Jump to navigation

Home

Cochrane Training

Chapter 15: interpreting results and drawing conclusions.

Holger J Schünemann, Gunn E Vist, Julian PT Higgins, Nancy Santesso, Jonathan J Deeks, Paul Glasziou, Elie A Akl, Gordon H Guyatt; on behalf of the Cochrane GRADEing Methods Group

Key Points:

  • This chapter provides guidance on interpreting the results of synthesis in order to communicate the conclusions of the review effectively.
  • Methods are presented for computing, presenting and interpreting relative and absolute effects for dichotomous outcome data, including the number needed to treat (NNT).
  • For continuous outcome measures, review authors can present summary results for studies using natural units of measurement or as minimal important differences when all studies use the same scale. When studies measure the same construct but with different scales, review authors will need to find a way to interpret the standardized mean difference, or to use an alternative effect measure for the meta-analysis such as the ratio of means.
  • Review authors should not describe results as ‘statistically significant’, ‘not statistically significant’ or ‘non-significant’ or unduly rely on thresholds for P values, but report the confidence interval together with the exact P value.
  • Review authors should not make recommendations about healthcare decisions, but they can – after describing the certainty of evidence and the balance of benefits and harms – highlight different actions that might be consistent with particular patterns of values and preferences and other factors that determine a decision such as cost.

Cite this chapter as: Schünemann HJ, Vist GE, Higgins JPT, Santesso N, Deeks JJ, Glasziou P, Akl EA, Guyatt GH. Chapter 15: Interpreting results and drawing conclusions. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). Cochrane, 2023. Available from www.training.cochrane.org/handbook .

15.1 Introduction

The purpose of Cochrane Reviews is to facilitate healthcare decisions by patients and the general public, clinicians, guideline developers, administrators and policy makers. They also inform future research. A clear statement of findings, a considered discussion and a clear presentation of the authors’ conclusions are, therefore, important parts of the review. In particular, the following issues can help people make better informed decisions and increase the usability of Cochrane Reviews:

  • information on all important outcomes, including adverse outcomes;
  • the certainty of the evidence for each of these outcomes, as it applies to specific populations and specific interventions; and
  • clarification of the manner in which particular values and preferences may bear on the desirable and undesirable consequences of the intervention.

A ‘Summary of findings’ table, described in Chapter 14 , Section 14.1 , provides key pieces of information about health benefits and harms in a quick and accessible format. It is highly desirable that review authors include a ‘Summary of findings’ table in Cochrane Reviews alongside a sufficient description of the studies and meta-analyses to support its contents. This description includes the rating of the certainty of evidence, also called the quality of the evidence or confidence in the estimates of the effects, which is expected in all Cochrane Reviews.

‘Summary of findings’ tables are usually supported by full evidence profiles which include the detailed ratings of the evidence (Guyatt et al 2011a, Guyatt et al 2013a, Guyatt et al 2013b, Santesso et al 2016). The Discussion section of the text of the review provides space to reflect and consider the implications of these aspects of the review’s findings. Cochrane Reviews include five standard subheadings to ensure the Discussion section places the review in an appropriate context: ‘Summary of main results (benefits and harms)’; ‘Potential biases in the review process’; ‘Overall completeness and applicability of evidence’; ‘Certainty of the evidence’; and ‘Agreements and disagreements with other studies or reviews’. Following the Discussion, the Authors’ conclusions section is divided into two standard subsections: ‘Implications for practice’ and ‘Implications for research’. The assessment of the certainty of evidence facilitates a structured description of the implications for practice and research.

Because Cochrane Reviews have an international audience, the Discussion and Authors’ conclusions should, so far as possible, assume a broad international perspective and provide guidance for how the results could be applied in different settings, rather than being restricted to specific national or local circumstances. Cultural differences and economic differences may both play an important role in determining the best course of action based on the results of a Cochrane Review. Furthermore, individuals within societies have widely varying values and preferences regarding health states, and use of societal resources to achieve particular health states. For all these reasons, and because information that goes beyond that included in a Cochrane Review is required to make fully informed decisions, different people will often make different decisions based on the same evidence presented in a review.

Thus, review authors should avoid specific recommendations that inevitably depend on assumptions about available resources, values and preferences, and other factors such as equity considerations, feasibility and acceptability of an intervention. The purpose of the review should be to present information and aid interpretation rather than to offer recommendations. The discussion and conclusions should help people understand the implications of the evidence in relation to practical decisions and apply the results to their specific situation. Review authors can aid this understanding of the implications by laying out different scenarios that describe certain value structures.

In this chapter, we address first one of the key aspects of interpreting findings that is also fundamental in completing a ‘Summary of findings’ table: the certainty of evidence related to each of the outcomes. We then provide a more detailed consideration of issues around applicability and around interpretation of numerical results, and provide suggestions for presenting authors’ conclusions.

15.2 Issues of indirectness and applicability

15.2.1 the role of the review author.

“A leap of faith is always required when applying any study findings to the population at large” or to a specific person. “In making that jump, one must always strike a balance between making justifiable broad generalizations and being too conservative in one’s conclusions” (Friedman et al 1985). In addition to issues about risk of bias and other domains determining the certainty of evidence, this leap of faith is related to how well the identified body of evidence matches the posed PICO ( Population, Intervention, Comparator(s) and Outcome ) question. As to the population, no individual can be entirely matched to the population included in research studies. At the time of decision, there will always be differences between the study population and the person or population to whom the evidence is applied; sometimes these differences are slight, sometimes large.

The terms applicability, generalizability, external validity and transferability are related, sometimes used interchangeably and have in common that they lack a clear and consistent definition in the classic epidemiological literature (Schünemann et al 2013). However, all of the terms describe one overarching theme: whether or not available research evidence can be directly used to answer the health and healthcare question at hand, ideally supported by a judgement about the degree of confidence in this use (Schünemann et al 2013). GRADE’s certainty domains include a judgement about ‘indirectness’ to describe all of these aspects including the concept of direct versus indirect comparisons of different interventions (Atkins et al 2004, Guyatt et al 2008, Guyatt et al 2011b).

To address adequately the extent to which a review is relevant for the purpose to which it is being put, there are certain things the review author must do, and certain things the user of the review must do to assess the degree of indirectness. Cochrane and the GRADE Working Group suggest using a very structured framework to address indirectness. We discuss here and in Chapter 14 what the review author can do to help the user. Cochrane Review authors must be extremely clear on the population, intervention and outcomes that they intend to address. Chapter 14, Section 14.1.2 , also emphasizes a crucial step: the specification of all patient-important outcomes relevant to the intervention strategies under comparison.

In considering whether the effect of an intervention applies equally to all participants, and whether different variations on the intervention have similar effects, review authors need to make a priori hypotheses about possible effect modifiers, and then examine those hypotheses (see Chapter 10, Section 10.10 and Section 10.11 ). If they find apparent subgroup effects, they must ultimately decide whether or not these effects are credible (Sun et al 2012). Differences between subgroups, particularly those that correspond to differences between studies, should be interpreted cautiously. Some chance variation between subgroups is inevitable so, unless there is good reason to believe that there is an interaction, review authors should not assume that the subgroup effect exists. If, despite due caution, review authors judge subgroup effects in terms of relative effect estimates as credible (i.e. the effects differ credibly), they should conduct separate meta-analyses for the relevant subgroups, and produce separate ‘Summary of findings’ tables for those subgroups.

The user of the review will be challenged with ‘individualization’ of the findings, whether they seek to apply the findings to an individual patient or a policy decision in a specific context. For example, even if relative effects are similar across subgroups, absolute effects will differ according to baseline risk. Review authors can help provide this information by identifying identifiable groups of people with varying baseline risks in the ‘Summary of findings’ tables, as discussed in Chapter 14, Section 14.1.3 . Users can then identify their specific case or population as belonging to a particular risk group, if relevant, and assess their likely magnitude of benefit or harm accordingly. A description of the identifying prognostic or baseline risk factors in a brief scenario (e.g. age or gender) will help users of a review further.

Another decision users must make is whether their individual case or population of interest is so different from those included in the studies that they cannot use the results of the systematic review and meta-analysis at all. Rather than rigidly applying the inclusion and exclusion criteria of studies, it is better to ask whether or not there are compelling reasons why the evidence should not be applied to a particular patient. Review authors can sometimes help decision makers by identifying important variation where divergence might limit the applicability of results (Rothwell 2005, Schünemann et al 2006, Guyatt et al 2011b, Schünemann et al 2013), including biologic and cultural variation, and variation in adherence to an intervention.

In addressing these issues, review authors cannot be aware of, or address, the myriad of differences in circumstances around the world. They can, however, address differences of known importance to many people and, importantly, they should avoid assuming that other people’s circumstances are the same as their own in discussing the results and drawing conclusions.

