan your data collection procedures: Develop a plan for data collection, including the timeframe, location, and personnel involved, and ensure ethical considerations.
  • Decide on your data analysis strategies: Select the appropriate data analysis techniques, such as statistical analysis , content analysis, or discourse analysis, and plan how to interpret the results.

The process of research design is a critical step in conducting research. By following the steps of research design, researchers can ensure that their study is well-planned, ethical, and rigorous.

Research Design Elements

Impactful research usually creates a minimum bias in data and increases trust in the accuracy of collected data. A design that produces the slightest margin of error in experimental research is generally considered the desired outcome. The essential elements are:

  • Accurate purpose statement
  • Techniques to be implemented for collecting and analyzing research
  • The method applied for analyzing collected details
  • Type of research methodology
  • Probable objections to research
  • Settings for the research study
  • Measurement of analysis

Characteristics of Research Design

A proper design sets your study up for success. Successful research studies provide insights that are accurate and unbiased. You’ll need to create a survey that meets all of the main characteristics of a design. There are four key characteristics:

Characteristics of Research Design

  • Neutrality: When you set up your study, you may have to make assumptions about the data you expect to collect. The results projected in the research should be free from research bias and neutral. Understand opinions about the final evaluated scores and conclusions from multiple individuals and consider those who agree with the results.
  • Reliability: With regularly conducted research, the researcher expects similar results every time. You’ll only be able to reach the desired results if your design is reliable. Your plan should indicate how to form research questions to ensure the standard of results.
  • Validity: There are multiple measuring tools available. However, the only correct measuring tools are those which help a researcher in gauging results according to the objective of the research. The  questionnaire  developed from this design will then be valid.
  • Generalization:  The outcome of your design should apply to a population and not just a restricted sample . A generalized method implies that your survey can be conducted on any part of a population with similar accuracy.

The above factors affect how respondents answer the research questions, so they should balance all the above characteristics in a good design. If you want, you can also learn about Selection Bias through our blog.

Research Design Types

A researcher must clearly understand the various types to select which model to implement for a study. Like the research itself, the design of your analysis can be broadly classified into quantitative and qualitative.

Qualitative research

Qualitative research determines relationships between collected data and observations based on mathematical calculations. Statistical methods can prove or disprove theories related to a naturally existing phenomenon. Researchers rely on qualitative observation research methods that conclude “why” a particular theory exists and “what” respondents have to say about it.

Quantitative research

Quantitative research is for cases where statistical conclusions to collect actionable insights are essential. Numbers provide a better perspective for making critical business decisions. Quantitative research methods are necessary for the growth of any organization. Insights drawn from complex numerical data and analysis prove to be highly effective when making decisions about the business’s future.

Qualitative Research vs Quantitative Research

Here is a chart that highlights the major differences between qualitative and quantitative research:

In summary or analysis , the step of qualitative research is more exploratory and focuses on understanding the subjective experiences of individuals, while quantitative research is more focused on objective data and statistical analysis.

You can further break down the types of research design into five categories:

types of research design

1. Descriptive: In a descriptive composition, a researcher is solely interested in describing the situation or case under their research study. It is a theory-based design method created by gathering, analyzing, and presenting collected data. This allows a researcher to provide insights into the why and how of research. Descriptive design helps others better understand the need for the research. If the problem statement is not clear, you can conduct exploratory research. 

2. Experimental: Experimental research establishes a relationship between the cause and effect of a situation. It is a causal research design where one observes the impact caused by the independent variable on the dependent variable. For example, one monitors the influence of an independent variable such as a price on a dependent variable such as customer satisfaction or brand loyalty. It is an efficient research method as it contributes to solving a problem.

The independent variables are manipulated to monitor the change it has on the dependent variable. Social sciences often use it to observe human behavior by analyzing two groups. Researchers can have participants change their actions and study how the people around them react to understand social psychology better.

3. Correlational research: Correlational research  is a non-experimental research technique. It helps researchers establish a relationship between two closely connected variables. There is no assumption while evaluating a relationship between two other variables, and statistical analysis techniques calculate the relationship between them. This type of research requires two different groups.

A correlation coefficient determines the correlation between two variables whose values range between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables, and -1 means a negative relationship between the two variables. 

4. Diagnostic research: In diagnostic design, the researcher is looking to evaluate the underlying cause of a specific topic or phenomenon. This method helps one learn more about the factors that create troublesome situations. 

This design has three parts of the research:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

5. Explanatory research : Explanatory design uses a researcher’s ideas and thoughts on a subject to further explore their theories. The study explains unexplored aspects of a subject and details the research questions’ what, how, and why.

Benefits of Research Design

There are several benefits of having a well-designed research plan. Including:

  • Clarity of research objectives: Research design provides a clear understanding of the research objectives and the desired outcomes.
  • Increased validity and reliability: To ensure the validity and reliability of results, research design help to minimize the risk of bias and helps to control extraneous variables.
  • Improved data collection: Research design helps to ensure that the proper data is collected and data is collected systematically and consistently.
  • Better data analysis: Research design helps ensure that the collected data can be analyzed effectively, providing meaningful insights and conclusions.
  • Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders.
  • Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

A well-designed research plan is essential for successful research, providing clear and meaningful insights and ensuring that resources are practical.

QuestionPro offers a comprehensive solution for researchers looking to conduct research. With its user-friendly interface, robust data collection and analysis tools, and the ability to integrate results from multiple sources, QuestionPro provides a versatile platform for designing and executing research projects.

Our robust suite of research tools provides you with all you need to derive research results. Our online survey platform includes custom point-and-click logic and advanced question types. Uncover the insights that matter the most.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

Raked Weighting

Raked Weighting: A Key Tool for Accurate Survey Results

May 31, 2024

Data trends

Top 8 Data Trends to Understand the Future of Data

May 30, 2024

interactive presentation software

Top 12 Interactive Presentation Software to Engage Your User

May 29, 2024

Trend Report

Trend Report: Guide for Market Dynamics & Strategic Analysis

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Introducing Research Designs

  • First Online: 10 November 2021

Cite this chapter

research design meaning and components

  • Stefan Hunziker 3 &
  • Michael Blankenagel 3  

3412 Accesses

We define research design as a combination of decisions within a research process. These decisions enable us to make a specific type of argument by answering the research question. It is the implementation plan for the research study that allows reaching the desired (type of) conclusion. Different research designs make it possible to draw different conclusions. These conclusions produce various kinds of intellectual contributions. As all kinds of intellectual contributions are necessary to increase the body of knowledge, no research design is inherently better than another, only more appropriate to answer a specific question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Alvesson, M., & Skoldburg, K. (2000). Reflexive methodology . SAGE.

Google Scholar  

Alvesson, M. (2004). Reflexive methodology: New vistas for qualitative research. SAGE.

Attia, M., & Edge, J. (2017). Be(com)ing a reflexive researcher: A developmental approach to research methodology. Open Review of Educational Research, 4 (1), 33–45.

Article   Google Scholar  

Brahler, C. (2018). Chapter 9 “Validity in Experimental Design”. University of Dayton. Retrieved May 27, 2021, from https://www.coursehero.com/file/30778216/CHAPTER-9-VALIDITY-IN-EXPERIMENTAL-DESIGN-KEYdocx/ .

Brown, J. D. (1996). Testing in language programs. Prentice Hall Regents.

Cambridge University Press. (n.d.a). Design. In  Cambridge dictionary . Retrieved May 19, 2021, from  https://dictionary.cambridge.org/dictionary/english/design .

Cambridge University Press. (n.d.b). Method. In  Cambridge dictionary . Retrieved May 19, 2021, from https://dictionary.cambridge.org/dictionary/english/method .

Cambridge University Press. (n.d.c). Methodology. In  Cambridge dictionary . Retrieved June 8, 2021, from https://dictionary.cambridge.org/dictionary/english/methodology .

Charmaz, K. (2017). The power of constructivist grounded theory for critical inquiry. Qualitative Inquiry, 23 (1), 34–45.

Cohen, D. J., & Crabtree, B. F. (2008). Evaluative criteria for qualitative research in health care: Controversies and recommendations. Annals of Family Medicine, 6 (4), 331–339.

de Vaus, D. A. (2001). Research design in social research. Reprinted . SAGE.

Hall, W. A., & Callery, P. (2001). Enhancing the rigor of grounded theory: Incorporating reflexivity and relationality. Qualitative Health Research, 11 (2), 257–272.

Haynes, K. (2012). Reflexivity in qualitative research. In Qualitative organizational research: Core methods and current challenges (pp. 72–89).

Koch, T., & Harrington, A. (1998). Reconceptualizing rigour: The case for reflexivity. Journal of Advanced Nursing., 28 (4), 882–890.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry . Sage.

Malterud, K. (2001). Qualitative research: Standards, challenges and guidelines. The Lancet, 358 , 483–488.

Orr, K., & Bennett, M. (2009). Reflexivity in the co-production of academic-practitioner research. Qual Research in Orgs & Mgmt, 4, 85–102.

Trochim, W. (2005). Research methods: The concise knowledge base. Atomic Dog Pub.

Subramani, S. (2019). Practising reflexivity: Ethics, methodology and theory construction. Methodological Innovations , 12 (2).

Sue, V., & Ritter, L. (Eds.). (2007). Conducting online surveys . SAGE.

Yin, R. K. (1994). Discovering the future of the case study. method in evaluation research. American Journal of Evaluation, 15 (3), 283–290.

Yin, R. K. (2014). Case study research. Design and methods (5th ed.). SAGE.

Download references

Author information

Authors and affiliations.

Wirtschaft/IFZ – Campus Zug-Rotkreuz, Hochschule Luzern, Zug-Rotkreuz, Zug , Switzerland

Stefan Hunziker & Michael Blankenagel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stefan Hunziker .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Hunziker, S., Blankenagel, M. (2021). Introducing Research Designs. In: Research Design in Business and Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-34357-6_1

Download citation

DOI : https://doi.org/10.1007/978-3-658-34357-6_1

Published : 10 November 2021

Publisher Name : Springer Gabler, Wiesbaden

Print ISBN : 978-3-658-34356-9

Online ISBN : 978-3-658-34357-6

eBook Packages : Business and Economics (German Language)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

What is Research Design? Characteristics, Types, Process, & Examples

Link Copied

Share on Facebook

Share on Twitter

Share on LinkedIn

What is Research Design? Characteristics, Types, Process, & Examples

Your search has come to an end!

Ever felt like a hamster on a research wheel fast, spinning with a million questions but going nowhere? You've got your topic; you're brimming with curiosity, but... what next? Think of it as your roadmap, ensuring you don't end up lost in a sea of confusing data. So, forget the research rut and get your papers! This ultimate guide to "what is research design?" will have you navigating your project like a pro, uncovering answers and avoiding dead ends. Know the features of good research design, what you mean by research design, elements of research design, and more.

What is Research Design?

Before starting with the topic, do you know what is research design in research? Well, research design is the plan that shows how the study will be done. This plan covers everything from how data will be collected to how it will be analysed. A good research design has a clear question to answer, a detailed plan for gathering information, and a way to make sense of the findings. A good research design has three key ingredients:

1. A clear question: What exactly are you trying to learn? ‍

2. Data collection: How will you gather information (surveys, interviews, experiments)?

3. Analysis: How will you make sense of the data you collect?

Elements of Research Design 

Now that you know what is research design, it is important to know the elements. The elements or components of research design help to ensure that it is reliable, valid and can yield meaningful results. They also provide a guide for the research process, helping the researcher from the initial stages of formulating the research question to the final stages of interpreting the findings. 

1. Purpose Statement: This is a clear and concise statement of the research objectives and the specific goals the research aims to achieve.

2. Research Questions: These are the specific questions the research aims to answer.

3. Research Methodology: This refers to the overall approach and specific methods used to collect and analyse data.

4. Data Collection Methods: These are the specific techniques used to gather data for the research.

5. Data Analysis Techniques: These are the methods used to analyse and interpret the collected data.

6. Units of Analysis: These are the specific entities (e.g., individuals, groups, organisations) that the research focuses on.

7. Linking Data to Propositions: This involves connecting the data collected to the research questions or hypotheses.

8. Interpretation of Findings: This involves making sense of the data and drawing conclusions based on the research objectives.

9. Possible Obstacles to the Research: This involves identifying potential challenges or issues that may arise during the research process.

10. Settings for Research Study: This refers to the context or environment in which the research is conducted.

11. Time of the Research Study: This refers to the timeframe of the research, whether it’s cross-sectional (at one specific point in time) or longitudinal (over an extended period).

Characteristics of Research Design

Research design has several key characteristics that contribute to the validity, reliability, and overall success of a research study. To know the answer for what is research design, it is important to know the characteristics. These are-

1. Reliability: A reliable research design ensures that each study’s results are accurate and can be replicated. This means that if the research is conducted again under the same conditions, it should yield similar results.

2. Validity: A valid research design uses appropriate measuring tools to gauge the results according to the research objective. This ensures that the data collected and the conclusions drawn are relevant and accurately reflect the phenomenon being studied.

3. Neutrality: A neutral research design ensures that the assumptions made at the beginning of the research are free from bias. This means that the data collected throughout the research is based on these unbiased assumptions.

4. Generalizability: A good research design draws an outcome that can be applied to a large set of people and is not limited to the sample size or the research group.

Got a hang of research, now book yout student accommodation with one click!

Book through amber today!

The Process of Research Design

What is research design? A good research helps you do a really good study that gives fair, trustworthy, and useful results. But it's also good to have a bit of wiggle room for changes. If you’re wondering how to conduct a research in just 5 mins , here's a breakdown and examples to work even better.

Step 1: Establish Priorities for Research Design: 

Before conducting any research study, you must address an important question: "what is research design and how to create one?" For example, if you're researching the impact of remote learning on student performance, your priority might be to establish a clear research question and objectives.