15.2.2 Biological variation

Issues of biological variation that may affect the applicability of a result to a reader or population include divergence in pathophysiology (e.g. biological differences between women and men that may affect responsiveness to an intervention) and divergence in a causative agent (e.g. for infectious diseases such as malaria, which may be caused by several different parasites). The discussion of the results in the review should make clear whether the included studies addressed all or only some of these groups, and whether any important subgroup effects were found.

15.2.3 Variation in context

Some interventions, particularly non-pharmacological interventions, may work in some contexts but not in others; the situation has been described as program by context interaction (Hawe et al 2004). Contextual factors might pertain to the host organization in which an intervention is offered, such as the expertise, experience and morale of the staff expected to carry out the intervention, the competing priorities for the clinician’s or staff’s attention, the local resources such as service and facilities made available to the program and the status or importance given to the program by the host organization. Broader context issues might include aspects of the system within which the host organization operates, such as the fee or payment structure for healthcare providers and the local insurance system. Some interventions, in particular complex interventions (see Chapter 17 ), can be only partially implemented in some contexts, and this requires judgements about indirectness of the intervention and its components for readers in that context (Schünemann 2013).

Contextual factors may also pertain to the characteristics of the target group or population, such as cultural and linguistic diversity, socio-economic position, rural/urban setting. These factors may mean that a particular style of care or relationship evolves between service providers and consumers that may or may not match the values and technology of the program.

For many years these aspects have been acknowledged when decision makers have argued that results of evidence reviews from other countries do not apply in their own country or setting. Whilst some programmes/interventions have been successfully transferred from one context to another, others have not (Resnicow et al 1993, Lumley et al 2004, Coleman et al 2015). Review authors should be cautious when making generalizations from one context to another. They should report on the presence (or otherwise) of context-related information in intervention studies, where this information is available.

15.2.4 Variation in adherence

Variation in the adherence of the recipients and providers of care can limit the certainty in the applicability of results. Predictable differences in adherence can be due to divergence in how recipients of care perceive the intervention (e.g. the importance of side effects), economic conditions or attitudes that make some forms of care inaccessible in some settings, such as in low-income countries (Dans et al 2007). It should not be assumed that high levels of adherence in closely monitored randomized trials will translate into similar levels of adherence in normal practice.

15.2.5 Variation in values and preferences

Decisions about healthcare management strategies and options involve trading off health benefits and harms. The right choice may differ for people with different values and preferences (i.e. the importance people place on the outcomes and interventions), and it is important that decision makers ensure that decisions are consistent with a patient or population’s values and preferences. The importance placed on outcomes, together with other factors, will influence whether the recipients of care will or will not accept an option that is offered (Alonso-Coello et al 2016) and, thus, can be one factor influencing adherence. In Section 15.6 , we describe how the review author can help this process and the limits of supporting decision making based on intervention reviews.

15.3 Interpreting results of statistical analyses

15.3.1 confidence intervals.

Results for both individual studies and meta-analyses are reported with a point estimate together with an associated confidence interval. For example, ‘The odds ratio was 0.75 with a 95% confidence interval of 0.70 to 0.80’. The point estimate (0.75) is the best estimate of the magnitude and direction of the experimental intervention’s effect compared with the comparator intervention. The confidence interval describes the uncertainty inherent in any estimate, and describes a range of values within which we can be reasonably sure that the true effect actually lies. If the confidence interval is relatively narrow (e.g. 0.70 to 0.80), the effect size is known precisely. If the interval is wider (e.g. 0.60 to 0.93) the uncertainty is greater, although there may still be enough precision to make decisions about the utility of the intervention. Intervals that are very wide (e.g. 0.50 to 1.10) indicate that we have little knowledge about the effect and this imprecision affects our certainty in the evidence, and that further information would be needed before we could draw a more certain conclusion.

A 95% confidence interval is often interpreted as indicating a range within which we can be 95% certain that the true effect lies. This statement is a loose interpretation, but is useful as a rough guide. The strictly correct interpretation of a confidence interval is based on the hypothetical notion of considering the results that would be obtained if the study were repeated many times. If a study were repeated infinitely often, and on each occasion a 95% confidence interval calculated, then 95% of these intervals would contain the true effect (see Section 15.3.3 for further explanation).

The width of the confidence interval for an individual study depends to a large extent on the sample size. Larger studies tend to give more precise estimates of effects (and hence have narrower confidence intervals) than smaller studies. For continuous outcomes, precision depends also on the variability in the outcome measurements (i.e. how widely individual results vary between people in the study, measured as the standard deviation); for dichotomous outcomes it depends on the risk of the event (more frequent events allow more precision, and narrower confidence intervals), and for time-to-event outcomes it also depends on the number of events observed. All these quantities are used in computation of the standard errors of effect estimates from which the confidence interval is derived.

The width of a confidence interval for a meta-analysis depends on the precision of the individual study estimates and on the number of studies combined. In addition, for random-effects models, precision will decrease with increasing heterogeneity and confidence intervals will widen correspondingly (see Chapter 10, Section 10.10.4 ). As more studies are added to a meta-analysis the width of the confidence interval usually decreases. However, if the additional studies increase the heterogeneity in the meta-analysis and a random-effects model is used, it is possible that the confidence interval width will increase.

Confidence intervals and point estimates have different interpretations in fixed-effect and random-effects models. While the fixed-effect estimate and its confidence interval address the question ‘what is the best (single) estimate of the effect?’, the random-effects estimate assumes there to be a distribution of effects, and the estimate and its confidence interval address the question ‘what is the best estimate of the average effect?’ A confidence interval may be reported for any level of confidence (although they are most commonly reported for 95%, and sometimes 90% or 99%). For example, the odds ratio of 0.80 could be reported with an 80% confidence interval of 0.73 to 0.88; a 90% interval of 0.72 to 0.89; and a 95% interval of 0.70 to 0.92. As the confidence level increases, the confidence interval widens.

There is logical correspondence between the confidence interval and the P value (see Section 15.3.3 ). The 95% confidence interval for an effect will exclude the null value (such as an odds ratio of 1.0 or a risk difference of 0) if and only if the test of significance yields a P value of less than 0.05. If the P value is exactly 0.05, then either the upper or lower limit of the 95% confidence interval will be at the null value. Similarly, the 99% confidence interval will exclude the null if and only if the test of significance yields a P value of less than 0.01.

Together, the point estimate and confidence interval provide information to assess the effects of the intervention on the outcome. For example, suppose that we are evaluating an intervention that reduces the risk of an event and we decide that it would be useful only if it reduced the risk of an event from 30% by at least 5 percentage points to 25% (these values will depend on the specific clinical scenario and outcomes, including the anticipated harms). If the meta-analysis yielded an effect estimate of a reduction of 10 percentage points with a tight 95% confidence interval, say, from 7% to 13%, we would be able to conclude that the intervention was useful since both the point estimate and the entire range of the interval exceed our criterion of a reduction of 5% for net health benefit. However, if the meta-analysis reported the same risk reduction of 10% but with a wider interval, say, from 2% to 18%, although we would still conclude that our best estimate of the intervention effect is that it provides net benefit, we could not be so confident as we still entertain the possibility that the effect could be between 2% and 5%. If the confidence interval was wider still, and included the null value of a difference of 0%, we would still consider the possibility that the intervention has no effect on the outcome whatsoever, and would need to be even more sceptical in our conclusions.

Review authors may use the same general approach to conclude that an intervention is not useful. Continuing with the above example where the criterion for an important difference that should be achieved to provide more benefit than harm is a 5% risk difference, an effect estimate of 2% with a 95% confidence interval of 1% to 4% suggests that the intervention does not provide net health benefit.

15.3.2 P values and statistical significance

A P value is the standard result of a statistical test, and is the probability of obtaining the observed effect (or larger) under a ‘null hypothesis’. In the context of Cochrane Reviews there are two commonly used statistical tests. The first is a test of overall effect (a Z-test), and its null hypothesis is that there is no overall effect of the experimental intervention compared with the comparator on the outcome of interest. The second is the (Chi 2 ) test for heterogeneity, and its null hypothesis is that there are no differences in the intervention effects across studies.

A P value that is very small indicates that the observed effect is very unlikely to have arisen purely by chance, and therefore provides evidence against the null hypothesis. It has been common practice to interpret a P value by examining whether it is smaller than particular threshold values. In particular, P values less than 0.05 are often reported as ‘statistically significant’, and interpreted as being small enough to justify rejection of the null hypothesis. However, the 0.05 threshold is an arbitrary one that became commonly used in medical and psychological research largely because P values were determined by comparing the test statistic against tabulations of specific percentage points of statistical distributions. If review authors decide to present a P value with the results of a meta-analysis, they should report a precise P value (as calculated by most statistical software), together with the 95% confidence interval. Review authors should not describe results as ‘statistically significant’, ‘not statistically significant’ or ‘non-significant’ or unduly rely on thresholds for P values , but report the confidence interval together with the exact P value (see MECIR Box 15.3.a ).

We discuss interpretation of the test for heterogeneity in Chapter 10, Section 10.10.2 ; the remainder of this section refers mainly to tests for an overall effect. For tests of an overall effect, the computation of P involves both the effect estimate and precision of the effect estimate (driven largely by sample size). As precision increases, the range of plausible effects that could occur by chance is reduced. Correspondingly, the statistical significance of an effect of a particular magnitude will usually be greater (the P value will be smaller) in a larger study than in a smaller study.

P values are commonly misinterpreted in two ways. First, a moderate or large P value (e.g. greater than 0.05) may be misinterpreted as evidence that the intervention has no effect on the outcome. There is an important difference between this statement and the correct interpretation that there is a high probability that the observed effect on the outcome is due to chance alone. To avoid such a misinterpretation, review authors should always examine the effect estimate and its 95% confidence interval.

The second misinterpretation is to assume that a result with a small P value for the summary effect estimate implies that an experimental intervention has an important benefit. Such a misinterpretation is more likely to occur in large studies and meta-analyses that accumulate data over dozens of studies and thousands of participants. The P value addresses the question of whether the experimental intervention effect is precisely nil; it does not examine whether the effect is of a magnitude of importance to potential recipients of the intervention. In a large study, a small P value may represent the detection of a trivial effect that may not lead to net health benefit when compared with the potential harms (i.e. harmful effects on other important outcomes). Again, inspection of the point estimate and confidence interval helps correct interpretations (see Section 15.3.1 ).

MECIR Box 15.3.a Relevant expectations for conduct of intervention reviews

15.3.3 Relation between confidence intervals, statistical significance and certainty of evidence

The confidence interval (and imprecision) is only one domain that influences overall uncertainty about effect estimates. Uncertainty resulting from imprecision (i.e. statistical uncertainty) may be no less important than uncertainty from indirectness, or any other GRADE domain, in the context of decision making (Schünemann 2016). Thus, the extent to which interpretations of the confidence interval described in Sections 15.3.1 and 15.3.2 correspond to conclusions about overall certainty of the evidence for the outcome of interest depends on these other domains. If there are no concerns about other domains that determine the certainty of the evidence (i.e. risk of bias, inconsistency, indirectness or publication bias), then the interpretation in Sections 15.3.1 and 15.3.2 . about the relation of the confidence interval to the true effect may be carried forward to the overall certainty. However, if there are concerns about the other domains that affect the certainty of the evidence, the interpretation about the true effect needs to be seen in the context of further uncertainty resulting from those concerns.

For example, nine randomized controlled trials in almost 6000 cancer patients indicated that the administration of heparin reduces the risk of venous thromboembolism (VTE), with a risk ratio of 43% (95% CI 19% to 60%) (Akl et al 2011a). For patients with a plausible baseline risk of approximately 4.6% per year, this relative effect suggests that heparin leads to an absolute risk reduction of 20 fewer VTEs (95% CI 9 fewer to 27 fewer) per 1000 people per year (Akl et al 2011a). Now consider that the review authors or those applying the evidence in a guideline have lowered the certainty in the evidence as a result of indirectness. While the confidence intervals would remain unchanged, the certainty in that confidence interval and in the point estimate as reflecting the truth for the question of interest will be lowered. In fact, the certainty range will have unknown width so there will be unknown likelihood of a result within that range because of this indirectness. The lower the certainty in the evidence, the less we know about the width of the certainty range, although methods for quantifying risk of bias and understanding potential direction of bias may offer insight when lowered certainty is due to risk of bias. Nevertheless, decision makers must consider this uncertainty, and must do so in relation to the effect measure that is being evaluated (e.g. a relative or absolute measure). We will describe the impact on interpretations for dichotomous outcomes in Section 15.4 .

15.4 Interpreting results from dichotomous outcomes (including numbers needed to treat)

15.4.1 relative and absolute risk reductions.

Clinicians may be more inclined to prescribe an intervention that reduces the relative risk of death by 25% than one that reduces the risk of death by 1 percentage point, although both presentations of the evidence may relate to the same benefit (i.e. a reduction in risk from 4% to 3%). The former refers to the relative reduction in risk and the latter to the absolute reduction in risk. As described in Chapter 6, Section 6.4.1 , there are several measures for comparing dichotomous outcomes in two groups. Meta-analyses are usually undertaken using risk ratios (RR), odds ratios (OR) or risk differences (RD), but there are several alternative ways of expressing results.

Relative risk reduction (RRR) is a convenient way of re-expressing a risk ratio as a percentage reduction:

interpretation and analysis of research results

For example, a risk ratio of 0.75 translates to a relative risk reduction of 25%, as in the example above.

The risk difference is often referred to as the absolute risk reduction (ARR) or absolute risk increase (ARI), and may be presented as a percentage (e.g. 1%), as a decimal (e.g. 0.01), or as account (e.g. 10 out of 1000). We consider different choices for presenting absolute effects in Section 15.4.3 . We then describe computations for obtaining these numbers from the results of individual studies and of meta-analyses in Section 15.4.4 .

15.4.2 Number needed to treat (NNT)

The number needed to treat (NNT) is a common alternative way of presenting information on the effect of an intervention. The NNT is defined as the expected number of people who need to receive the experimental rather than the comparator intervention for one additional person to either incur or avoid an event (depending on the direction of the result) in a given time frame. Thus, for example, an NNT of 10 can be interpreted as ‘it is expected that one additional (or less) person will incur an event for every 10 participants receiving the experimental intervention rather than comparator over a given time frame’. It is important to be clear that:

  • since the NNT is derived from the risk difference, it is still a comparative measure of effect (experimental versus a specific comparator) and not a general property of a single intervention; and
  • the NNT gives an ‘expected value’. For example, NNT = 10 does not imply that one additional event will occur in each and every group of 10 people.

NNTs can be computed for both beneficial and detrimental events, and for interventions that cause both improvements and deteriorations in outcomes. In all instances NNTs are expressed as positive whole numbers. Some authors use the term ‘number needed to harm’ (NNH) when an intervention leads to an adverse outcome, or a decrease in a positive outcome, rather than improvement. However, this phrase can be misleading (most notably, it can easily be read to imply the number of people who will experience a harmful outcome if given the intervention), and it is strongly recommended that ‘number needed to harm’ and ‘NNH’ are avoided. The preferred alternative is to use phrases such as ‘number needed to treat for an additional beneficial outcome’ (NNTB) and ‘number needed to treat for an additional harmful outcome’ (NNTH) to indicate direction of effect.

As NNTs refer to events, their interpretation needs to be worded carefully when the binary outcome is a dichotomization of a scale-based outcome. For example, if the outcome is pain measured on a ‘none, mild, moderate or severe’ scale it may have been dichotomized as ‘none or mild’ versus ‘moderate or severe’. It would be inappropriate for an NNT from these data to be referred to as an ‘NNT for pain’. It is an ‘NNT for moderate or severe pain’.

We consider different choices for presenting absolute effects in Section 15.4.3 . We then describe computations for obtaining these numbers from the results of individual studies and of meta-analyses in Section 15.4.4 .

15.4.3 Expressing risk differences

Users of reviews are liable to be influenced by the choice of statistical presentations of the evidence. Hoffrage and colleagues suggest that physicians’ inferences about statistical outcomes are more appropriate when they deal with ‘natural frequencies’ – whole numbers of people, both treated and untreated (e.g. treatment results in a drop from 20 out of 1000 to 10 out of 1000 women having breast cancer) – than when effects are presented as percentages (e.g. 1% absolute reduction in breast cancer risk) (Hoffrage et al 2000). Probabilities may be more difficult to understand than frequencies, particularly when events are rare. While standardization may be important in improving the presentation of research evidence (and participation in healthcare decisions), current evidence suggests that the presentation of natural frequencies for expressing differences in absolute risk is best understood by consumers of healthcare information (Akl et al 2011b). This evidence provides the rationale for presenting absolute risks in ‘Summary of findings’ tables as numbers of people with events per 1000 people receiving the intervention (see Chapter 14 ).