Step 2: Choose your Data Type you Need for Research

One of the best features of research design is to decide on the type of data you need for your research. For instance, if you’re studying the effects of a new drug, you might need quantitative data like clinical trial results.

There are lots of ways to answer your research questions. Think about what you want to achieve before you decide how to do your research. The first thing, do you know what is qualitative research design and what is quantitative research design? Here's a quick difference between the two:

What is Research Design in Quantitative Research?

There are 4 main types of quantitative research design- 

What are Research Design Examples?

1. Experimental Research Methods: 

Drug Efficacy Study: A pharmaceutical company wants to test the effectiveness of a new drug. They randomly assign participants to two groups: one group receives the new drug (experimental group), and the other group receives a placebo (control group). The company then measures the health outcomes of the two groups.

2. Quasi-Experimental Research Methods:

Teaching Method Evaluation: A researcher is interested in the impact of a new teaching method. A group of students are taught using the new method, while another group is taught using the traditional method. The researcher then compares the academic performance of the two groups.

3. Descriptive Research Methods:

Consumer Behavior Survey: A company wants to understand the shopping habits of their customers. They conduct a survey asking customers about their shopping frequency, preferred products, and reasons for their preferences.

4. Correlational Research Methods:

Health and Lifestyle Study: A health researcher is interested in the relationship between physical activity levels and heart disease. They collect data on the physical activity levels and heart health of a large group of people over several years. The researcher then analyses the data to see if there is a correlation between physical activity and heart disease

What is Qualitative Research Design?

Qualitative research designs are more flexible and open-ended. They're all about deeply understanding a particular situation or topic, and you have room to be imaginative and adaptable in planning your study. Below, you'll find a list of typical qualitative research designs.

Step 3: Decide your Data Collection Techniques

Now that you understand what is research design in research, you should also know the types of what are the different types of research design techniques. Choose the methods you’ll use to gather your data. If you’re surveying consumer behaviour, for example, you might use questionnaires or interviews.

Survey methods

Surveys are like questionnaires or interviews where you ask people about what they think, do, feel, or are like. They help you gather information straight from the source. So, when you're planning a research project, you can pick either questionnaires or interviews as your main way to get data. Research design is just the plan you make for how you're going to do your research, including what methods you'll use, like surveys.

Observation methods

Observational studies are a way to gather information without bothering anyone. You just watch and note down what you see, like people's actions or how they interact, without asking them directly. You can do this right then and there, jotting down stuff, or you can record videos to check out later. Depending on what you're studying, these observations can focus on describing things or counting them up.

Secondary Data

If you can't gather data yourself, you can use info already collected by other researchers, like from government surveys or past studies. You can then analyse this data to explore new questions. This can broaden your research because you might access bigger and more diverse samples. But, since you didn't collect the data yourself, you can't choose what to measure or how, which limits your conclusions.

In simple terms, research design is about how you plan to gather and analyse data to answer your research questions. If you can't collect data directly, you might use data already gathered by others, known as secondary data, to still answer your questions.

Step 4: Sort Out your Data Analysis

When you find what research design in research, just having a bunch of raw data isn't enough to answer your questions. You also need to figure out how you're going to make sense of that data. This is where research design comes in.

If you're working with quantitative research, you'll probably use statistics to analyse your data. Statistics help you understand things like how your data is spread out, what the average is, and how different groups compare. For example, you might use tests to see if there's a connection between two things or if one group is different from another.

But if you're dealing with more qualitative research, you'll need a different approach. Instead of crunching numbers, you'll be diving deep into your data, looking for patterns and meanings. You might use methods like thematic analysis or discourse analysis to make sense of it all.

Sampling Procedures

Choosing the right way to pick people for your study is important. But it's not just about that. You also need a solid plan for how you'll reach out and get those people to join in.

Here's what you need to think about:

1. How many people do you need to join to make sure your study is good?

2. What rules will you use to decide who can join and who can't?

3. How will you get in touch with them—by mail, online, phone, or meeting them in person?

4. If you're picking people randomly, it's crucial that everyone who gets chosen actually takes part. How can you make sure most of them do?

If you're not picking people randomly, how will you ensure that your study is unbiased and represents different kinds of people? 

Benefits of Research Design

After learning about what is research design and the process, it is important to know the key benefits of a well-structured research design:

1. Minimises Risk of Errors: A good research design minimises the risk of errors and reduces inaccuracy. It ensures that the study is carried out in the right direction and that all the team members are on the same page.

2. Efficient Use of Resources: It facilitates a concrete research plan for the efficient use of time and resources. It helps the researcher better complete all the tasks, even with limited resources.

3. Provides Direction: The purpose of the research design is to enable the researcher to proceed in the right direction without deviating from the tasks. It helps to identify the major and minor tasks of the study.

4. Ensures Validity and Reliability: A well-designed research enhances the validity and reliability of the findings and allows for the replication of studies by other researchers. The main advantage of a good research design is that it provides accuracy, reliability, consistency, and legitimacy to the research.

5. Facilitates Problem-Solving: A researcher can easily frame the objectives of the research work based on the design of experiments (research design). A good research design helps the researcher find the best solution for the research problems.

6. Better Documentation: It helps in better documentation of the various activities while the project work is going on.

That's it! You've explored all the answers for what is research design in research? Remember, it's not just about picking a fancy method – it's about choosing the perfect tool to answer your burning questions. By carefully considering your goals and resources, you can design a research plan that gathers reliable information and helps you reach clear conclusions. 

Frequently Asked Questions

What are the 4 types of research design, what are the important concepts of research design, what are the 5 components of a research, what are different types of research, what are the 4 major elements of a research design.

Your ideal student home & a flight ticket awaits

Follow us on :

cta

Related Posts

research design meaning and components

10 Best Engineering Universities in Australia in 2024

research design meaning and components

Explore Top Yale University Scholarships In 2024

research design meaning and components

The Top 10 Canadian Business Schools You Should Consider in 2024!

research design meaning and components

Planning to Study Abroad ?

research design meaning and components

Your ideal student accommodation is a few steps away! Please fill in your details below so we can find you a new home!

We have got your response

Top 10 Educational YouTube Channels

amber © 2024. All rights reserved.

4.8/5 on Trustpilot

Rated as "Excellent" • 4800+ Reviews by students

Rated as "Excellent" • 4800+ Reviews by Students

play store

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Research design

Research design is a comprehensive plan for data collection in an empirical research project. It is a ‘blueprint’ for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: the data collection process, the instrument development process, and the sampling process. The instrument development and sampling processes are described in the next two chapters, and the data collection process—which is often loosely called ‘research design’—is introduced in this chapter and is described in further detail in Chapters 9–12.

Broadly speaking, data collection methods can be grouped into two categories: positivist and interpretive. Positivist methods , such as laboratory experiments and survey research, are aimed at theory (or hypotheses) testing, while interpretive methods, such as action research and ethnography, are aimed at theory building. Positivist methods employ a deductive approach to research, starting with a theory and testing theoretical postulates using empirical data. In contrast, interpretive methods employ an inductive approach that starts with data and tries to derive a theory about the phenomenon of interest from the observed data. Often times, these methods are incorrectly equated with quantitative and qualitative research. Quantitative and qualitative methods refers to the type of data being collected—quantitative data involve numeric scores, metrics, and so on, while qualitative data includes interviews, observations, and so forth—and analysed (i.e., using quantitative techniques such as regression or qualitative techniques such as coding). Positivist research uses predominantly quantitative data, but can also use qualitative data. Interpretive research relies heavily on qualitative data, but can sometimes benefit from including quantitative data as well. Sometimes, joint use of qualitative and quantitative data may help generate unique insight into a complex social phenomenon that is not available from either type of data alone, and hence, mixed-mode designs that combine qualitative and quantitative data are often highly desirable.

Key attributes of a research design

The quality of research designs can be defined in terms of four key design attributes: internal validity, external validity, construct validity, and statistical conclusion validity.

Internal validity , also called causality, examines whether the observed change in a dependent variable is indeed caused by a corresponding change in a hypothesised independent variable, and not by variables extraneous to the research context. Causality requires three conditions: covariation of cause and effect (i.e., if cause happens, then effect also happens; if cause does not happen, effect does not happen), temporal precedence (cause must precede effect in time), and spurious correlation, or there is no plausible alternative explanation for the change. Certain research designs, such as laboratory experiments, are strong in internal validity by virtue of their ability to manipulate the independent variable (cause) via a treatment and observe the effect (dependent variable) of that treatment after a certain point in time, while controlling for the effects of extraneous variables. Other designs, such as field surveys, are poor in internal validity because of their inability to manipulate the independent variable (cause), and because cause and effect are measured at the same point in time which defeats temporal precedence making it equally likely that the expected effect might have influenced the expected cause rather than the reverse. Although higher in internal validity compared to other methods, laboratory experiments are by no means immune to threats of internal validity, and are susceptible to history, testing, instrumentation, regression, and other threats that are discussed later in the chapter on experimental designs. Nonetheless, different research designs vary considerably in their respective level of internal validity.

External validity or generalisability refers to whether the observed associations can be generalised from the sample to the population (population validity), or to other people, organisations, contexts, or time (ecological validity). For instance, can results drawn from a sample of financial firms in the United States be generalised to the population of financial firms (population validity) or to other firms within the United States (ecological validity)? Survey research, where data is sourced from a wide variety of individuals, firms, or other units of analysis, tends to have broader generalisability than laboratory experiments where treatments and extraneous variables are more controlled. The variation in internal and external validity for a wide range of research designs is shown in Figure 5.1.

Internal and external validity

Some researchers claim that there is a trade-off between internal and external validity—higher external validity can come only at the cost of internal validity and vice versa. But this is not always the case. Research designs such as field experiments, longitudinal field surveys, and multiple case studies have higher degrees of both internal and external validities. Personally, I prefer research designs that have reasonable degrees of both internal and external validities, i.e., those that fall within the cone of validity shown in Figure 5.1. But this should not suggest that designs outside this cone are any less useful or valuable. Researchers’ choice of designs are ultimately a matter of their personal preference and competence, and the level of internal and external validity they desire.

Construct validity examines how well a given measurement scale is measuring the theoretical construct that it is expected to measure. Many constructs used in social science research such as empathy, resistance to change, and organisational learning are difficult to define, much less measure. For instance, construct validity must ensure that a measure of empathy is indeed measuring empathy and not compassion, which may be difficult since these constructs are somewhat similar in meaning. Construct validity is assessed in positivist research based on correlational or factor analysis of pilot test data, as described in the next chapter.

Statistical conclusion validity examines the extent to which conclusions derived using a statistical procedure are valid. For example, it examines whether the right statistical method was used for hypotheses testing, whether the variables used meet the assumptions of that statistical test (such as sample size or distributional requirements), and so forth. Because interpretive research designs do not employ statistical tests, statistical conclusion validity is not applicable for such analysis. The different kinds of validity and where they exist at the theoretical/empirical levels are illustrated in Figure 5.2.

Different types of validity in scientific research

Improving internal and external validity

The best research designs are those that can ensure high levels of internal and external validity. Such designs would guard against spurious correlations, inspire greater faith in the hypotheses testing, and ensure that the results drawn from a small sample are generalisable to the population at large. Controls are required to ensure internal validity (causality) of research designs, and can be accomplished in five ways: manipulation, elimination, inclusion, and statistical control, and randomisation.

In manipulation , the researcher manipulates the independent variables in one or more levels (called ‘treatments’), and compares the effects of the treatments against a control group where subjects do not receive the treatment. Treatments may include a new drug or different dosage of drug (for treating a medical condition), a teaching style (for students), and so forth. This type of control is achieved in experimental or quasi-experimental designs, but not in non-experimental designs such as surveys. Note that if subjects cannot distinguish adequately between different levels of treatment manipulations, their responses across treatments may not be different, and manipulation would fail.

The elimination technique relies on eliminating extraneous variables by holding them constant across treatments, such as by restricting the study to a single gender or a single socioeconomic status. In the inclusion technique, the role of extraneous variables is considered by including them in the research design and separately estimating their effects on the dependent variable, such as via factorial designs where one factor is gender (male versus female). Such technique allows for greater generalisability, but also requires substantially larger samples. In statistical control , extraneous variables are measured and used as covariates during the statistical testing process.

Finally, the randomisation technique is aimed at cancelling out the effects of extraneous variables through a process of random sampling, if it can be assured that these effects are of a random (non-systematic) nature. Two types of randomisation are: random selection , where a sample is selected randomly from a population, and random assignment , where subjects selected in a non-random manner are randomly assigned to treatment groups.

Randomisation also ensures external validity, allowing inferences drawn from the sample to be generalised to the population from which the sample is drawn. Note that random assignment is mandatory when random selection is not possible because of resource or access constraints. However, generalisability across populations is harder to ascertain since populations may differ on multiple dimensions and you can only control for a few of those dimensions.

Popular research designs

As noted earlier, research designs can be classified into two categories—positivist and interpretive—depending on the goal of the research. Positivist designs are meant for theory testing, while interpretive designs are meant for theory building. Positivist designs seek generalised patterns based on an objective view of reality, while interpretive designs seek subjective interpretations of social phenomena from the perspectives of the subjects involved. Some popular examples of positivist designs include laboratory experiments, field experiments, field surveys, secondary data analysis, and case research, while examples of interpretive designs include case research, phenomenology, and ethnography. Note that case research can be used for theory building or theory testing, though not at the same time. Not all techniques are suited for all kinds of scientific research. Some techniques such as focus groups are best suited for exploratory research, others such as ethnography are best for descriptive research, and still others such as laboratory experiments are ideal for explanatory research. Following are brief descriptions of some of these designs. Additional details are provided in Chapters 9–12.