RRs and RRRs remain crucial because relative effects tend to be substantially more stable across risk groups than absolute effects (see Chapter 10, Section 10.4.3 ). Review authors can use their own data to study this consistency (Cates 1999, Smeeth et al 1999). Risk differences from studies are least likely to be consistent across baseline event rates; thus, they are rarely appropriate for computing numbers needed to treat in systematic reviews. If a relative effect measure (OR or RR) is chosen for meta-analysis, then a comparator group risk needs to be specified as part of the calculation of an RD or NNT. In addition, if there are several different groups of participants with different levels of risk, it is crucial to express absolute benefit for each clinically identifiable risk group, clarifying the time period to which this applies. Studies in patients with differing severity of disease, or studies with different lengths of follow-up will almost certainly have different comparator group risks. In these cases, different comparator group risks lead to different RDs and NNTs (except when the intervention has no effect). A recommended approach is to re-express an odds ratio or a risk ratio as a variety of RD or NNTs across a range of assumed comparator risks (ACRs) (McQuay and Moore 1997, Smeeth et al 1999). Review authors should bear these considerations in mind not only when constructing their ‘Summary of findings’ table, but also in the text of their review.

For example, a review of oral anticoagulants to prevent stroke presented information to users by describing absolute benefits for various baseline risks (Aguilar and Hart 2005, Aguilar et al 2007). They presented their principal findings as “The inherent risk of stroke should be considered in the decision to use oral anticoagulants in atrial fibrillation patients, selecting those who stand to benefit most for this therapy” (Aguilar and Hart 2005). Among high-risk atrial fibrillation patients with prior stroke or transient ischaemic attack who have stroke rates of about 12% (120 per 1000) per year, warfarin prevents about 70 strokes yearly per 1000 patients, whereas for low-risk atrial fibrillation patients (with a stroke rate of about 2% per year or 20 per 1000), warfarin prevents only 12 strokes. This presentation helps users to understand the important impact that typical baseline risks have on the absolute benefit that they can expect.

15.4.4 Computations

Direct computation of risk difference (RD) or a number needed to treat (NNT) depends on the summary statistic (odds ratio, risk ratio or risk differences) available from the study or meta-analysis. When expressing results of meta-analyses, review authors should use, in the computations, whatever statistic they determined to be the most appropriate summary for meta-analysis (see Chapter 10, Section 10.4.3 ). Here we present calculations to obtain RD as a reduction in the number of participants per 1000. For example, a risk difference of –0.133 corresponds to 133 fewer participants with the event per 1000.

RDs and NNTs should not be computed from the aggregated total numbers of participants and events across the trials. This approach ignores the randomization within studies, and may produce seriously misleading results if there is unbalanced randomization in any of the studies. Using the pooled result of a meta-analysis is more appropriate. When computing NNTs, the values obtained are by convention always rounded up to the next whole number.

15.4.4.1 Computing NNT from a risk difference (RD)

A NNT may be computed from a risk difference as

interpretation and analysis of research results

where the vertical bars (‘absolute value of’) in the denominator indicate that any minus sign should be ignored. It is convention to round the NNT up to the nearest whole number. For example, if the risk difference is –0.12 the NNT is 9; if the risk difference is –0.22 the NNT is 5. Cochrane Review authors should qualify the NNT as referring to benefit (improvement) or harm by denoting the NNT as NNTB or NNTH. Note that this approach, although feasible, should be used only for the results of a meta-analysis of risk differences. In most cases meta-analyses will be undertaken using a relative measure of effect (RR or OR), and those statistics should be used to calculate the NNT (see Section 15.4.4.2 and 15.4.4.3 ).

15.4.4.2 Computing risk differences or NNT from a risk ratio

To aid interpretation of the results of a meta-analysis of risk ratios, review authors may compute an absolute risk reduction or NNT. In order to do this, an assumed comparator risk (ACR) (otherwise known as a baseline risk, or risk that the outcome of interest would occur with the comparator intervention) is required. It will usually be appropriate to do this for a range of different ACRs. The computation proceeds as follows:

interpretation and analysis of research results

As an example, suppose the risk ratio is RR = 0.92, and an ACR = 0.3 (300 per 1000) is assumed. Then the effect on risk is 24 fewer per 1000:

interpretation and analysis of research results

The NNT is 42:

interpretation and analysis of research results

15.4.4.3 Computing risk differences or NNT from an odds ratio

Review authors may wish to compute a risk difference or NNT from the results of a meta-analysis of odds ratios. In order to do this, an ACR is required. It will usually be appropriate to do this for a range of different ACRs. The computation proceeds as follows:

interpretation and analysis of research results

As an example, suppose the odds ratio is OR = 0.73, and a comparator risk of ACR = 0.3 is assumed. Then the effect on risk is 62 fewer per 1000:

interpretation and analysis of research results

The NNT is 17:

interpretation and analysis of research results

15.4.4.4 Computing risk ratio from an odds ratio

Because risk ratios are easier to interpret than odds ratios, but odds ratios have favourable mathematical properties, a review author may decide to undertake a meta-analysis based on odds ratios, but to express the result as a summary risk ratio (or relative risk reduction). This requires an ACR. Then

interpretation and analysis of research results

It will often be reasonable to perform this transformation using the median comparator group risk from the studies in the meta-analysis.

15.4.4.5 Computing confidence limits

Confidence limits for RDs and NNTs may be calculated by applying the above formulae to the upper and lower confidence limits for the summary statistic (RD, RR or OR) (Altman 1998). Note that this confidence interval does not incorporate uncertainty around the ACR.

If the 95% confidence interval of OR or RR includes the value 1, one of the confidence limits will indicate benefit and the other harm. Thus, appropriate use of the words ‘fewer’ and ‘more’ is required for each limit when presenting results in terms of events. For NNTs, the two confidence limits should be labelled as NNTB and NNTH to indicate the direction of effect in each case. The confidence interval for the NNT will include a ‘discontinuity’, because increasingly smaller risk differences that approach zero will lead to NNTs approaching infinity. Thus, the confidence interval will include both an infinitely large NNTB and an infinitely large NNTH.

15.5 Interpreting results from continuous outcomes (including standardized mean differences)

15.5.1 meta-analyses with continuous outcomes.

Review authors should describe in the study protocol how they plan to interpret results for continuous outcomes. When outcomes are continuous, review authors have a number of options to present summary results. These options differ if studies report the same measure that is familiar to the target audiences, studies report the same or very similar measures that are less familiar to the target audiences, or studies report different measures.

15.5.2 Meta-analyses with continuous outcomes using the same measure

If all studies have used the same familiar units, for instance, results are expressed as durations of events, such as symptoms for conditions including diarrhoea, sore throat, otitis media, influenza or duration of hospitalization, a meta-analysis may generate a summary estimate in those units, as a difference in mean response (see, for instance, the row summarizing results for duration of diarrhoea in Chapter 14, Figure 14.1.b and the row summarizing oedema in Chapter 14, Figure 14.1.a ). For such outcomes, the ‘Summary of findings’ table should include a difference of means between the two interventions. However, when units of such outcomes may be difficult to interpret, particularly when they relate to rating scales (again, see the oedema row of Chapter 14, Figure 14.1.a ). ‘Summary of findings’ tables should include the minimum and maximum of the scale of measurement, and the direction. Knowledge of the smallest change in instrument score that patients perceive is important – the minimal important difference (MID) – and can greatly facilitate the interpretation of results (Guyatt et al 1998, Schünemann and Guyatt 2005). Knowing the MID allows review authors and users to place results in context. Review authors should state the MID – if known – in the Comments column of their ‘Summary of findings’ table. For example, the chronic respiratory questionnaire has possible scores in health-related quality of life ranging from 1 to 7 and 0.5 represents a well-established MID (Jaeschke et al 1989, Schünemann et al 2005).

15.5.3 Meta-analyses with continuous outcomes using different measures

When studies have used different instruments to measure the same construct, a standardized mean difference (SMD) may be used in meta-analysis for combining continuous data. Without guidance, clinicians and patients may have little idea how to interpret results presented as SMDs. Review authors should therefore consider issues of interpretability when planning their analysis at the protocol stage and should consider whether there will be suitable ways to re-express the SMD or whether alternative effect measures, such as a ratio of means, or possibly as minimal important difference units (Guyatt et al 2013b) should be used. Table 15.5.a and the following sections describe these options.

Table 15.5.a Approaches and their implications to presenting results of continuous variables when primary studies have used different instruments to measure the same construct. Adapted from Guyatt et al (2013b)

15.5.3.1 Presenting and interpreting SMDs using generic effect size estimates

The SMD expresses the intervention effect in standard units rather than the original units of measurement. The SMD is the difference in mean effects between the experimental and comparator groups divided by the pooled standard deviation of participants’ outcomes, or external SDs when studies are very small (see Chapter 6, Section 6.5.1.2 ). The value of a SMD thus depends on both the size of the effect (the difference between means) and the standard deviation of the outcomes (the inherent variability among participants or based on an external SD).

If review authors use the SMD, they might choose to present the results directly as SMDs (row 1a, Table 15.5.a and Table 15.5.b ). However, absolute values of the intervention and comparison groups are typically not useful because studies have used different measurement instruments with different units. Guiding rules for interpreting SMDs (or ‘Cohen’s effect sizes’) exist, and have arisen mainly from researchers in the social sciences (Cohen 1988). One example is as follows: 0.2 represents a small effect, 0.5 a moderate effect and 0.8 a large effect (Cohen 1988). Variations exist (e.g. <0.40=small, 0.40 to 0.70=moderate, >0.70=large). Review authors might consider including such a guiding rule in interpreting the SMD in the text of the review, and in summary versions such as the Comments column of a ‘Summary of findings’ table. However, some methodologists believe that such interpretations are problematic because patient importance of a finding is context-dependent and not amenable to generic statements.

15.5.3.2 Re-expressing SMDs using a familiar instrument

The second possibility for interpreting the SMD is to express it in the units of one or more of the specific measurement instruments used by the included studies (row 1b, Table 15.5.a and Table 15.5.b ). The approach is to calculate an absolute difference in means by multiplying the SMD by an estimate of the SD associated with the most familiar instrument. To obtain this SD, a reasonable option is to calculate a weighted average across all intervention groups of all studies that used the selected instrument (preferably a pre-intervention or post-intervention SD as discussed in Chapter 10, Section 10.5.2 ). To better reflect among-person variation in practice, or to use an instrument not represented in the meta-analysis, it may be preferable to use a standard deviation from a representative observational study. The summary effect is thus re-expressed in the original units of that particular instrument and the clinical relevance and impact of the intervention effect can be interpreted using that familiar instrument.

The same approach of re-expressing the results for a familiar instrument can also be used for other standardized effect measures such as when standardizing by MIDs (Guyatt et al 2013b): see Section 15.5.3.5 .

Table 15.5.b Application of approaches when studies have used different measures: effects of dexamethasone for pain after laparoscopic cholecystectomy (Karanicolas et al 2008). Reproduced with permission of Wolters Kluwer

1 Certainty rated according to GRADE from very low to high certainty. 2 Substantial unexplained heterogeneity in study results. 3 Imprecision due to wide confidence intervals. 4 The 20% comes from the proportion in the control group requiring rescue analgesia. 5 Crude (arithmetic) means of the post-operative pain mean responses across all five trials when transformed to a 100-point scale.

15.5.3.3 Re-expressing SMDs through dichotomization and transformation to relative and absolute measures

A third approach (row 1c, Table 15.5.a and Table 15.5.b ) relies on converting the continuous measure into a dichotomy and thus allows calculation of relative and absolute effects on a binary scale. A transformation of a SMD to a (log) odds ratio is available, based on the assumption that an underlying continuous variable has a logistic distribution with equal standard deviation in the two intervention groups, as discussed in Chapter 10, Section 10.6  (Furukawa 1999, Guyatt et al 2013b). The assumption is unlikely to hold exactly and the results must be regarded as an approximation. The log odds ratio is estimated as

interpretation and analysis of research results

(or approximately 1.81✕SMD). The resulting odds ratio can then be presented as normal, and in a ‘Summary of findings’ table, combined with an assumed comparator group risk to be expressed as an absolute risk difference. The comparator group risk in this case would refer to the proportion of people who have achieved a specific value of the continuous outcome. In randomized trials this can be interpreted as the proportion who have improved by some (specified) amount (responders), for instance by 5 points on a 0 to 100 scale. Table 15.5.c shows some illustrative results from this method. The risk differences can then be converted to NNTs or to people per thousand using methods described in Section 15.4.4 .

Table 15.5.c Risk difference derived for specific SMDs for various given ‘proportions improved’ in the comparator group (Furukawa 1999, Guyatt et al 2013b). Reproduced with permission of Elsevier 

15.5.3.4 Ratio of means

A more frequently used approach is based on calculation of a ratio of means between the intervention and comparator groups (Friedrich et al 2008) as discussed in Chapter 6, Section 6.5.1.3 . Interpretational advantages of this approach include the ability to pool studies with outcomes expressed in different units directly, to avoid the vulnerability of heterogeneous populations that limits approaches that rely on SD units, and for ease of clinical interpretation (row 2, Table 15.5.a and Table 15.5.b ). This method is currently designed for post-intervention scores only. However, it is possible to calculate a ratio of change scores if both intervention and comparator groups change in the same direction in each relevant study, and this ratio may sometimes be informative.

Limitations to this approach include its limited applicability to change scores (since it is unlikely that both intervention and comparator group changes are in the same direction in all studies) and the possibility of misleading results if the comparator group mean is very small, in which case even a modest difference from the intervention group will yield a large and therefore misleading ratio of means. It also requires that separate ratios of means be calculated for each included study, and then entered into a generic inverse variance meta-analysis (see Chapter 10, Section 10.3 ).

The ratio of means approach illustrated in Table 15.5.b suggests a relative reduction in pain of only 13%, meaning that those receiving steroids have a pain severity 87% of those in the comparator group, an effect that might be considered modest.

15.5.3.5 Presenting continuous results as minimally important difference units

To express results in MID units, review authors have two options. First, they can be combined across studies in the same way as the SMD, but instead of dividing the mean difference of each study by its SD, review authors divide by the MID associated with that outcome (Johnston et al 2010, Guyatt et al 2013b). Instead of SD units, the pooled results represent MID units (row 3, Table 15.5.a and Table 15.5.b ), and may be more easily interpretable. This approach avoids the problem of varying SDs across studies that may distort estimates of effect in approaches that rely on the SMD. The approach, however, relies on having well-established MIDs. The approach is also risky in that a difference less than the MID may be interpreted as trivial when a substantial proportion of patients may have achieved an important benefit.

The other approach makes a simple conversion (not shown in Table 15.5.b ), before undertaking the meta-analysis, of the means and SDs from each study to means and SDs on the scale of a particular familiar instrument whose MID is known. For example, one can rescale the mean and SD of other chronic respiratory disease instruments (e.g. rescaling a 0 to 100 score of an instrument) to a the 1 to 7 score in Chronic Respiratory Disease Questionnaire (CRQ) units (by assuming 0 equals 1 and 100 equals 7 on the CRQ). Given the MID of the CRQ of 0.5, a mean difference in change of 0.71 after rescaling of all studies suggests a substantial effect of the intervention (Guyatt et al 2013b). This approach, presenting in units of the most familiar instrument, may be the most desirable when the target audiences have extensive experience with that instrument, particularly if the MID is well established.

15.6 Drawing conclusions

15.6.1 conclusions sections of a cochrane review.

Authors’ conclusions in a Cochrane Review are divided into implications for practice and implications for research. While Cochrane Reviews about interventions can provide meaningful information and guidance for practice, decisions about the desirable and undesirable consequences of healthcare options require evidence and judgements for criteria that most Cochrane Reviews do not provide (Alonso-Coello et al 2016). In describing the implications for practice and the development of recommendations, however, review authors may consider the certainty of the evidence, the balance of benefits and harms, and assumed values and preferences.

15.6.2 Implications for practice

Drawing conclusions about the practical usefulness of an intervention entails making trade-offs, either implicitly or explicitly, between the estimated benefits, harms and the values and preferences. Making such trade-offs, and thus making specific recommendations for an action in a specific context, goes beyond a Cochrane Review and requires additional evidence and informed judgements that most Cochrane Reviews do not provide (Alonso-Coello et al 2016). Such judgements are typically the domain of clinical practice guideline developers for which Cochrane Reviews will provide crucial information (Graham et al 2011, Schünemann et al 2014, Zhang et al 2018a). Thus, authors of Cochrane Reviews should not make recommendations.

If review authors feel compelled to lay out actions that clinicians and patients could take, they should – after describing the certainty of evidence and the balance of benefits and harms – highlight different actions that might be consistent with particular patterns of values and preferences. Other factors that might influence a decision should also be highlighted, including any known factors that would be expected to modify the effects of the intervention, the baseline risk or status of the patient, costs and who bears those costs, and the availability of resources. Review authors should ensure they consider all patient-important outcomes, including those for which limited data may be available. In the context of public health reviews the focus may be on population-important outcomes as the target may be an entire (non-diseased) population and include outcomes that are not measured in the population receiving an intervention (e.g. a reduction of transmission of infections from those receiving an intervention). This process implies a high level of explicitness in judgements about values or preferences attached to different outcomes and the certainty of the related evidence (Zhang et al 2018b, Zhang et al 2018c); this and a full cost-effectiveness analysis is beyond the scope of most Cochrane Reviews (although they might well be used for such analyses; see Chapter 20 ).