Experimental studies are those that are intended to test cause-effect relationships (hypotheses) in a tightly controlled setting by separating the cause from the effect in time, administering the cause to one group of subjects (the ‘treatment group’) but not to another group (‘control group’), and observing how the mean effects vary between subjects in these two groups. For instance, if we design a laboratory experiment to test the efficacy of a new drug in treating a certain ailment, we can get a random sample of people afflicted with that ailment, randomly assign them to one of two groups (treatment and control groups), administer the drug to subjects in the treatment group, but only give a placebo (e.g., a sugar pill with no medicinal value) to subjects in the control group. More complex designs may include multiple treatment groups, such as low versus high dosage of the drug or combining drug administration with dietary interventions. In a true experimental design , subjects must be randomly assigned to each group. If random assignment is not followed, then the design becomes quasi-experimental . Experiments can be conducted in an artificial or laboratory setting such as at a university (laboratory experiments) or in field settings such as in an organisation where the phenomenon of interest is actually occurring (field experiments). Laboratory experiments allow the researcher to isolate the variables of interest and control for extraneous variables, which may not be possible in field experiments. Hence, inferences drawn from laboratory experiments tend to be stronger in internal validity, but those from field experiments tend to be stronger in external validity. Experimental data is analysed using quantitative statistical techniques. The primary strength of the experimental design is its strong internal validity due to its ability to isolate, control, and intensively examine a small number of variables, while its primary weakness is limited external generalisability since real life is often more complex (i.e., involving more extraneous variables) than contrived lab settings. Furthermore, if the research does not identify ex ante relevant extraneous variables and control for such variables, such lack of controls may hurt internal validity and may lead to spurious correlations.

Field surveys are non-experimental designs that do not control for or manipulate independent variables or treatments, but measure these variables and test their effects using statistical methods. Field surveys capture snapshots of practices, beliefs, or situations from a random sample of subjects in field settings through a survey questionnaire or less frequently, through a structured interview. In cross-sectional field surveys , independent and dependent variables are measured at the same point in time (e.g., using a single questionnaire), while in longitudinal field surveys , dependent variables are measured at a later point in time than the independent variables. The strengths of field surveys are their external validity (since data is collected in field settings), their ability to capture and control for a large number of variables, and their ability to study a problem from multiple perspectives or using multiple theories. However, because of their non-temporal nature, internal validity (cause-effect relationships) are difficult to infer, and surveys may be subject to respondent biases (e.g., subjects may provide a ‘socially desirable’ response rather than their true response) which further hurts internal validity.

Secondary data analysis is an analysis of data that has previously been collected and tabulated by other sources. Such data may include data from government agencies such as employment statistics from the U.S. Bureau of Labor Services or development statistics by countries from the United Nations Development Program, data collected by other researchers (often used in meta-analytic studies), or publicly available third-party data, such as financial data from stock markets or real-time auction data from eBay. This is in contrast to most other research designs where collecting primary data for research is part of the researcher’s job. Secondary data analysis may be an effective means of research where primary data collection is too costly or infeasible, and secondary data is available at a level of analysis suitable for answering the researcher’s questions. The limitations of this design are that the data might not have been collected in a systematic or scientific manner and hence unsuitable for scientific research, since the data was collected for a presumably different purpose, they may not adequately address the research questions of interest to the researcher, and interval validity is problematic if the temporal precedence between cause and effect is unclear.

Case research is an in-depth investigation of a problem in one or more real-life settings (case sites) over an extended period of time. Data may be collected using a combination of interviews, personal observations, and internal or external documents. Case studies can be positivist in nature (for hypotheses testing) or interpretive (for theory building). The strength of this research method is its ability to discover a wide variety of social, cultural, and political factors potentially related to the phenomenon of interest that may not be known in advance. Analysis tends to be qualitative in nature, but heavily contextualised and nuanced. However, interpretation of findings may depend on the observational and integrative ability of the researcher, lack of control may make it difficult to establish causality, and findings from a single case site may not be readily generalised to other case sites. Generalisability can be improved by replicating and comparing the analysis in other case sites in a multiple case design .

Focus group research is a type of research that involves bringing in a small group of subjects (typically six to ten people) at one location, and having them discuss a phenomenon of interest for a period of one and a half to two hours. The discussion is moderated and led by a trained facilitator, who sets the agenda and poses an initial set of questions for participants, makes sure that the ideas and experiences of all participants are represented, and attempts to build a holistic understanding of the problem situation based on participants’ comments and experiences. Internal validity cannot be established due to lack of controls and the findings may not be generalised to other settings because of the small sample size. Hence, focus groups are not generally used for explanatory or descriptive research, but are more suited for exploratory research.

Action research assumes that complex social phenomena are best understood by introducing interventions or ‘actions’ into those phenomena and observing the effects of those actions. In this method, the researcher is embedded within a social context such as an organisation and initiates an action—such as new organisational procedures or new technologies—in response to a real problem such as declining profitability or operational bottlenecks. The researcher’s choice of actions must be based on theory, which should explain why and how such actions may cause the desired change. The researcher then observes the results of that action, modifying it as necessary, while simultaneously learning from the action and generating theoretical insights about the target problem and interventions. The initial theory is validated by the extent to which the chosen action successfully solves the target problem. Simultaneous problem solving and insight generation is the central feature that distinguishes action research from all other research methods, and hence, action research is an excellent method for bridging research and practice. This method is also suited for studying unique social problems that cannot be replicated outside that context, but it is also subject to researcher bias and subjectivity, and the generalisability of findings is often restricted to the context where the study was conducted.

Ethnography is an interpretive research design inspired by anthropology that emphasises that research phenomenon must be studied within the context of its culture. The researcher is deeply immersed in a certain culture over an extended period of time—eight months to two years—and during that period, engages, observes, and records the daily life of the studied culture, and theorises about the evolution and behaviours in that culture. Data is collected primarily via observational techniques, formal and informal interaction with participants in that culture, and personal field notes, while data analysis involves ‘sense-making’. The researcher must narrate her experience in great detail so that readers may experience that same culture without necessarily being there. The advantages of this approach are its sensitiveness to the context, the rich and nuanced understanding it generates, and minimal respondent bias. However, this is also an extremely time and resource-intensive approach, and findings are specific to a given culture and less generalisable to other cultures.

Selecting research designs

Given the above multitude of research designs, which design should researchers choose for their research? Generally speaking, researchers tend to select those research designs that they are most comfortable with and feel most competent to handle, but ideally, the choice should depend on the nature of the research phenomenon being studied. In the preliminary phases of research, when the research problem is unclear and the researcher wants to scope out the nature and extent of a certain research problem, a focus group (for an individual unit of analysis) or a case study (for an organisational unit of analysis) is an ideal strategy for exploratory research. As one delves further into the research domain, but finds that there are no good theories to explain the phenomenon of interest and wants to build a theory to fill in the unmet gap in that area, interpretive designs such as case research or ethnography may be useful designs. If competing theories exist and the researcher wishes to test these different theories or integrate them into a larger theory, positivist designs such as experimental design, survey research, or secondary data analysis are more appropriate.

Regardless of the specific research design chosen, the researcher should strive to collect quantitative and qualitative data using a combination of techniques such as questionnaires, interviews, observations, documents, or secondary data. For instance, even in a highly structured survey questionnaire, intended to collect quantitative data, the researcher may leave some room for a few open-ended questions to collect qualitative data that may generate unexpected insights not otherwise available from structured quantitative data alone. Likewise, while case research employ mostly face-to-face interviews to collect most qualitative data, the potential and value of collecting quantitative data should not be ignored. As an example, in a study of organisational decision-making processes, the case interviewer can record numeric quantities such as how many months it took to make certain organisational decisions, how many people were involved in that decision process, and how many decision alternatives were considered, which can provide valuable insights not otherwise available from interviewees’ narrative responses. Irrespective of the specific research design employed, the goal of the researcher should be to collect as much and as diverse data as possible that can help generate the best possible insights about the phenomenon of interest.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Pediatr Investig
  • v.3(4); 2019 Dec

Logo of pedinvest

Clinical research study designs: The essentials

Ambika g. chidambaram.

1 Children's Hospital of Philadelphia, Philadelphia Pennsylvania, USA

Maureen Josephson

In clinical research, our aim is to design a study which would be able to derive a valid and meaningful scientific conclusion using appropriate statistical methods. The conclusions derived from a research study can either improve health care or result in inadvertent harm to patients. Hence, this requires a well‐designed clinical research study that rests on a strong foundation of a detailed methodology and governed by ethical clinical principles. The purpose of this review is to provide the readers an overview of the basic study designs and its applicability in clinical research.

Introduction

In clinical research, our aim is to design a study, which would be able to derive a valid and meaningful scientific conclusion using appropriate statistical methods that can be translated to the “real world” setting. 1 Before choosing a study design, one must establish aims and objectives of the study, and choose an appropriate target population that is most representative of the population being studied. The conclusions derived from a research study can either improve health care or result in inadvertent harm to patients. Hence, this requires a well‐designed clinical research study that rests on a strong foundation of a detailed methodology and is governed by ethical principles. 2

From an epidemiological standpoint, there are two major types of clinical study designs, observational and experimental. 3 Observational studies are hypothesis‐generating studies, and they can be further divided into descriptive and analytic. Descriptive observational studies provide a description of the exposure and/or the outcome, and analytic observational studies provide a measurement of the association between the exposure and the outcome. Experimental studies, on the other hand, are hypothesis testing studies. It involves an intervention that tests the association between the exposure and outcome. Each study design is different, and so it would be important to choose a design that would most appropriately answer the question in mind and provide the most valuable information. We will be reviewing each study design in detail (Figure  1 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g001.jpg

Overview of clinical research study designs

Observational study designs

Observational studies ask the following questions: what, who, where and when. There are many study designs that fall under the umbrella of descriptive study designs, and they include, case reports, case series, ecologic study, cross‐sectional study, cohort study and case‐control study (Figure  2 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g002.jpg

Classification of observational study designs

Case reports and case series

Every now and then during clinical practice, we come across a case that is atypical or ‘out of the norm’ type of clinical presentation. This atypical presentation is usually described as case reports which provides a detailed and comprehensive description of the case. 4 It is one of the earliest forms of research and provides an opportunity for the investigator to describe the observations that make a case unique. There are no inferences obtained and therefore cannot be generalized to the population which is a limitation. Most often than not, a series of case reports make a case series which is an atypical presentation found in a group of patients. This in turn poses the question for a new disease entity and further queries the investigator to look into mechanistic investigative opportunities to further explore. However, in a case series, the cases are not compared to subjects without the manifestations and therefore it cannot determine which factors in the description are unique to the new disease entity.

Ecologic study

Ecological studies are observational studies that provide a description of population group characteristics. That is, it describes characteristics to all individuals within a group. For example, Prentice et al 5 measured incidence of breast cancer and per capita intake of dietary fat, and found a correlation that higher per capita intake of dietary fat was associated with an increased incidence of breast cancer. But the study does not conclude specifically which subjects with breast cancer had a higher dietary intake of fat. Thus, one of the limitations with ecologic study designs is that the characteristics are attributed to the whole group and so the individual characteristics are unknown.

Cross‐sectional study

Cross‐sectional studies are study designs used to evaluate an association between an exposure and outcome at the same time. It can be classified under either descriptive or analytic, and therefore depends on the question being answered by the investigator. Since, cross‐sectional studies are designed to collect information at the same point of time, this provides an opportunity to measure prevalence of the exposure or the outcome. For example, a cross‐sectional study design was adopted to estimate the global need for palliative care for children based on representative sample of countries from all regions of the world and all World Bank income groups. 6 The limitation of cross‐sectional study design is that temporal association cannot be established as the information is collected at the same point of time. If a study involves a questionnaire, then the investigator can ask questions to onset of symptoms or risk factors in relation to onset of disease. This would help in obtaining a temporal sequence between the exposure and outcome. 7

Case‐control study

Case‐control studies are study designs that compare two groups, such as the subjects with disease (cases) to the subjects without disease (controls), and to look for differences in risk factors. 8 This study is used to study risk factors or etiologies for a disease, especially if the disease is rare. Thus, case‐control studies can also be hypothesis testing studies and therefore can suggest a causal relationship but cannot prove. It is less expensive and less time‐consuming than cohort studies (described in section “Cohort study”). An example of a case‐control study was performed in Pakistan evaluating the risk factors for neonatal tetanus. They retrospectively reviewed a defined cohort for cases with and without neonatal tetanus. 9 They found a strong association of the application of ghee (clarified butter) as a risk factor for neonatal tetanus. Although this suggests a causal relationship, cause cannot be proven by this methodology (Figure  3 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g003.jpg

Case‐control study design

One of the limitations of case‐control studies is that they cannot estimate prevalence of a disease accurately as a proportion of cases and controls are studied at a time. Case‐control studies are also prone to biases such as recall bias, as the subjects are providing information based on their memory. Hence, the subjects with disease are likely to remember the presence of risk factors compared to the subjects without disease.

One of the aspects that is often overlooked is the selection of cases and controls. It is important to select the cases and controls appropriately to obtain a meaningful and scientifically sound conclusion and this can be achieved by implementing matching. Matching is defined by Gordis et al as ‘the process of selecting the controls so that they are similar to the cases in certain characteristics such as age, race, sex, socioeconomic status and occupation’ 7 This would help identify risk factors or probable etiologies that are not due to differences between the cases and controls.

Cohort study

Cohort studies are study designs that compare two groups, such as the subjects with exposure/risk factor to the subjects without exposure/risk factor, for differences in incidence of outcome/disease. Most often, cohort study designs are used to study outcome(s) from a single exposure/risk factor. Thus, cohort studies can also be hypothesis testing studies and can infer and interpret a causal relationship between an exposure and a proposed outcome, but cannot establish it (Figure  4 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g004.jpg

Cohort study design

Cohort studies can be classified as prospective and retrospective. 7 Prospective cohort studies follow subjects from presence of risk factors/exposure to development of disease/outcome. This could take up to years before development of disease/outcome, and therefore is time consuming and expensive. On the other hand, retrospective cohort studies identify a population with and without the risk factor/exposure based on past records and then assess if they had developed the disease/outcome at the time of study. Thus, the study design for prospective and retrospective cohort studies are similar as we are comparing populations with and without exposure/risk factor to development of outcome/disease.

Cohort studies are typically chosen as a study design when the suspected exposure is known and rare, and the incidence of disease/outcome in the exposure group is suspected to be high. The choice between prospective and retrospective cohort study design would depend on the accuracy and reliability of the past records regarding the exposure/risk factor.

Some of the biases observed with cohort studies include selection bias and information bias. Some individuals who have the exposure may refuse to participate in the study or would be lost to follow‐up, and in those instances, it becomes difficult to interpret the association between an exposure and outcome. Also, if the information is inaccurate when past records are used to evaluate for exposure status, then again, the association between the exposure and outcome becomes difficult to interpret.

Case‐control studies based within a defined cohort

Case‐control studies based within a defined cohort is a form of study design that combines some of the features of a cohort study design and a case‐control study design. When a defined cohort is embedded in a case‐control study design, all the baseline information collected before the onset of disease like interviews, surveys, blood or urine specimens, then the cohort is followed onset of disease. One of the advantages of following the above design is that it eliminates recall bias as the information regarding risk factors is collected before onset of disease. Case‐control studies based within a defined cohort can be further classified into two types: Nested case‐control study and Case‐cohort study.

Nested case‐control study

A nested case‐control study consists of defining a cohort with suspected risk factors and assigning a control within a cohort to the subject who develops the disease. 10 Over a period, cases and controls are identified and followed as per the investigator's protocol. Hence, the case and control are matched on calendar time and length of follow‐up. When this study design is implemented, it is possible for the control that was selected early in the study to develop the disease and become a case in the latter part of the study.

Case‐cohort Study

A case‐cohort study is similar to a nested case‐control study except that there is a defined sub‐cohort which forms the groups of individuals without the disease (control), and the cases are not matched on calendar time or length of follow‐up with the control. 11 With these modifications, it is possible to compare different disease groups with the same sub‐cohort group of controls and eliminates matching between the case and control. However, these differences will need to be accounted during analysis of results.

Experimental study design

The basic concept of experimental study design is to study the effect of an intervention. In this study design, the risk factor/exposure of interest/treatment is controlled by the investigator. Therefore, these are hypothesis testing studies and can provide the most convincing demonstration of evidence for causality. As a result, the design of the study requires meticulous planning and resources to provide an accurate result.

The experimental study design can be classified into 2 groups, that is, controlled (with comparison) and uncontrolled (without comparison). 1 In the group without controls, the outcome is directly attributed to the treatment received in one group. This fails to prove if the outcome was truly due to the intervention implemented or due to chance. This can be avoided if a controlled study design is chosen which includes a group that does not receive the intervention (control group) and a group that receives the intervention (intervention/experiment group), and therefore provide a more accurate and valid conclusion.

Experimental study designs can be divided into 3 broad categories: clinical trial, community trial, field trial. The specifics of each study design are explained below (Figure  5 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g005.jpg

Experimental study designs

Clinical trial

Clinical trials are also known as therapeutic trials, which involve subjects with disease and are placed in different treatment groups. It is considered a gold standard approach for epidemiological research. One of the earliest clinical trial studies was performed by James Lind et al in 1747 on sailors with scurvy. 12 Lind divided twelve scorbutic sailors into six groups of two. Each group received the same diet, in addition to a quart of cider (group 1), twenty‐five drops of elixir of vitriol which is sulfuric acid (group 2), two spoonfuls of vinegar (group 3), half a pint of seawater (group 4), two oranges and one lemon (group 5), and a spicy paste plus a drink of barley water (group 6). The group who ate two oranges and one lemon had shown the most sudden and visible clinical effects and were taken back at the end of 6 days as being fit for duty. During Lind's time, this was not accepted but was shown to have similar results when repeated 47 years later in an entire fleet of ships. Based on the above results, in 1795 lemon juice was made a required part of the diet of sailors. Thus, clinical trials can be used to evaluate new therapies, such as new drug or new indication, new drug combination, new surgical procedure or device, new dosing schedule or mode of administration, or a new prevention therapy.

While designing a clinical trial, it is important to select the population that is best representative of the general population. Therefore, the results obtained from the study can be generalized to the population from which the sample population was selected. It is also as important to select appropriate endpoints while designing a trial. Endpoints need to be well‐defined, reproducible, clinically relevant and achievable. The types of endpoints include continuous, ordinal, rates and time‐to‐event, and it is typically classified as primary, secondary or tertiary. 2 An ideal endpoint is a purely clinical outcome, for example, cure/survival, and thus, the clinical trials will become very long and expensive trials. Therefore, surrogate endpoints are used that are biologically related to the ideal endpoint. Surrogate endpoints need to be reproducible, easily measured, related to the clinical outcome, affected by treatment and occurring earlier than clinical outcome. 2

Clinical trials are further divided into randomized clinical trial, non‐randomized clinical trial, cross‐over clinical trial and factorial clinical trial.

Randomized clinical trial

A randomized clinical trial is also known as parallel group randomized trials or randomized controlled trials. Randomized clinical trials involve randomizing subjects with similar characteristics to two groups (or multiple groups): the group that receives the intervention/experimental therapy and the other group that received the placebo (or standard of care). 13 This is typically performed by using a computer software, manually or by other methods. Hence, we can measure the outcomes and efficacy of the intervention/experimental therapy being studied without bias as subjects have been randomized to their respective groups with similar baseline characteristics. This type of study design is considered gold standard for epidemiological research. However, this study design is generally not applicable to rare and serious disease process as it would unethical to treat that group with a placebo. Please see section “Randomization” for detailed explanation regarding randomization and placebo.

Non‐randomized clinical trial

A non‐randomized clinical trial involves an approach to selecting controls without randomization. With this type of study design a pattern is usually adopted, such as, selection of subjects and controls on certain days of the week. Depending on the approach adopted, the selection of subjects becomes predictable and therefore, there is bias with regards to selection of subjects and controls that would question the validity of the results obtained.

Historically controlled studies can be considered as a subtype of non‐randomized clinical trial. In this study design subtype, the source of controls is usually adopted from the past, such as from medical records and published literature. 1 The advantages of this study design include being cost‐effective, time saving and easily accessible. However, since this design depends on already collected data from different sources, the information obtained may not be accurate, reliable, lack uniformity and/or completeness as well. Though historically controlled studies maybe easier to conduct, the disadvantages will need to be taken into account while designing a study.

Cross‐over clinical trial

In cross‐over clinical trial study design, there are two groups who undergoes the same intervention/experiment at different time periods of the study. That is, each group serves as a control while the other group is undergoing the intervention/experiment. 14 Depending on the intervention/experiment, a ‘washout’ period is recommended. This would help eliminate residuals effects of the intervention/experiment when the experiment group transitions to be the control group. Hence, the outcomes of the intervention/experiment will need to be reversible as this type of study design would not be possible if the subject is undergoing a surgical procedure.

Factorial trial

A factorial trial study design is adopted when the researcher wishes to test two different drugs with independent effects on the same population. Typically, the population is divided into 4 groups, the first with drug A, the second with drug B, the third with drug A and B, and the fourth with neither drug A nor drug B. The outcomes for drug A are compared to those on drug A, drug A and B and to those who were on drug B and neither drug A nor drug B. 15 The advantages of this study design that it saves time and helps to study two different drugs on the same study population at the same time. However, this study design would not be applicable if either of the drugs or interventions overlaps with each other on modes of action or effects, as the results obtained would not attribute to a particular drug or intervention.

Community trial

Community trials are also known as cluster‐randomized trials, involve groups of individuals with and without disease who are assigned to different intervention/experiment groups. Hence, groups of individuals from a certain area, such as a town or city, or a certain group such as school or college, will undergo the same intervention/experiment. 16 Hence, the results will be obtained at a larger scale; however, will not be able to account for inter‐individual and intra‐individual variability.

Field trial

Field trials are also known as preventive or prophylactic trials, and the subjects without the disease are placed in different preventive intervention groups. 16 One of the hypothetical examples for a field trial would be to randomly assign to groups of a healthy population and to provide an intervention to a group such as a vitamin and following through to measure certain outcomes. Hence, the subjects are monitored over a period of time for occurrence of a particular disease process.

Overview of methodologies used within a study design

Randomization.

Randomization is a well‐established methodology adopted in research to prevent bias due to subject selection, which may impact the result of the intervention/experiment being studied. It is one of the fundamental principles of an experimental study designs and ensures scientific validity. It provides a way to avoid predicting which subjects are assigned to a certain group and therefore, prevent bias on the final results due to subject selection. This also ensures comparability between groups as most baseline characteristics are similar prior to randomization and therefore helps to interpret the results regarding the intervention/experiment group without bias.

There are various ways to randomize and it can be as simple as a ‘flip of a coin’ to use computer software and statistical methods. To better describe randomization, there are three types of randomization: simple randomization, block randomization and stratified randomization.

Simple randomization

In simple randomization, the subjects are randomly allocated to experiment/intervention groups based on a constant probability. That is, if there are two groups A and B, the subject has a 0.5 probability of being allocated to either group. This can be performed in multiple ways, and one of which being as simple as a ‘flip of a coin’ to using random tables or numbers. 17 The advantage of using this methodology is that it eliminates selection bias. However, the disadvantage with this methodology is that an imbalance in the number allocated to each group as well as the prognostic factors between groups. Hence, it is more challenging in studies with a small sample size.

Block randomization

In block randomization, the subjects of similar characteristics are classified into blocks. The aim of block randomization is to balance the number of subjects allocated to each experiment/intervention group. For example, let's assume that there are four subjects in each block, and two of the four subjects in each block will be randomly allotted to each group. Therefore, there will be two subjects in one group and two subjects in the other group. 17 The disadvantage with this methodology is that there is still a component of predictability in the selection of subjects and the randomization of prognostic factors is not performed. However, it helps to control the balance between the experiment/intervention groups.

Stratified randomization

In stratified randomization, the subjects are defined based on certain strata, which are covariates. 18 For example, prognostic factors like age can be considered as a covariate, and then the specified population can be randomized within each age group related to an experiment/intervention group. The advantage with this methodology is that it enables comparability between experiment/intervention groups and thus makes result analysis more efficient. But, with this methodology the covariates will need to be measured and determined before the randomization process. The sample size will help determine the number of strata that would need to be chosen for a study.

Blinding is a methodology adopted in a study design to intentionally not provide information related to the allocation of the groups to the subject participants, investigators and/or data analysts. 19 The purpose of blinding is to decrease influence associated with the knowledge of being in a particular group on the study result. There are 3 forms of blinding: single‐blinded, double‐blinded and triple‐blinded. 1 In single‐blinded studies, otherwise called as open‐label studies, the subject participants are not revealed which group that they have been allocated to. However, the investigator and data analyst will be aware of the allocation of the groups. In double‐blinded studies, both the study participants and the investigator will be unaware of the group to which they were allocated to. Double‐blinded studies are typically used in clinical trials to test the safety and efficacy of the drugs. In triple‐blinded studies, the subject participants, investigators and data analysts will not be aware of the group allocation. Thus, triple‐blinded studies are more difficult and expensive to design but the results obtained will exclude confounding effects from knowledge of group allocation.

Blinding is especially important in studies where subjective response are considered as outcomes. This is because certain responses can be modified based on the knowledge of the experiment group that they are in. For example, a group allocated in the non‐intervention group may not feel better as they are not getting the treatment, or an investigator may pay more attention to the group receiving treatment, and thereby potentially affecting the final results. However, certain treatments cannot be blinded such as surgeries or if the treatment group requires an assessment of the effect of intervention such as quitting smoking.

Placebo is defined in the Merriam‐Webster dictionary as ‘an inert or innocuous substance used especially in controlled experiments testing the efficacy of another substance (such as drug)’. 20 A placebo is typically used in a clinical research study to evaluate the safety and efficacy of a drug/intervention. This is especially useful if the outcome measured is subjective. In clinical drug trials, a placebo is typically a drug that resembles the drug to be tested in certain characteristics such as color, size, shape and taste, but without the active substance. This helps to measure effects of just taking the drug, such as pain relief, compared to the drug with the active substance. If the effect is positive, for example, improvement in mood/pain, then it is called placebo effect. If the effect is negative, for example, worsening of mood/pain, then it is called nocebo effect. 21

The ethics of placebo‐controlled studies is complex and remains a debate in the medical research community. According to the Declaration of Helsinki on the use of placebo released in October 2013, “The benefits, risks, burdens and effectiveness of a new intervention must be tested against those of the best proven intervention(s), except in the following circumstances:

Where no proven intervention exists, the use of placebo, or no intervention, is acceptable; or

Where for compelling and scientifically sound methodological reasons the use of any intervention less effective than the best proven one, the use of placebo, or no intervention is necessary to determine the efficacy or safety of an intervention and the patients who receive any intervention less effective than the best proven one, placebo, or no intervention will not be subject to additional risks of serious or irreversible harm as a result of not receiving the best proven intervention.

Extreme care must be taken to avoid abuse of this option”. 22

Hence, while designing a research study, both the scientific validity and ethical aspects of the study will need to be thoroughly evaluated.