A review on the use of anticoagulation in cancer patients to increase survival (Akl et al 2011a) provides an example for laying out clinical implications for situations where there are important trade-offs between desirable and undesirable effects of the intervention: “The decision for a patient with cancer to start heparin therapy for survival benefit should balance the benefits and downsides and integrate the patient’s values and preferences. Patients with a high preference for a potential survival prolongation, limited aversion to potential bleeding, and who do not consider heparin (both UFH or LMWH) therapy a burden may opt to use heparin, while those with aversion to bleeding may not.”

15.6.3 Implications for research

The second category for authors’ conclusions in a Cochrane Review is implications for research. To help people make well-informed decisions about future healthcare research, the ‘Implications for research’ section should comment on the need for further research, and the nature of the further research that would be most desirable. It is helpful to consider the population, intervention, comparison and outcomes that could be addressed, or addressed more effectively in the future, in the context of the certainty of the evidence in the current review (Brown et al 2006):

  • P (Population): diagnosis, disease stage, comorbidity, risk factor, sex, age, ethnic group, specific inclusion or exclusion criteria, clinical setting;
  • I (Intervention): type, frequency, dose, duration, prognostic factor;
  • C (Comparison): placebo, routine care, alternative treatment/management;
  • O (Outcome): which clinical or patient-related outcomes will the researcher need to measure, improve, influence or accomplish? Which methods of measurement should be used?

While Cochrane Review authors will find the PICO domains helpful, the domains of the GRADE certainty framework further support understanding and describing what additional research will improve the certainty in the available evidence. Note that as the certainty of the evidence is likely to vary by outcome, these implications will be specific to certain outcomes in the review. Table 15.6.a shows how review authors may be aided in their interpretation of the body of evidence and drawing conclusions about future research and practice.

Table 15.6.a Implications for research and practice suggested by individual GRADE domains

The review of compression stockings for prevention of deep vein thrombosis (DVT) in airline passengers described in Chapter 14 provides an example where there is some convincing evidence of a benefit of the intervention: “This review shows that the question of the effects on symptomless DVT of wearing versus not wearing compression stockings in the types of people studied in these trials should now be regarded as answered. Further research may be justified to investigate the relative effects of different strengths of stockings or of stockings compared to other preventative strategies. Further randomised trials to address the remaining uncertainty about the effects of wearing versus not wearing compression stockings on outcomes such as death, pulmonary embolism and symptomatic DVT would need to be large.” (Clarke et al 2016).

A review of therapeutic touch for anxiety disorder provides an example of the implications for research when no eligible studies had been found: “This review highlights the need for randomized controlled trials to evaluate the effectiveness of therapeutic touch in reducing anxiety symptoms in people diagnosed with anxiety disorders. Future trials need to be rigorous in design and delivery, with subsequent reporting to include high quality descriptions of all aspects of methodology to enable appraisal and interpretation of results.” (Robinson et al 2007).

15.6.4 Reaching conclusions

A common mistake is to confuse ‘no evidence of an effect’ with ‘evidence of no effect’. When the confidence intervals are too wide (e.g. including no effect), it is wrong to claim that the experimental intervention has ‘no effect’ or is ‘no different’ from the comparator intervention. Review authors may also incorrectly ‘positively’ frame results for some effects but not others. For example, when the effect estimate is positive for a beneficial outcome but confidence intervals are wide, review authors may describe the effect as promising. However, when the effect estimate is negative for an outcome that is considered harmful but the confidence intervals include no effect, review authors report no effect. Another mistake is to frame the conclusion in wishful terms. For example, review authors might write, “there were too few people in the analysis to detect a reduction in mortality” when the included studies showed a reduction or even increase in mortality that was not ‘statistically significant’. One way of avoiding errors such as these is to consider the results blinded; that is, consider how the results would be presented and framed in the conclusions if the direction of the results was reversed. If the confidence interval for the estimate of the difference in the effects of the interventions overlaps with no effect, the analysis is compatible with both a true beneficial effect and a true harmful effect. If one of the possibilities is mentioned in the conclusion, the other possibility should be mentioned as well. Table 15.6.b suggests narrative statements for drawing conclusions based on the effect estimate from the meta-analysis and the certainty of the evidence.

Table 15.6.b Suggested narrative statements for phrasing conclusions

Another common mistake is to reach conclusions that go beyond the evidence. Often this is done implicitly, without referring to the additional information or judgements that are used in reaching conclusions about the implications of a review for practice. Even when additional information and explicit judgements support conclusions about the implications of a review for practice, review authors rarely conduct systematic reviews of the additional information. Furthermore, implications for practice are often dependent on specific circumstances and values that must be taken into consideration. As we have noted, review authors should always be cautious when drawing conclusions about implications for practice and they should not make recommendations.

15.7 Chapter information

Authors: Holger J Schünemann, Gunn E Vist, Julian PT Higgins, Nancy Santesso, Jonathan J Deeks, Paul Glasziou, Elie Akl, Gordon H Guyatt; on behalf of the Cochrane GRADEing Methods Group

Acknowledgements: Andrew Oxman, Jonathan Sterne, Michael Borenstein and Rob Scholten contributed text to earlier versions of this chapter.

Funding: This work was in part supported by funding from the Michael G DeGroote Cochrane Canada Centre and the Ontario Ministry of Health. JJD receives support from the National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre at the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham. JPTH receives support from the NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

15.8 References

Aguilar MI, Hart R. Oral anticoagulants for preventing stroke in patients with non-valvular atrial fibrillation and no previous history of stroke or transient ischemic attacks. Cochrane Database of Systematic Reviews 2005; 3 : CD001927.

Aguilar MI, Hart R, Pearce LA. Oral anticoagulants versus antiplatelet therapy for preventing stroke in patients with non-valvular atrial fibrillation and no history of stroke or transient ischemic attacks. Cochrane Database of Systematic Reviews 2007; 3 : CD006186.

Akl EA, Gunukula S, Barba M, Yosuico VE, van Doormaal FF, Kuipers S, Middeldorp S, Dickinson HO, Bryant A, Schünemann H. Parenteral anticoagulation in patients with cancer who have no therapeutic or prophylactic indication for anticoagulation. Cochrane Database of Systematic Reviews 2011a; 1 : CD006652.

Akl EA, Oxman AD, Herrin J, Vist GE, Terrenato I, Sperati F, Costiniuk C, Blank D, Schünemann H. Using alternative statistical formats for presenting risks and risk reductions. Cochrane Database of Systematic Reviews 2011b; 3 : CD006776.

Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD, Group GW. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ 2016; 353 : i2016.

Altman DG. Confidence intervals for the number needed to treat. BMJ 1998; 317 : 1309-1312.

Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O'Connell D, Oxman AD, Phillips B, Schünemann HJ, Edejer TT, Varonen H, Vist GE, Williams JW, Jr., Zaza S. Grading quality of evidence and strength of recommendations. BMJ 2004; 328 : 1490.

Brown P, Brunnhuber K, Chalkidou K, Chalmers I, Clarke M, Fenton M, Forbes C, Glanville J, Hicks NJ, Moody J, Twaddle S, Timimi H, Young P. How to formulate research recommendations. BMJ 2006; 333 : 804-806.

Cates C. Confidence intervals for the number needed to treat: Pooling numbers needed to treat may not be reliable. BMJ 1999; 318 : 1764-1765.

Clarke MJ, Broderick C, Hopewell S, Juszczak E, Eisinga A. Compression stockings for preventing deep vein thrombosis in airline passengers. Cochrane Database of Systematic Reviews 2016; 9 : CD004002.

Cohen J. Statistical Power Analysis in the Behavioral Sciences . 2nd edition ed. Hillsdale (NJ): Lawrence Erlbaum Associates, Inc.; 1988.

Coleman T, Chamberlain C, Davey MA, Cooper SE, Leonardi-Bee J. Pharmacological interventions for promoting smoking cessation during pregnancy. Cochrane Database of Systematic Reviews 2015; 12 : CD010078.

Dans AM, Dans L, Oxman AD, Robinson V, Acuin J, Tugwell P, Dennis R, Kang D. Assessing equity in clinical practice guidelines. Journal of Clinical Epidemiology 2007; 60 : 540-546.

Friedman LM, Furberg CD, DeMets DL. Fundamentals of Clinical Trials . 2nd edition ed. Littleton (MA): John Wright PSG, Inc.; 1985.

Friedrich JO, Adhikari NK, Beyene J. The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study. BMC Medical Research Methodology 2008; 8 : 32.

Furukawa T. From effect size into number needed to treat. Lancet 1999; 353 : 1680.