Bias has been defined as “any systematic error in the design, conduct or analysis of a study that results in a mistaken estimate of an exposure's effect on the risk of disease”. 23 There are multiple types of biases and so, in this review we will focus on the following types: selection bias, information bias and observer bias. Selection bias is when a systematic error is committed while selecting subjects for the study. Selection bias will affect the external validity of the study if the study subjects are not representative of the population being studied and therefore, the results of the study will not be generalizable. Selection bias will affect the internal validity of the study if the selection of study subjects in each group is influenced by certain factors, such as, based on the treatment of the group assigned. One of the ways to decrease selection bias is to select the study population that would representative of the population being studied, or to randomize (discussed in section “Randomization”).

Information bias is when a systematic error is committed while obtaining data from the study subjects. This can be in the form of recall bias when subject is required to remember certain events from the past. Typically, subjects with the disease tend to remember certain events compared to subjects without the disease. Observer bias is a systematic error when the study investigator is influenced by the certain characteristics of the group, that is, an investigator may pay closer attention to the group receiving the treatment versus the group not receiving the treatment. This may influence the results of the study. One of the ways to decrease observer bias is to use blinding (discussed in section “Blinding”).

Thus, while designing a study it is important to take measure to limit bias as much as possible so that the scientific validity of the study results is preserved to its maximum.

Overview of drug development in the United States of America

Now that we have reviewed the various clinical designs, clinical trials form a major part in development of a drug. In the United States, the Food and Drug Administration (FDA) plays an important role in getting a drug approved for clinical use. It includes a robust process that involves four different phases before a drug can be made available to the public. Phase I is conducted to determine a safe dose. The study subjects consist of normal volunteers and/or subjects with disease of interest, and the sample size is typically small and not more than 30 subjects. The primary endpoint consists of toxicity and adverse events. Phase II is conducted to evaluate of safety of dose selected in Phase I, to collect preliminary information on efficacy and to determine factors to plan a randomized controlled trial. The study subjects consist of subjects with disease of interest and the sample size is also small but more that Phase I (40–100 subjects). The primary endpoint is the measure of response. Phase III is conducted as a definitive trial to prove efficacy and establish safety of a drug. Phase III studies are randomized controlled trials and depending on the drug being studied, it can be placebo‐controlled, equivalence, superiority or non‐inferiority trials. The study subjects consist of subjects with disease of interest, and the sample size is typically large but no larger than 300 to 3000. Phase IV is performed after a drug is approved by the FDA and it is also called the post‐marketing clinical trial. This phase is conducted to evaluate new indications, to determine safety and efficacy in long‐term follow‐up and new dosing regimens. This phase helps to detect rare adverse events that would not be picked up during phase III studies and decrease in the delay in the release of the drug in the market. Hence, this phase depends heavily on voluntary reporting of side effects and/or adverse events by physicians, non‐physicians or drug companies. 2

We have discussed various clinical research study designs in this comprehensive review. Though there are various designs available, one must consider various ethical aspects of the study. Hence, each study will require thorough review of the protocol by the institutional review board before approval and implementation.

CONFLICT OF INTEREST

Chidambaram AG, Josephson M. Clinical research study designs: The essentials . Pediatr Invest . 2019; 3 :245‐252. 10.1002/ped4.12166 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

  • What is New
  • Download Your Software
  • Behavioral Research
  • Software for Consumer Research
  • Software for Human Factors R&D
  • Request Live Demo
  • Contact Sales

Sensor Hardware

Man wearing VR headset

We carry a range of biosensors from the top hardware producers. All compatible with iMotions

iMotions for Higher Education

Imotions for business.

research design meaning and components

How Does Environmental Ergonomics Affect Behavior?

Ergonomics Testing

Morten Pedersen

research design meaning and components

Can You Build Your Own Eye Tracking Glasses?

News & events.

  • iMotions Lab
  • iMotions Online
  • Eye Tracking
  • Eye Tracking Screen Based
  • Eye Tracking VR
  • Eye Tracking Glasses
  • Eye Tracking Webcam
  • FEA (Facial Expression Analysis)
  • Voice Analysis
  • EDA/GSR (Electrodermal Activity)
  • EEG (Electroencephalography)
  • ECG (Electrocardiography)
  • EMG (Electromyography)
  • Respiration
  • iMotions Lab: New features
  • iMotions Lab: Developers
  • EEG sensors
  • Sensory and Perceptual
  • Consumer Inights
  • Human Factors R&D
  • Work Environments, Training and Safety
  • Customer Stories
  • Published Research Papers
  • Document Library
  • Customer Support Program
  • Help Center
  • Release Notes
  • Contact Support
  • Partnerships
  • Mission Statement
  • Ownership and Structure
  • Executive Management
  • Job Opportunities

Publications

  • Newsletter Sign Up

The Importance of Research Design: A Comprehensive Guide

Morten Pedersen

Research design plays a crucial role in conducting scientific studies and gaining meaningful insights. A well-designed research enhances the validity and reliability of the findings and allows for the replication of studies by other researchers. This comprehensive guide will provide an in-depth understanding of research design, its key components, different types, and its role in scientific inquiry. Furthermore, it will discuss the necessary steps in developing a research design and highlight some of the challenges that researchers commonly face.

Table of Contents

Understanding research design.

Research design refers to the overall plan or strategy that outlines how a study is conducted. It serves as a blueprint for researchers, guiding them in their investigation, and helps ensure that the study objectives are met. Understanding research design is essential for researchers to effectively gather and analyze data to answer research questions.

When embarking on a research study, researchers must carefully consider the design they will use. The design determines the structure of the study, including the research questions, data collection methods, and analysis techniques. It provides clarity on how the study will be conducted and helps researchers determine the best approach to achieve their research objectives. A well-designed study increases the chances of obtaining valid and reliable results.

Definition and Purpose of Research Design

Research design is the framework that outlines the structure of a study, including the research questions, data collection methods, and analysis techniques. It provides a systematic approach to conducting research and ensures that all aspects of the study are carefully planned and executed.

The purpose of research design is to provide a clear roadmap for researchers to follow. It helps them define the research questions they want to answer and identify the variables they will study. By clearly defining the purpose of the study, researchers can ensure that their research design aligns with their objectives.

Key Components of Research Design

A research design consists of several key components that influence the study’s validity and reliability. These components include the research questions, variables and operational definitions, sampling techniques, data collection methods, and statistical analysis procedures.

The research questions are the foundation of any study. They guide the entire research process and help researchers focus their efforts. By formulating clear and concise research questions, researchers can ensure that their study addresses the specific issues they want to investigate.

research design meaning and components

Variables and operational definitions are also crucial components of research design. Variables are the concepts or phenomena that researchers want to measure or study. Operational definitions provide a clear and specific description of how these variables will be measured or observed. By clearly defining variables and their operational definitions, researchers can ensure that their study is consistent and replicable.

Sampling techniques play a vital role in research design as well. Researchers must carefully select the participants or samples they will study to ensure that their findings are generalizable to the larger population. Different sampling techniques, such as random sampling or purposive sampling, can be used depending on the research objectives and constraints.

Data collection methods are another important component of research design. Researchers must decide how they will collect data, whether through surveys, interviews, observations, or experiments. The choice of data collection method depends on the research questions and the type of data needed to answer them.

Finally, statistical analysis procedures are used to analyze the collected data and draw meaningful conclusions. Researchers must determine the appropriate statistical tests or techniques to use based on the nature of their data and research questions. The choice of statistical analysis procedures ensures that the data is analyzed accurately and that the results are valid and reliable.

Types of Research Design

Research design encompasses various types that researchers can choose depending on their research goals and the nature of the phenomenon being studied. Understanding the different types of research design is essential for researchers to select the most appropriate approach for their study.

When embarking on a research project, researchers must carefully consider the design they will employ. The design chosen will shape the entire study, from the data collection process to the analysis and interpretation of results. Let’s explore some of the most common types of research design in more detail.

Experimental Design

Experimental design involves manipulating one or more variables to observe their effect on the dependent variable. This type of design allows researchers to establish cause-and-effect relationships between variables by controlling for extraneous factors. Experimental design often relies on random assignment and control groups to minimize biases.

Imagine a group of researchers interested in studying the effects of a new teaching method on student performance. They could randomly assign students to two groups: one group would receive instruction using the new teaching method, while the other group would receive instruction using the traditional method. By comparing the performance of the two groups, the researchers can determine whether the new teaching method has a significant impact on student learning.

Experimental design provides a strong foundation for making causal claims, as it allows researchers to control for confounding variables and isolate the effects of the independent variable. However, it may not always be feasible or ethical to manipulate variables, leading researchers to explore alternative designs.

Free 44-page Experimental Design Guide

For Beginners and Intermediates

  • Introduction to experimental methods
  • Respondent management with groups and populations
  • How to set up stimulus selection and arrangement

research design meaning and components

Non-Experimental Design

Non-experimental design is used when it is not feasible or ethical to manipulate variables. This design relies on naturally occurring variations in data and focuses on observing and describing relationships between variables. Non-experimental design can be useful for exploratory research or when studying phenomena that cannot be controlled, such as human behavior.

For instance, researchers interested in studying the relationship between socioeconomic status and health outcomes may collect data from a large sample of individuals and analyze the existing differences. By examining the data, they can determine whether there is a correlation between socioeconomic status and health, without manipulating any variables.

Non-experimental design allows researchers to study real-world phenomena in their natural setting, providing valuable insights into complex social, psychological, and economic processes. However, it is important to note that non-experimental designs cannot establish causality, as there may be other variables at play that influence the observed relationships.

Quasi-Experimental Design

Quasi-experimental design resembles experimental design but lacks the element of random assignment. In situations where random assignment is not possible or practical, researchers can utilize quasi-experimental designs to gather data and make inferences. However, caution must be exercised when drawing causal conclusions from quasi-experimental studies.

Consider a scenario where researchers are interested in studying the effects of a new drug on patient recovery time. They cannot randomly assign patients to receive the drug or a placebo due to ethical considerations. Instead, they can compare the recovery times of patients who voluntarily choose to take the drug with those who do not. While this design allows for data collection and analysis, it is important to acknowledge that other factors, such as patient motivation or severity of illness, may influence the observed outcomes.

Quasi-experimental designs are valuable when experimental designs are not feasible or ethical. They provide an opportunity to explore relationships and gather data in real-world contexts. However, researchers must be cautious when interpreting the results, as causal claims may be limited due to the lack of random assignment.

By understanding the different types of research design, researchers can make informed decisions about the most appropriate approach for their study. Each design offers unique advantages and limitations, and the choice depends on the research question, available resources, and ethical considerations. Regardless of the design chosen, rigorous methodology and careful data analysis are crucial for producing reliable and valid research findings.

The Role of Research Design in Scientific Inquiry

A well-designed research study enhances the validity and reliability of the findings. Research design plays a crucial role in ensuring the scientific rigor of a study and facilitates the replication of studies by other researchers. Understanding the role of research design in scientific inquiry is vital for researchers to conduct impactful and robust research.

Ensuring Validity and Reliability

Research design plays a critical role in ensuring the validity and reliability of the study’s findings. Validity refers to the degree to which the study measures what it intends to measure, while reliability pertains to the consistency and stability of the results. Through careful consideration of the research design, researchers can minimize potential biases and increase the accuracy of their measurements.

Facilitating Replication of Studies

A robust research design allows for the replication of studies by other researchers. Replication plays a vital role in the scientific process as it helps confirm the validity and generalizability of research findings. By clearly documenting the research design, researchers enable others to reproduce the study and validate the results, thereby contributing to the cumulative knowledge in a field.

Steps in Developing a Research Design

Developing a research design involves a systematic process that includes several important steps. Researchers need to carefully consider each step to ensure that their study is well-designed and capable of addressing their research questions effectively.

Identifying Research Questions

The first step in developing a research design is to identify and define the research questions or hypotheses. Researchers need to clearly articulate what they aim to investigate and what specific information they want to gather. Clear research questions provide guidance for the subsequent steps in the research design process.

Selecting Appropriate Design Type

Once the research questions are identified, researchers need to select the most appropriate type of research design. The choice of design depends on various factors, including the research goals, the nature of the research questions, and the available resources. Careful consideration of these factors is crucial to ensure that the chosen design aligns with the study objectives.

Determining Data Collection Methods

After selecting the research design, researchers need to determine the most suitable data collection methods. Depending on the research questions and the type of data required, researchers can utilize a range of methods, such as surveys, interviews, observations, or experiments. The chosen methods should align with the research objectives and allow for the collection of high-quality data.

One of the most important considerations when designing a study in human behavior research is participant recruitment. We have written a comprehensive guide on best practices and pitfalls to be aware of when recruiting participants, which can be read here.

Enhancing Research Design with iMotions and Biosensors

Introduction to enhanced research design.

In the realm of scientific studies, especially within human cognitive-behavioral research, the deployment of advanced technologies such as iMotions software and biosensors has revolutionized research design. This chapter delves into how these technologies can be integrated into various research designs, improving the depth, accuracy, and reliability of scientific inquiries.

Integrating iMotions in Research Design

Imotions software: a key to multimodal data integration.

The iMotions platform stands as a pivotal tool in modern research design. It’s designed to integrate data from a plethora of biosensors, providing a comprehensive analysis of human behavior. This software facilitates the synchronizing of physiological, cognitive, and emotional responses with external stimuli, thus enriching the understanding of human behavior in various contexts.

Biosensors: Gateways to Deeper Insights

Biosensors, including eye trackers, EEG, GSR, ECG, and facial expression analysis tools, provide nuanced insights into the subconscious and conscious aspects of human behavior. These tools help researchers in capturing data that is often unattainable through traditional data collection methods like surveys and interviews.

Application in Different Research Designs

  • Eye Tracking : In experimental designs, where the impact of visual stimuli is crucial, eye trackers can reveal how subjects interact with these stimuli, thereby offering insights into cognitive processes and attention.
  • EEG : EEG biosensors allow researchers to monitor brain activity in response to controlled experimental manipulations, offering a window into cognitive and emotional responses.

research design meaning and components

  • Facial Expression Analysis : In observational studies, analyzing facial expressions can provide objective data on emotional responses in natural settings, complementing subjective self-reports.
  • GSR/EDA : These tools measure physiological arousal in real-life scenarios, giving researchers insights into emotional states without the need for intrusive measures.
  • EMG : In studies where direct manipulation isn’t feasible, EMG can indicate subtle responses to stimuli, which might be overlooked in traditional observational methods.
  • ECG/PPG : These sensors can be used to understand the impact of various interventions on physiological states such as stress or relaxation.

Streamlining Research Design with iMotions

The iMotions platform offers a streamlined process for integrating various biosensors into a research design. Researchers can easily design experiments, collect multimodal data, and analyze results in a unified interface. This reduces the complexity often associated with handling multiple streams of data and ensures a cohesive and comprehensive research approach.

Integrating iMotions software and biosensors into research design opens new horizons for scientific inquiry. This technology enhances the depth and breadth of data collection, paving the way for more nuanced and comprehensive findings.

Whether in experimental, non-experimental, or quasi-experimental designs, iMotions and biosensors offer invaluable tools for researchers aiming to uncover the intricate layers of human behavior and cognitive processes. The future of research design is undeniably intertwined with the advancements in these technologies, leading to more robust, reliable, and insightful scientific discoveries.

Challenges in Research Design

Research design can present several challenges that researchers need to overcome to conduct reliable and valid studies. Being aware of these challenges is essential for researchers to address them effectively and ensure the integrity of their research.

Ethical Considerations

Research design must adhere to ethical guidelines and principles to protect the rights and well-being of participants. Researchers need to obtain informed consent, ensure participant confidentiality, and minimize potential harm or discomfort. Ethical considerations should be carefully integrated into the research design to promote ethical research practices.

Practical Limitations

Researchers often face practical limitations that may impact the design and execution of their studies. Limited resources, time constraints, access to participants or data, and logistical challenges can pose obstacles during the research process. Researchers need to navigate these limitations and make thoughtful choices to ensure the feasibility and quality of their research.

Research design is a vital aspect of conducting scientific studies. It provides a structured framework for researchers to answer their research questions and obtain reliable and valid results. By understanding the different types of research design and following the necessary steps in developing a research design, researchers can enhance the rigor and impact of their studies.

However, researchers must also be mindful of the challenges they may encounter, such as ethical considerations and practical limitations, and take appropriate measures to address them. Ultimately, a well-designed research study contributes to the advancement of knowledge and promotes evidence-based decision-making in various fields.

Last edited

About the author

See what is next in human behavior research

Follow our newsletter to get the latest insights and events send to your inbox.

Related Posts

research design meaning and components

Exploring Mobile Eye Trackers: How Eye Tracking Glasses Work and Their Applications

research design meaning and components

Understanding Screen-Based Eye Trackers: How They Work and Their Applications

Product guides.

research design meaning and components

Can you use HTC VIVE Pro Eye for eye tracking research?

research design meaning and components

Top 5 Publications of 2023

Laila Mowla

You might also like these

Human Factors and UX

research design meaning and components

The World Runs on Behavioral Insights

Consumer Insights

research design meaning and components

New OSM Reference System from iMotions

Case Stories

Explore Blog Categories

Best Practice

Collaboration, product news, research fundamentals, research insights, 🍪 use of cookies.

We are committed to protecting your privacy and only use cookies to improve the user experience.

Chose which third-party services that you will allow to drop cookies. You can always change your cookie settings via the Cookie Settings link in the footer of the website. For more information read our Privacy Policy.

  • gtag This tag is from Google and is used to associate user actions with Google Ad campaigns to measure their effectiveness. Enabling this will load the gtag and allow for the website to share information with Google. This service is essential and can not be disabled.
  • Livechat Livechat provides you with direct access to the experts in our office. The service tracks visitors to the website but does not store any information unless consent is given. This service is essential and can not be disabled.
  • Pardot Collects information such as the IP address, browser type, and referring URL. This information is used to create reports on website traffic and track the effectiveness of marketing campaigns.
  • Third-party iFrames Allows you to see thirdparty iFrames.

Geektonight

What is Research Design? Features, Components

  • Post last modified: 13 August 2023
  • Reading time: 15 mins read
  • Post category: Research Methodology

Coursera 7-Day Trail offer

What is Research Design?

Research design refers to the overall strategy or plan that a researcher outlines to conduct a study and gather relevant data to address a research question or test a hypothesis. It serves as a blueprint for the entire research process, providing a structure and guidance for the collection, analysis, and interpretation of data.

In the field of research, the major purpose of research is to find a solution for a given research problem. The researcher can find a solution to a research problem by ensuring that he/she uses an appropriate research design.

Table of Content

  • 1 What is Research Design?
  • 2 Concept of Research Design
  • 3 Need and Features of Research Design
  • 4.1 Neutrality
  • 4.2 Reliability
  • 4.3 Performance
  • 4.4 General practice
  • 4.5 Qualitative
  • 4.6 Quantitative
  • 5.1 Research questions
  • 5.2 Course suggestions
  • 5.3 Unit analysis
  • 5.4 Data linking and propositions
  • 5.5 Interpretation of findings from the study

The chances of success of a research project depend on how the researcher has taken care to develop a research design that is in line with the research problem. A research design is created or developed when the researcher prepares a plan, structure and strategy for conducting research.

Research design is the base over which a researcher builds his research. A good research design provides vital information to a researcher with respect to a research topic, data type, data sources and techniques of data collection used in the research. In this chapter, you will study about the concept of research design, its need, features, components, etc.

Next, the chapter will describe the types of research design, research design framework, and types of errors affecting research design. Towards the end, you will study about the meaning of experiments and types of experiments.

Concept of Research Design

The research design refers to the framework of research methods and techniques selected by a researcher. The design chosen by the researchers allows them to use appropriate methods to study and plan their studies effectively and in the future. The descriptive research method focuses primarily on defining the nature of a class of people, without focusing on the “why” of something happening.

In other words, it “explains” the topic of research, without covering why “it” happens. Let us study in detail about the concept of research design, its requirements, features or characteristics, designing research framework its related case studies and observations.

Cross-sectional and longitudinal studies, casual research and errors arising while designing the research which are related to improper selection of respondents. This is a framework for determining the research methods and techniques to be used. This design enables researchers to set the research methods that are most relevant to the subject.

The design of the research topic describes the type of research (testing, research, integration, experimentation, review) and its sub-type (test design, research problem, descriptive case study). Research design can also be considered as the blueprint for collection, measurement and analysis of data.

The type of research problem the organisation is facing will determine the structure of the research and not the other way around. The study design phase determines which tools to use and how to use them. Impact studies often create less bias in the data and increase confidence in the accuracy of the data collected. A design that produces a small error limit in test studies is usually considered to be the desired result.

In research, the important things are:

  • A specific statement of intent
  • Strategies used to collect and analyse data
  • Type of research methodology
  • Potential objections to research
  • Research study settings
  • Analysis rating

Need and Features of Research Design

Much of what we do in our daily lives is based on understanding, what we have learned from others, or what we have learned through personal experience or observation. Sometimes, there are conflicting ideas about what is good or what works in a particular situation.

In addition, what works in one situation or situation may be ineffective or even harmful in another, or it may be combined with other measures. Psychological techniques ignore the impact of external factors that can influence what is seen. Even in health care settings, there are gaps in knowledge, ideas about how something can work better and ideas for improvement.

Since health professionals cannot afford to be risky, research is needed. For clinical trials, this is also a legal requirement that pharmaceutical companies cannot obtain marketing authorisation (i.e., permission to sell their new drugs) until they are approved by the relevant authorities.

Another advantage of doing research is that in most studies, the findings can be statistically recorded and statistically evaluated to determine if the findings are significant (meaning how much they can be called with a certain degree of certainty that they are not just a risk factor).

With limited studies, results can usually be performed in a broader population (for example, in people with dementia, caregivers, GPs, or generalised individuals, depending on the study group). This is because steps would be taken to ensure that the group of participants in the study, represented other people in that category, as far as possible.

The advantage of many quality studies is that they allow for a thorough investigation of a particular aspect of the human experience. They give people the opportunity to express in their own words how they feel, what they think, and how they make sense of the world around them.

In some cases, the results may be passed on to others as conditions. However, the advantage of quality studies is that it provides rich, logical and insightful information on the complexity of human experience with all the contradictions, differences and idiosyncrasies. Others discuss topics that have not been researched before and maybe facing issues that are controversial, critical, or illegal.Some courses also work to give voice to vulnerable or small groups

Features of Research Design

Proper research design makes your study a success. Effective research provides accurate and impartial information. You will need to create a survey that meets all the key design features. Key features of a good research design are:

When planning your study, you may need to think about the details you are going to collect. The results shown in the study should be fair and impartial. Understand the ideas about the last scores tested and the conclusions from most people and consider those who agree with the results obtained.

Reliability

With regular research, the researcher involved expects the same results regularly. Research design should be developed in a way that good research questions are developed and quality results are ensured. You will only be able to access the expected results if your design is reliable.

Performance

There are many measuring tools available. However, the only valid measurement tools are those that assist the researcher in measuring results according to the research purpose. The list of questions created from this project will be valid.

General practice

The effect of your design should apply to people and not just to the restricted sample. A comprehensive design means that your survey can be done on any part of the people with the same accuracy. The above factors affect the way respondents respond to research questions and therefore all of the above factors should be balanced in good design. The researcher must have a clear understanding of the different types of study design in order to choose which model to use in the study.

Qualitative

Quality research helps in understanding the problem and to develop hypothesis. Researchers rely on high-quality research methods that conclude “why” a certain idea exists and what “responders” say.

Quantitative

A quantitative study is one of the situations in which statistical conclusions are arrived at on the basis of collected data. Numbers provide a better idea of how to make critical business decisions. Research is needed for the growth of any organisation. The information taken from the data and the analysis of the hard data is very effective in making decisions related to the future of the business.

Components of Research Design

The main purpose behind the design of the study is to help avoid a situation where the evidence does not address the main research questions. The research design is about a logical problem and not a planning problem.

The five main components of a research design are:

Research questions

Course suggestions.

  • Units of analysis
  • Linking data to propositions
  • Interpretation of the findings of the study

The components of research design apply to all types of standardised, extra-terrestrial research, whether physical or social sciences.

This first item raises the type of question – about “who,” “what,” “where,” “how,” and “why” – provides important clues as to the proper research methodology used. Use three paragraphs: First, use the books to reduce your interest in one or two topics. In 2nd paragraph, take a closer look — or cut — a few key lessons from your favorite topic. Find questions in those few studies and conclude with new questions for future research. In the 3rd paragraph, check out another science group on the same topic. They may offer support for your potential questions or suggest ways to sharpen it.

Each suggestion directs the focus to something needed to be tested within the study. Only if you are forced to give some suggestions will you go the right way. For example, you would think that businesses are cooperating as they receive the same benefits. This suggestion, in addition to highlighting an important theoretical issue (that some corporate incentives do not exist or do not matter), also begins to tell you where to look for related evidence (defining and determining the magnitude of specific benefits in each business).

Unit analysis

It is associated with the basic problem of defining what “case” is – a problem that has affected many researchers at the beginning of the study. Take the example of medical patients. In this case, the person is being studied, and that person is an important unit of analysis.

Information about the right person will be collected, and few such people can be part of a multidisciplinary investigation. You will need study questions and suggestions to help you find the right information to collect about this person or people. Without such questions and suggestions, you may be tempted to cover “everything” about the person (s), which is not possible.

Data linking and propositions

Data linking methods and propositions such as pattern, definition structure, time series analysis, logic models and cross-case synthesis. The actual analysis will require you to compile or calculate your study data as a direct indication of your initial study suggestions.

Interpretation of findings from the study

Statistical analysis determines whether the research results support the hypothesis. Several statistical tests, for example, T-tests (determining whether two groups are statistically different from each other), Chi-square tests (where data is compared with the expected result), and oneway analysis of variance (provides multiple group comparisons), are performed by data type, number, and types of variables and data categories.

Statistical analysis provides some clear ways to translate. For example, according to the agreement, social science looks at a level below -55 to show that perceived differences are “statistically significant.” On the other hand, the analysis of many cases will not depend on the use of statistics and therefore focuses on alternative approaches to these approaches.

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?
  • What is Hypothesis?
  • Sampling Method
  • Research Methods
  • Data Collection in Research
  • Methods of Collecting Data
  • Application of Business Research

Levels of Measurement

  • What is Sampling?
  • Hypothesis Testing

Research Report

  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

Ethics in research, types of errors affecting research design, what is causal research advantages, disadvantages, how to perform, what is hypothesis testing procedure, what is literature review importance, functions, process,, what is hypothesis definition, meaning, characteristics, sources, data analysis in research, sampling process and characteristics of good sample design, what is parametric tests types: z-test, t-test, f-test, types of charts used in data analysis, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal growth.

research design meaning and components

Development

research design meaning and components

the intact one

Read MBA, BBA, B.COM Notes

Research Design: Meaning, Classification and elements

Research design is defined as a framework of methods and techniques chosen by a researcher to combine various components of research in a reasonably logical manner so that the research problem is efficiently handled. It provides insights about “how” to conduct research using a particular methodology. Every researcher has a list of research questions which need to be assessed – this can be done with research design.

The sketch of how research should be conducted can be prepared using research design. Hence, the market research study will be carried out on the basis of research design.

The design of a research topic is used to explain the type of research (experimental, survey, correlational, semi-experimental, review) and also its sub-type (experimental design, research problem, and descriptive case-study). There are three main sections of research design: Data collection, measurement, and analysis.

The type of research problem an organization is facing will determine the research design and not vice-versa. Variables, designated tools to gather information, how will the tools be used to collect and analyze data and other factors are decided in research design on the basis of a research technique is decided.