Graham R, Mancher M, Wolman DM, Greenfield S, Steinberg E. Committee on Standards for Developing Trustworthy Clinical Practice Guidelines, Board on Health Care Services: Clinical Practice Guidelines We Can Trust. Washington, DC: National Academies Press; 2011.

Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schünemann HJ. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 2011a; 64 : 383-394.

Guyatt GH, Juniper EF, Walter SD, Griffith LE, Goldstein RS. Interpreting treatment effects in randomised trials. BMJ 1998; 316 : 690-693.

Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336 : 924-926.

Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Falck-Ytter Y, Jaeschke R, Vist G, Akl EA, Post PN, Norris S, Meerpohl J, Shukla VK, Nasser M, Schünemann HJ. GRADE guidelines: 8. Rating the quality of evidence--indirectness. Journal of Clinical Epidemiology 2011b; 64 : 1303-1310.

Guyatt GH, Oxman AD, Santesso N, Helfand M, Vist G, Kunz R, Brozek J, Norris S, Meerpohl J, Djulbegovic B, Alonso-Coello P, Post PN, Busse JW, Glasziou P, Christensen R, Schünemann HJ. GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. Journal of Clinical Epidemiology 2013a; 66 : 158-172.

Guyatt GH, Thorlund K, Oxman AD, Walter SD, Patrick D, Furukawa TA, Johnston BC, Karanicolas P, Akl EA, Vist G, Kunz R, Brozek J, Kupper LL, Martin SL, Meerpohl JJ, Alonso-Coello P, Christensen R, Schünemann HJ. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. Journal of Clinical Epidemiology 2013b; 66 : 173-183.

Hawe P, Shiell A, Riley T, Gold L. Methods for exploring implementation variation and local context within a cluster randomised community intervention trial. Journal of Epidemiology and Community Health 2004; 58 : 788-793.

Hoffrage U, Lindsey S, Hertwig R, Gigerenzer G. Medicine. Communicating statistical information. Science 2000; 290 : 2261-2262.

Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Controlled Clinical Trials 1989; 10 : 407-415.

Johnston B, Thorlund K, Schünemann H, Xie F, Murad M, Montori V, Guyatt G. Improving the interpretation of health-related quality of life evidence in meta-analysis: The application of minimal important difference units. . Health Outcomes and Qualithy of Life 2010; 11 : 116.

Karanicolas PJ, Smith SE, Kanbur B, Davies E, Guyatt GH. The impact of prophylactic dexamethasone on nausea and vomiting after laparoscopic cholecystectomy: a systematic review and meta-analysis. Annals of Surgery 2008; 248 : 751-762.

Lumley J, Oliver SS, Chamberlain C, Oakley L. Interventions for promoting smoking cessation during pregnancy. Cochrane Database of Systematic Reviews 2004; 4 : CD001055.

McQuay HJ, Moore RA. Using numerical results from systematic reviews in clinical practice. Annals of Internal Medicine 1997; 126 : 712-720.

Resnicow K, Cross D, Wynder E. The Know Your Body program: a review of evaluation studies. Bulletin of the New York Academy of Medicine 1993; 70 : 188-207.

Robinson J, Biley FC, Dolk H. Therapeutic touch for anxiety disorders. Cochrane Database of Systematic Reviews 2007; 3 : CD006240.

Rothwell PM. External validity of randomised controlled trials: "to whom do the results of this trial apply?". Lancet 2005; 365 : 82-93.

Santesso N, Carrasco-Labra A, Langendam M, Brignardello-Petersen R, Mustafa RA, Heus P, Lasserson T, Opiyo N, Kunnamo I, Sinclair D, Garner P, Treweek S, Tovey D, Akl EA, Tugwell P, Brozek JL, Guyatt G, Schünemann HJ. Improving GRADE evidence tables part 3: detailed guidance for explanatory footnotes supports creating and understanding GRADE certainty in the evidence judgments. Journal of Clinical Epidemiology 2016; 74 : 28-39.

Schünemann HJ, Puhan M, Goldstein R, Jaeschke R, Guyatt GH. Measurement properties and interpretability of the Chronic respiratory disease questionnaire (CRQ). COPD: Journal of Chronic Obstructive Pulmonary Disease 2005; 2 : 81-89.

Schünemann HJ, Guyatt GH. Commentary--goodbye M(C)ID! Hello MID, where do you come from? Health Services Research 2005; 40 : 593-597.

Schünemann HJ, Fretheim A, Oxman AD. Improving the use of research evidence in guideline development: 13. Applicability, transferability and adaptation. Health Research Policy and Systems 2006; 4 : 25.

Schünemann HJ. Methodological idiosyncracies, frameworks and challenges of non-pharmaceutical and non-technical treatment interventions. Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen 2013; 107 : 214-220.

Schünemann HJ, Tugwell P, Reeves BC, Akl EA, Santesso N, Spencer FA, Shea B, Wells G, Helfand M. Non-randomized studies as a source of complementary, sequential or replacement evidence for randomized controlled trials in systematic reviews on the effects of interventions. Research Synthesis Methods 2013; 4 : 49-62.

Schünemann HJ, Wiercioch W, Etxeandia I, Falavigna M, Santesso N, Mustafa R, Ventresca M, Brignardello-Petersen R, Laisaar KT, Kowalski S, Baldeh T, Zhang Y, Raid U, Neumann I, Norris SL, Thornton J, Harbour R, Treweek S, Guyatt G, Alonso-Coello P, Reinap M, Brozek J, Oxman A, Akl EA. Guidelines 2.0: systematic development of a comprehensive checklist for a successful guideline enterprise. CMAJ: Canadian Medical Association Journal 2014; 186 : E123-142.

Schünemann HJ. Interpreting GRADE's levels of certainty or quality of the evidence: GRADE for statisticians, considering review information size or less emphasis on imprecision? Journal of Clinical Epidemiology 2016; 75 : 6-15.

Smeeth L, Haines A, Ebrahim S. Numbers needed to treat derived from meta-analyses--sometimes informative, usually misleading. BMJ 1999; 318 : 1548-1551.

Sun X, Briel M, Busse JW, You JJ, Akl EA, Mejza F, Bala MM, Bassler D, Mertz D, Diaz-Granados N, Vandvik PO, Malaga G, Srinathan SK, Dahm P, Johnston BC, Alonso-Coello P, Hassouneh B, Walter SD, Heels-Ansdell D, Bhatnagar N, Altman DG, Guyatt GH. Credibility of claims of subgroup effects in randomised controlled trials: systematic review. BMJ 2012; 344 : e1553.

Zhang Y, Akl EA, Schünemann HJ. Using systematic reviews in guideline development: the GRADE approach. Research Synthesis Methods 2018a: doi: 10.1002/jrsm.1313.

Zhang Y, Alonso-Coello P, Guyatt GH, Yepes-Nunez JJ, Akl EA, Hazlewood G, Pardo-Hernandez H, Etxeandia-Ikobaltzeta I, Qaseem A, Williams JW, Jr., Tugwell P, Flottorp S, Chang Y, Zhang Y, Mustafa RA, Rojas MX, Schünemann HJ. GRADE Guidelines: 19. Assessing the certainty of evidence in the importance of outcomes or values and preferences-Risk of bias and indirectness. Journal of Clinical Epidemiology 2018b: doi: 10.1016/j.jclinepi.2018.1001.1013.

Zhang Y, Alonso Coello P, Guyatt G, Yepes-Nunez JJ, Akl EA, Hazlewood G, Pardo-Hernandez H, Etxeandia-Ikobaltzeta I, Qaseem A, Williams JW, Jr., Tugwell P, Flottorp S, Chang Y, Zhang Y, Mustafa RA, Rojas MX, Xie F, Schünemann HJ. GRADE Guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values and preferences - Inconsistency, Imprecision, and other Domains. Journal of Clinical Epidemiology 2018c: doi: 10.1016/j.jclinepi.2018.1005.1011.

For permission to re-use material from the Handbook (either academic or commercial), please see here for full details.

A Guide To The Methods, Benefits & Problems of The Interpretation of Data

Data interpretation blog post by datapine

Table of Contents

1) What Is Data Interpretation?

2) How To Interpret Data?

3) Why Data Interpretation Is Important?

4) Data Interpretation Skills

5) Data Analysis & Interpretation Problems

6) Data Interpretation Techniques & Methods

7) The Use of Dashboards For Data Interpretation

8) Business Data Interpretation Examples

Data analysis and interpretation have now taken center stage with the advent of the digital age… and the sheer amount of data can be frightening. In fact, a Digital Universe study found that the total data supply in 2012 was 2.8 trillion gigabytes! Based on that amount of data alone, it is clear the calling card of any successful enterprise in today’s global world will be the ability to analyze complex data, produce actionable insights, and adapt to new market needs… all at the speed of thought.