An impactful research design usually creates minimum bias in data and increases trust on the collected and analyzed research information. Research design which produces the least margin of error in experimental research can be touted as the best. The essential elements of research design are:

  • Accurate purpose statement of research design
  • Techniques to be implemented for collecting details for research
  • Method applied for analyzing collected details
  • Type of research methodology
  • Probable objections for research
  • Settings for research study
  • Measurement of analysis

Research Design Characteristics

Neutrality: The results projected in research design should be free from bias and neutral. Understand opinions about the final evaluated scores and conclusion from multiple individuals and consider those who agree with the derived results.

Reliability : If a research is conducted on a regular basis, the researcher involved expects similar results to be calculated every time. Research design should indicate how the research questions can be formed to ensure the standard of obtained results and this can happen only when the research design is reliable.

Validity: There are multiple measuring tools available for research design but valid measuring tools are those which help a researcher in gauging results according to the objective of research and nothing else. The questionnaire developed from this research design will be then valid.

Generalization: The outcome of research design should be applicable to a population and not just a restricted sample. Generalization is one of the key characteristics of research design.

Types of Research Design

A researcher must have a clear understanding of the various types of research design to select which type of research design to implement for a study. Research design can be broadly classified into quantitative and qualitative research design.

Qualitative Research Design : Qualitative research is implemented in cases where a relationship between collected data and observation is established on the basis of mathematical calculations. Theories related to a naturally existing phenomenon can be proved or disproved using mathematical calculations. Researchers rely on qualitative research design where they are expected to conclude “why” a particular theory exists along with “what” respondents have to say about it.

Quantitative Research Design : Quantitative research is implemented in cases where it is important for a researcher to have statistical conclusions to collect actionable insights. Numbers provide a better perspective to make important business decisions. Quantitative research design is important for the growth of any organization because any conclusion drawn on the basis of numbers and analysis will only prove to be effective for the business. 

Further, research design can be divided into five types:

  • Descriptive Research Design: In a descriptive research design, a researcher is solely interested in describing the situation or case under his/her research study. It is a theory-based research design which is created by gather, analyze and presents collected data. By implementing an in-depth research design such as this, a researcher can provide insights into the why and how of research.
  • Experimental Research Design: Experimental research design is used to establish a relationship between the cause and effect of a situation. It is a causal research design where the effect caused by the independent variable on the dependent variable is observed. For example, the effect of an independent variable such as price on a dependent variable such as customer satisfaction or brand loyalty is monitored. It is a highly practical research design method as it contributes towards solving a problem at hand. The independent variables are manipulated to monitor the change it has on the dependent variable. It is often used in social sciences to observe human behavior by analyzing two groups – affect of one group on the other.
  • Correlational Research Design: Correlational research is a non-experimental research design technique which helps researchers to establish a relationship between two closely connected variables. Two different groups are required to conduct this research design method. There is no assumption while evaluating a relationship between two different variables and statistical analysis techniques are used to calculate the relationship between them.

Correlation between two variables is concluded using a correlation coefficient, whose value ranges between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables and -1 indicates a negative relationship between the two variables. 

  • Diagnostic Research Design: In the diagnostic research design, a researcher is inclined towards evaluating the root cause of a specific topic. Elements that contribute towards a troublesome situation are evaluated in this research design method.

There are three parts of diagnostic research design:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue
  • Explanatory Research Design: In exploratory research design, the researcher’s ideas and thoughts are key as it is primarily dependent on their personal inclination about a particular topic. Explanation about unexplored aspects of a subject is provided along with details about what, how and why related to the research questions.

Elements of Research Design

A  research design  can be described as a conceptual structure within which research is going to be carried out. It comprises the blueprint for the collection, measurement and analysis of data. Decisions with regards to what, where, when, how much, by what means concerning an enquiry or a research design are taken.

A research design is the arrangement of conditions for collection and evaluation of data in a fashion which is designed to combine relevance to the research purpose with economy in process.

The  key elements of a good research design  are as under :

  • Research Design is a plan which identifies the sources and kinds of information strongly related to the research problem.
  • It is a strategy indicating which method is going to be employed for collecting and analyzing the data.
  • Additionally, it consists of the time and cost budgets because most research is done under these two constraints. In a nutshell a research design must contain:
  • A clear statement of the research problem.
  • Methods and techniques to be utilized for gathering information from the population to be researched.
  • Approach to be utilized in processing and analyzing data.

Purpose of the Study

  • Exploratory study:  Carried out when not much is known about the problem at hand, or no details are available on how similar problems or research issues have been solved in the past.
  • Descriptive study: Carried out as a way to determine and be able to describe the characteristics of the variables of interest in a situation characteristics of the variables of interest in a situation.
  • Studies which engage in hypotheses testing generally explain the nature of certain relationships, or establish the differences among groups or the independence of two or more factors in a situation.

Type of Investigation

  • Causality Research Design: A causal study is an inquiry to understand the cause of one or more problems.
  • A correlational study: Is an inquiry to find out the key variables linked to the problem.

A causal study question: Does cigarette smoking cause cancer? A correlational study question: Are cigarette smoking and cancer associated? Or Are cigarette smoking, consuming alcohol, and chewing tobacco related to cancer? If so, which of these contributes most to the variance in the dependent variable?

Figure: Main Elements of Research Design

Researcher Interference

The extent of interference by the researcher with the normal flow of work at the workplace has a direct effect on whether the study performed is causal or correlational. A correlational study is carried out in the natural environment of the corporation with minimal interference by the researcher with the normal flow of work.

In studies carried out to determine cause-and-effect relationships, the investigator attempts to adjust specific variables in order to study the outcomes of such manipulation on the dependent variable of interest. Put simply, the researcher intentionally changes certain variables in the setting and disrupts the events as they normally happen in the business.

Study Setting

Correlational research is carried out in noncontrived settings (normal settings), as opposed to most causal studies are carried out in contrived settings.

Unit of Analysis

The unit of analysis means the degree of aggregation of the data gathered through the subsequent data analysis.

  • Organizations

Time Horizon

Cross-Sectional Studies: A study can be carried out in which data are collected only once, perhaps during a period of days or weeks or months, to be able to answer a research question.

Longitudinal Studies: Researching people or phenomena at several point in time to be able to answer the research question. Due to the fact that data are collected at two different points in time, the study is not cross-sectional kind, but is carried longitudinally across a period of time. Longitudinal studies take a longer period and energy and cost a lot more than cross-sectional studies. Having said that, well-planned longitudinal studies can help you to recognize cause-and-effect relationships.

For example, you can study the product sales before and after an advertising campaign, and provided other environmental changes haven’t influenced on the results, you can attribute the increase in the sales volume, if any, to the advertisement.

A  good research design  must contain: a clear statement, Methods and techniques for data collection, processing and analyzing data.

Share this:

You might also like, online buyer behavior and models, reward model, technical components of e-commerce, 2 thoughts on “ research design: meaning, classification and elements ”.

  • Pingback: BBAN403 Business Research Methods – HOME | BBA & MBA NOTES
  • Pingback: CCSU(BBA) 405 Research Methodology – Home | Management

Leave a Reply Cancel reply

  • Accountancy
  • Business Studies
  • Organisational Behaviour
  • Human Resource Management
  • Entrepreneurship
  • Bill of Lading: Meaning, Example, Types, Purpose & Contents
  • Line Item in Google Ad Manager : Meaning, Components, Types and Role
  • Slogan : Meaning, Purpose and Types
  • Press Kit : Meaning, Purpose, Uses and Examples
  • Concierge Services : Meaning, Role, Types and Benefits
  • Sports Marketing : Meaning, Types and Strategies
  • Logistics : Meaning, Importance, Functions and Types
  • Components and Nested Component in Figma
  • Field Marketing : Meaning, Importance, Types and Strategy
  • Tourism Marketing: Meaning, Importance, Types and Strategies
  • Logistics Management: Functions, Types and Process
  • Print Advertising: Meaning, Types and Examples
  • Remarketing: Meaning, Importance, Working and Types
  • Advertising Message : Meaning, Importance and Components
  • Brand Extension : Meaning, Types, Strategies and Examples
  • Buzz Marketing: Meaning, Benefits, Types and Examples
  • How to Use Chatgpt for Event Planning and Promotion
  • Listicles: Meaning, Types, and Strategies
  • Landing Page Design | Types of Landing pages and Benifits

Flyer: Meaning, Components, Purpose and Types

What is a flyer.

Flyers are printed material utilized to distribute information about distinct events, services, products, or ideas . They are crafted to capture individuals’ attention swiftly. Flyers are commonly employed to announce gatherings, promotions, performances, or significant announcements, incorporating vibrant visuals, engaging language, and essential particulars such as dates, timings, and venues.

Key Takeaways: Flyers serve as printed materials used to spread information about products, services, events, or ideas, aiming to swiftly capture individuals’ attention with vibrant visuals and essential particulars. Components of a flyer include the heading, body copy, images, call-to-action, contact information, and logo, each playing a crucial role in conveying the message effectively. Flyers are utilized to raise awareness, promote events, provide information, encourage action, build connections, and serve as cost-effective advertising solutions with broad audience reach. Handbills, digital, public events, community action, private events, business announcements, and alert flyers cater to diverse promotional needs, from concise promotion to detailed communication and public engagement.

Table of Content

Components of a Flyer

Purpose of a flyer.

  • Why are Flyers Important?

Types of Flyers

Why does flyer design matter.

  • Differentiate Flyer from Brochure

Steps to Make a Flyer

Frequently asked questions on flyers – faqs.

  • Heading: The heading stands out as the most pivotal component of a flyer, acting as the attention-grabbing headline that conveys the flyer’s main message or purpose concisely. It should be catchy and concise , instantly capturing the reader’s interest and drawing them into the content.
  • Body Copy: The body copy forms the core content of the flyer, offering in-depth information about the product, service, event, or promotion being advertised. It should be clear, concise, and persuasive , highlighting key features, benefits, and details that compel the reader to take action.
  • Images: Visual elements such as images or graphics are vital for capturing attention and effectively conveying the message of the flyer. Eye-catching visuals enhance the overall appeal of the flyer, making it more engaging and memorable for the reader.
  • Call-to-Action (CTA): A call-to-action guides the reader on what action to take next after reading the flyer. Whether it’s visiting a website, making a purchase, or attending an event, a clear and compelling CTA prompts the reader to take the desired action, driving engagement and conversion.
  • Contact Information: Including contact details like email addresses, phone numbers, or website URLs enables interested individuals to reach out for further information or to engage with the advertised offer. Accessible contact information builds trust and facilitates communication between the business or firm and potential customers .
  • Logo: Incorporating the company or event logo helps in branding and promoting brand recognition. It ensures that the flyer is associated with the correct business or organization, strengthening brand identity and credibility.

1. Raising Awareness: Flyers serve as effective tools for raising awareness about various aspects, such as brands, products, businesses, services, or events. By reaching a wide audience, they help spread the word and garner attention.

2. Targeted Marketing : One of the strengths of flyers lies in their ability to be strategically distributed to specific neighborhoods or demographics. This targeted approach makes them highly effective for reaching the intended audience and increasing engagement.

3. Promoting Events: Flyers are widely utilized for promoting upcoming events like concerts, festivals, or sales. They provide essential details, such as times, dates, and locations, encouraging individuals to attend and participate.

4. Providing Information: Flyers serve as informative platforms, delivering crucial details about products, services, businesses, or causes to the target audience. They convey information in a concise and visually appealing manner, ensuring easy comprehension.

5. Encouraging Action: Incorporating a clear Call-to-Action (CTA) in flyers motivates readers to take specific actions, such as visiting websites, making purchases, or attending events. This direct instruction prompts immediate responses and drives desired outcomes.

6. Building Connections: Beyond the spread of information, distributing flyers facilitates face-to-face interactions, permitting firms or organizations to establish connections with potential customers or supporters. This personal touch promotes relationships and enhances engagement levels.

Importance of Flyers

1. Cost-Effectiveness: Flyers offer a cost-effective advertising solution, particularly beneficial for firms with limited budgets. Compared to other advertising methods, producing flyers is relatively inexpensive, ensuring accessibility to firms of all sizes.

2. Reach: Flyers provide businesses with a means to swiftly reach a large audience. Distribution in public spaces, posting on community bulletin boards, or inclusion in mailings facilitates broad exposure and engagement with potential customers.

3. Tangibility: In contrast to digital marketing , flyers possess a physical presence, allowing individuals to hold, read, and retain them for future reference. This tangible nature boosts a more memorable and lasting impact on recipients.

4. Creativity : Flyers serve as canvases for creative expression, enabling firms to captivate attention through visually striking designs and persuasive content. This creative freedom enhances the effectiveness of communication and information delivery.

5. Targeted Marketing: With the ability to be distributed to specific neighborhoods or demographics, flyers emerge as potent tools for targeted marketing strategies. This targeted approach ensures relevance and resonance with the intended audience, optimizing engagement and response rates.

6. Branding: Flyers contribute to reinforcing a business’s branding efforts by incorporating elements such as the company logo, colors, and design aesthetics. Consistent branding enhances brand recognition and boosts a sense of familiarity among consumers.

7. Call-to-Action: By integrating clear calls-to-action, flyers prompt customers to take specific actions, whether it’s visiting the business, making a purchase, or subscribing to a service. This directive encourages immediate engagement and drives desired outcomes.

8. Measurability: Flyers facilitate the measurement of marketing campaign effectiveness through the inclusion of coupons or special offers. Tracking responses enables businesses to assess the impact of their promotional efforts and make informed decisions.

9. Personal Touch: Direct distribution of flyers to customers establishes a personal connection, reinforcing their relationship with the business, product, or service. This personal touch boosts loyalty and strengthens brand affinity.

10. Versatility: Flyers exhibit versatility across various industries, serving as versatile marketing tools for promoting events, products, and services, or raising awareness about causes. Their adaptability makes them indispensable assets for businesses across different sectors.

1. Handbill Flyers: Handbill Flyers are concise promotional materials designed to capture attention quickly. Printed on regular paper, they boast vibrant colors and large fonts, making them visually striking. These flyers aim to convey essential information with minimal text, ensuring immediate engagement from passersby.

2. Digital Flyers: Digital Flyers represent the modern evolution of traditional print flyers, adapted for online distribution. They are disseminated through social media platforms or emails and optimized for easy viewing on computers or mobile devices. Digital flyers leverage multimedia elements to enhance visual appeal and maximize audience reach in the digital landscape.

3. Public Event Flyers: Public Event Flyers serve as invitations or announcements for various community gatherings and happenings. They are commonly used to promote charity events, open mic nights, cultural celebrations, art exhibitions, and other public engagements. These flyers aim to generate interest and encourage attendance from the broader community.

4. Community Action Flyers: Community Action Flyers are instrumental in mobilizing support and participation for social causes and civic initiatives. They are utilized to promote public demonstrations, rallies, academic support programs, health awareness campaigns, and other community-driven events. These flyers aim to raise awareness and foster community engagement in addressing pressing societal issues.

5. Private Event Flyers: Private Event Flyers are tailored invitations for exclusive gatherings and occasions. They are designed for events such as anniversaries, baby showers, corporate functions, funerals, or private parties. These flyers convey pertinent details and serve as formal invitations to ensure guest attendance and participation.

6. Business Announcement Flyers: Business Announcement Flyers serve as effective marketing tools for promoting products, services, and special offers. They are utilized to advertise flash deals, store discounts, clearance sales, new business launches, or company fact sheets. These flyers aim to attract customers’ attention and drive foot traffic or online engagement for the business.

7. Alert Flyers: Alert flyers function as notices or announcements aimed at informing the public about various matters of interest or concern. They are used to communicate information about lost and found items, missing pets, new movie releases, community updates, and other noteworthy alerts. These flyers serve to disseminate important information and facilitate community communication and engagement.

1. Attention-Grabbing Design: An attention-grabbing flyer design is pivotal for capturing the interest of potential customers or event attendees. By incorporating vibrant colors, captivating images, and strategic use of white space, a flyer can instantly stand out amidst competing visual stimuli, ensuring it catches the eye of passersby.

2. Clarity of Communication: A well-designed flyer communicates its message clearly and concisely, ensuring that essential details about the product, service, or event are easily understood. Through thoughtful typography, layout, and concise copywriting, the flyer provides information in a manner that is straightforward to digest.

3. Brand Representation: The design of a flyer serves as a reflection of the brand’s identity and values. Consistent use of brand colors, logos , and messaging helps reinforce brand recognition and credibility, ensuring that the flyer aligns with the overall brand image and resonates with the target audience.

4. Professional Appearance: A professionally designed flyer conveys a sense of professionalism and reliability about the business or event it represents. By adhering to design principles and standards, a well-executed flyer instills confidence in the audience, whereas poorly designed flyers may undermine trust and credibility.

5. Memorable Impact: A creative and memorable flyer design leaves a lasting impression on the audience, increasing the likelihood of recall and engagement. Incorporating unique or humorous elements can make the flyer memorable and distinctive, ensuring it remains in the minds of viewers long after initial exposure.

6. Influence on Audience Action: An effective flyer design has the power to influence the target audience to take desired actions, such as attending an event, making a purchase, or visiting a website. By including a clear call-to-action and compelling offer, the flyer motivates viewers to act upon the information presented, driving engagement and conversion.

Difference between Flyer and Brochure

1. Define Purpose and Audience: Clearly outline the main goal of your flyer, whether it’s promoting a product, announcing an event, or offering a service. Detect your target audience by understanding their interests, demographics, and needs.

2. Craft Concise Content: Keep the content brief, usually under 500 words, and organize it with bullet points and subsections for clarity. Address key questions like what, where, when, and what action the reader should take.

3. Choose an Eye-Catching Headline: Use a large, clear font and vibrant colors to make your headline pop and grab the reader’s attention immediately.

4. Work on Visuals: Incorporate your company logo, slogan, and website URL. Use brand colors, fonts, and design elements that resonate with your industry and target audience. Add relevant images, icons, and graphics to enhance visual appeal and break up text.

5. Select a Suitable Template: Utilize pre-designed templates to create professional-looking flyers quickly. Customize them with your images and brand fonts for a personalized touch, saving time compared to starting from scratch.

6. Include a Clear Call-to-Action: Ensure your flyer includes a clear directive that prompts readers to take action, whether it’s making a purchase, using a service, or attending an event.

7. Verify Press-Readiness: Double-check that your flyer meets printing requirements, including correct dimensions, resolution (at least 300 dpi), and safety zones for important content. Proofread thoroughly to capture any errors.

8. Consider Printing Turnaround and Shipping: Factor in the time needed for printing and shipping your flyers to distribution locations, ensuring they are ready when needed for maximum impact.

How do flyers function?

Flyers serve as single printed sheets utilized for advertising businesses, promoting campaigns, boosting brand awareness, announcing sales , or showcasing location and product offers.

What is essential in a flyer?

A flyer should contain vital information such as business contact details, company name, special offers (including discounts, coupon codes, and sale particulars), venue name (if applicable for events), and captivating visuals that complement the message.

Is a flyer typically A4 size?

Yes, flyers are commonly sized as A4 (8.3×11.7 inches), which is similar to the size of a firm letterhead or a standard piece of paper used for photocopying.

What is the efficacy rate of flyers?

Although there is no fixed rate, flyers generally exhibit a high success rate when executed effectively.

Please Login to comment...

Similar reads.

  • Marketing US

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Skip to content
  • Skip to search
  • Skip to footer

Products, Solutions, and Services

Want some help finding the Cisco products that fit your needs? You're in the right place. If you want troubleshooting help, documentation, other support, or downloads, visit our  technical support area .

Contact Cisco

  • Get a call from Sales

Call Sales:

  • 1-800-553-6387
  • US/CAN | 5am-5pm PT
  • Product / Technical Support
  • Training & Certification

Products by technology

Networking

  • Software-defined networking
  • Cisco Silicon One
  • Cloud and network management
  • Interfaces and modules
  • Optical networking
  • See all Networking

Wireless and Mobility

Wireless and Mobility

  • Access points
  • Outdoor and industrial access points
  • Controllers
  • See all Wireless and Mobility

Security

  • Secure Firewall
  • Secure Endpoint
  • Secure Email
  • Secure Access
  • Multicloud Defense
  • See all Security

Collaboration

Collaboration

  • Collaboration endpoints
  • Conferencing
  • Cisco Contact Center
  • Unified communications
  • Experience Management
  • See all Collaboration

Data Center

Data Center

  • Servers: Cisco Unified Computing System
  • Cloud Networking
  • Hyperconverged infrastructure
  • Storage networking
  • See all Data Center

Analytics

  • Nexus Dashboard Insights
  • Network analytics
  • Cisco Secure Network Analytics (Stealthwatch)

Video

  • Video endpoints
  • Cisco Vision
  • See all Video

Internet of Things

Internet of Things (IoT)

  • Industrial Networking
  • Industrial Routers and Gateways
  • Industrial Security
  • Industrial Switching
  • Industrial Wireless
  • Industrial Connectivity Management
  • Extended Enterprise
  • Data Management
  • See all industrial IoT

Software

  • Cisco+ (as-a-service)
  • Cisco buying programs
  • Cisco Nexus Dashboard
  • Cisco Networking Software
  • Cisco DNA Software for Wireless
  • Cisco DNA Software for Switching
  • Cisco DNA Software for SD-WAN and Routing
  • Cisco Intersight for Compute and Cloud
  • Cisco ONE for Data Center Compute and Cloud
  • See all Software
  • Product index

Products by business type

Service Providers

Service providers

Small Business

Small business

Midsize

Midsize business

Cisco can provide your organization with solutions for everything from networking and data center to collaboration and security. Find the options best suited to your business needs.

  • By technology
  • By industry
  • See all solutions

CX Services

Cisco and our partners can help you transform with less risk and effort while making sure your technology delivers tangible business value.

  • See all services

Design Zone: Cisco design guides by category

Data center

  • See all Cisco design guides

End-of-sale and end-of-life

  • End-of-sale and end-of-life products
  • End-of-Life Policy
  • Cisco Commerce Build & Price
  • Cisco Software Central
  • Cisco Feature Navigator
  • See all product tools
  • Cisco Mobile Apps
  • Design Zone: Cisco design guides
  • Cisco DevNet
  • Marketplace Solutions Catalog
  • Product approvals
  • Product identification standard
  • Product warranties
  • Cisco Security Advisories
  • Security Vulnerability Policy
  • Visio stencils
  • Local Resellers
  • Technical Support

research design meaning and components

COMMENTS

  1. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  2. What is a Research Design? Definition, Types, Methods and Examples

    A research design is defined as the overall plan or structure that guides the process of conducting research. It is a critical component of the research process and serves as a blueprint for how a study will be carried out, including the methods and techniques that will be used to collect and analyze data.

  3. Research Design

    Research Design. Definition: Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that ...

  4. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  5. Types of Research Designs

    The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of ...

  6. Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: ... interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question. Two of the most common approaches to doing this are thematic analysis and ...

  7. Research Design: What it is, Elements & Types

    Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success. Creating a research topic explains the type of research (experimental,survey research,correlational ...

  8. What is Research Design? Types, Elements and Examples

    Research design elements include the following: Clear purpose: The research question or hypothesis must be clearly defined and focused. Sampling: This includes decisions about sample size, sampling method, and criteria for inclusion or exclusion. The approach varies for different research design types.

  9. Introducing Research Designs

    A research design refers to the overall strategy that a researcher integrates the different components of the research study in a logical way (de Vaus, 2001; Trochim, 2005 ). By doing so, you will address the research problem; it serves as the blueprint for the collection, measurement, and analysis of data.

  10. Research design

    A research design is a framework that has been created to find answers to research questions. Design types and sub-types. There are many ways to classify research designs. Nonetheless, the list below offers a number of useful distinctions between possible research designs. A research design is an arrangement of conditions or collection.

  11. PDF WHAT IS RESEARCH DESIGN?

    what research design is and what it is not. We need to know where design fits into the whole research process from framing a question to finally analysing and reporting data. This is the purpose of this chapter. Description and explanation Social researchers ask two fundamental types of research questions: 1 What is going on (descriptive ...

  12. What is Research Design? Characteristics, Types, Process, & Examples

    It helps the researcher better complete all the tasks, even with limited resources. 3. Provides Direction: The purpose of the research design is to enable the researcher to proceed in the right direction without deviating from the tasks. It helps to identify the major and minor tasks of the study. 4.

  13. Research design

    Research design is a comprehensive plan for data collection in an empirical research project. It is a 'blueprint' for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: the data collection process, the instrument development process, and the sampling process.

  14. Study designs: Part 1

    The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on "study designs," we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

  15. Clinical research study designs: The essentials

    Introduction. In clinical research, our aim is to design a study, which would be able to derive a valid and meaningful scientific conclusion using appropriate statistical methods that can be translated to the "real world" setting. 1 Before choosing a study design, one must establish aims and objectives of the study, and choose an appropriate target population that is most representative of ...

  16. (PDF) Basics of Research Design: A Guide to selecting appropriate

    for validity and reliability. Design is basically concerned with the aims, uses, purposes, intentions and plans within the. pr actical constraint of location, time, money and the researcher's ...

  17. The Importance of Research Design: A Comprehensive Guide

    Definition and Purpose of Research Design. Research design is the framework that outlines the structure of a study, including the research questions, data collection methods, and analysis techniques. ... Key Components of Research Design. A research design consists of several key components that influence the study's validity and reliability ...

  18. What Is Research Design? Features, Components

    The five main components of a research design are: Research questions. Course suggestions. Units of analysis. Linking data to propositions. Interpretation of the findings of the study. The components of research design apply to all types of standardised, extra-terrestrial research, whether physical or social sciences.

  19. 5 Types of Research Design

    Here are some of the elements of a good research design: Purpose statement. Data collection methods. Techniques of data analysis. Types of research methodologies. Challenges of the research. Prerequisites required for study. Duration of the research study. Measurement of analysis.

  20. Planning Qualitative Research: Design and Decision Making for New

    While many books and articles guide various qualitative research methods and analyses, there is currently no concise resource that explains and differentiates among the most common qualitative approaches. We believe novice qualitative researchers, students planning the design of a qualitative study or taking an introductory qualitative research course, and faculty teaching such courses can ...

  21. (PDF) Research Design

    design'. The research design refers to the overall strategy that you choose to integrate the. different components of the study in a coherent and logical way, thereby, ensuring you will ...

  22. (Pdf) the Research Design

    Research design is a logical and systematic plan prepared for directing a research study. It specifies the objectives of the study, the methodology, and the techniques to be adopted for achieving ...

  23. Research Design: Meaning, Classification and elements

    Research design is defined as a framework of methods and techniques chosen by a researcher to combine various components of research in a reasonably logical manner so that the research problem is efficiently handled. It provides insights about "how" to conduct research using a particular methodology. Every researcher has a list of research questions which need…

  24. Flyer: Meaning, Components, Purpose and Types

    Components of a Flyer. Heading: The heading stands out as the most pivotal component of a flyer, acting as the attention-grabbing headline that conveys the flyer's main message or purpose concisely. It should be catchy and concise, instantly capturing the reader's interest and drawing them into the content.; Body Copy: The body copy forms the core content of the flyer, offering in-depth ...

  25. Products, Solutions, and Services

    Cisco offers a wide range of products and networking solutions designed for enterprises and small businesses across a variety of industries.