Business dashboards are the digital age tools for big data. Capable of displaying key performance indicators (KPIs) for both quantitative and qualitative data analyses, they are ideal for making the fast-paced and data-driven market decisions that push today’s industry leaders to sustainable success. Through the art of streamlined visual communication, data dashboards permit businesses to engage in real-time and informed decision-making and are key instruments in data interpretation. First of all, let’s find a definition to understand what lies behind this practice.

What Is Data Interpretation?

Data interpretation refers to the process of using diverse analytical methods to review data and arrive at relevant conclusions. The interpretation of data helps researchers to categorize, manipulate, and summarize the information in order to answer critical questions.

The importance of data interpretation is evident, and this is why it needs to be done properly. Data is very likely to arrive from multiple sources and has a tendency to enter the analysis process with haphazard ordering. Data analysis tends to be extremely subjective. That is to say, the nature and goal of interpretation will vary from business to business, likely correlating to the type of data being analyzed. While there are several types of processes that are implemented based on the nature of individual data, the two broadest and most common categories are “quantitative and qualitative analysis.”

Yet, before any serious data interpretation inquiry can begin, it should be understood that visual presentations of data findings are irrelevant unless a sound decision is made regarding measurement scales. Before any serious data analysis can begin, the measurement scale must be decided for the data as this will have a long-term impact on data interpretation ROI. The varying scales include:

  • Nominal Scale: non-numeric categories that cannot be ranked or compared quantitatively. Variables are exclusive and exhaustive.
  • Ordinal Scale: exclusive categories that are exclusive and exhaustive but with a logical order. Quality ratings and agreement ratings are examples of ordinal scales (i.e., good, very good, fair, etc., OR agree, strongly agree, disagree, etc.).
  • Interval: a measurement scale where data is grouped into categories with orderly and equal distances between the categories. There is always an arbitrary zero point.
  • Ratio: contains features of all three.

For a more in-depth review of scales of measurement, read our article on data analysis questions . Once measurement scales have been selected, it is time to select which of the two broad interpretation processes will best suit your data needs. Let’s take a closer look at those specific methods and possible data interpretation problems.

How To Interpret Data? Top Methods & Techniques

Illustration of data interpretation on blackboard

When interpreting data, an analyst must try to discern the differences between correlation, causation, and coincidences, as well as many other biases – but he also has to consider all the factors involved that may have led to a result. There are various data interpretation types and methods one can use to achieve this.

The interpretation of data is designed to help people make sense of numerical data that has been collected, analyzed, and presented. Having a baseline method for interpreting data will provide your analyst teams with a structure and consistent foundation. Indeed, if several departments have different approaches to interpreting the same data while sharing the same goals, some mismatched objectives can result. Disparate methods will lead to duplicated efforts, inconsistent solutions, wasted energy, and inevitably – time and money. In this part, we will look at the two main methods of interpretation of data: qualitative and quantitative analysis.

Qualitative Data Interpretation

Qualitative data analysis can be summed up in one word – categorical. With this type of analysis, data is not described through numerical values or patterns but through the use of descriptive context (i.e., text). Typically, narrative data is gathered by employing a wide variety of person-to-person techniques. These techniques include:

  • Observations: detailing behavioral patterns that occur within an observation group. These patterns could be the amount of time spent in an activity, the type of activity, and the method of communication employed.
  • Focus groups: Group people and ask them relevant questions to generate a collaborative discussion about a research topic.
  • Secondary Research: much like how patterns of behavior can be observed, various types of documentation resources can be coded and divided based on the type of material they contain.
  • Interviews: one of the best collection methods for narrative data. Inquiry responses can be grouped by theme, topic, or category. The interview approach allows for highly focused data segmentation.

A key difference between qualitative and quantitative analysis is clearly noticeable in the interpretation stage. The first one is widely open to interpretation and must be “coded” so as to facilitate the grouping and labeling of data into identifiable themes. As person-to-person data collection techniques can often result in disputes pertaining to proper analysis, qualitative data analysis is often summarized through three basic principles: notice things, collect things, and think about things.

After qualitative data has been collected through transcripts, questionnaires, audio and video recordings, or the researcher’s notes, it is time to interpret it. For that purpose, there are some common methods used by researchers and analysts.

  • Content analysis : As its name suggests, this is a research method used to identify frequencies and recurring words, subjects, and concepts in image, video, or audio content. It transforms qualitative information into quantitative data to help discover trends and conclusions that will later support important research or business decisions. This method is often used by marketers to understand brand sentiment from the mouths of customers themselves. Through that, they can extract valuable information to improve their products and services. It is recommended to use content analytics tools for this method as manually performing it is very time-consuming and can lead to human error or subjectivity issues. Having a clear goal in mind before diving into it is another great practice for avoiding getting lost in the fog.  
  • Thematic analysis: This method focuses on analyzing qualitative data, such as interview transcripts, survey questions, and others, to identify common patterns and separate the data into different groups according to found similarities or themes. For example, imagine you want to analyze what customers think about your restaurant. For this purpose, you do a thematic analysis on 1000 reviews and find common themes such as “fresh food”, “cold food”, “small portions”, “friendly staff”, etc. With those recurring themes in hand, you can extract conclusions about what could be improved or enhanced based on your customer’s experiences. Since this technique is more exploratory, be open to changing your research questions or goals as you go. 
  • Narrative analysis: A bit more specific and complicated than the two previous methods, it is used to analyze stories and discover their meaning. These stories can be extracted from testimonials, case studies, and interviews, as these formats give people more space to tell their experiences. Given that collecting this kind of data is harder and more time-consuming, sample sizes for narrative analysis are usually smaller, which makes it harder to reproduce its findings. However, it is still a valuable technique for understanding customers' preferences and mindsets.  
  • Discourse analysis : This method is used to draw the meaning of any type of visual, written, or symbolic language in relation to a social, political, cultural, or historical context. It is used to understand how context can affect how language is carried out and understood. For example, if you are doing research on power dynamics, using discourse analysis to analyze a conversation between a janitor and a CEO and draw conclusions about their responses based on the context and your research questions is a great use case for this technique. That said, like all methods in this section, discourse analytics is time-consuming as the data needs to be analyzed until no new insights emerge.  
  • Grounded theory analysis : The grounded theory approach aims to create or discover a new theory by carefully testing and evaluating the data available. Unlike all other qualitative approaches on this list, grounded theory helps extract conclusions and hypotheses from the data instead of going into the analysis with a defined hypothesis. This method is very popular amongst researchers, analysts, and marketers as the results are completely data-backed, providing a factual explanation of any scenario. It is often used when researching a completely new topic or with little knowledge as this space to start from the ground up. 

Quantitative Data Interpretation

If quantitative data interpretation could be summed up in one word (and it really can’t), that word would be “numerical.” There are few certainties when it comes to data analysis, but you can be sure that if the research you are engaging in has no numbers involved, it is not quantitative research, as this analysis refers to a set of processes by which numerical data is analyzed. More often than not, it involves the use of statistical modeling such as standard deviation, mean, and median. Let’s quickly review the most common statistical terms:

  • Mean: A mean represents a numerical average for a set of responses. When dealing with a data set (or multiple data sets), a mean will represent the central value of a specific set of numbers. It is the sum of the values divided by the number of values within the data set. Other terms that can be used to describe the concept are arithmetic mean, average, and mathematical expectation.
  • Standard deviation: This is another statistical term commonly used in quantitative analysis. Standard deviation reveals the distribution of the responses around the mean. It describes the degree of consistency within the responses; together with the mean, it provides insight into data sets.
  • Frequency distribution: This is a measurement gauging the rate of a response appearance within a data set. When using a survey, for example, frequency distribution, it can determine the number of times a specific ordinal scale response appears (i.e., agree, strongly agree, disagree, etc.). Frequency distribution is extremely keen in determining the degree of consensus among data points.

Typically, quantitative data is measured by visually presenting correlation tests between two or more variables of significance. Different processes can be used together or separately, and comparisons can be made to ultimately arrive at a conclusion. Other signature interpretation processes of quantitative data include:

  • Regression analysis: Essentially, it uses historical data to understand the relationship between a dependent variable and one or more independent variables. Knowing which variables are related and how they developed in the past allows you to anticipate possible outcomes and make better decisions going forward. For example, if you want to predict your sales for next month, you can use regression to understand what factors will affect them, such as products on sale and the launch of a new campaign, among many others. 
  • Cohort analysis: This method identifies groups of users who share common characteristics during a particular time period. In a business scenario, cohort analysis is commonly used to understand customer behaviors. For example, a cohort could be all users who have signed up for a free trial on a given day. An analysis would be carried out to see how these users behave, what actions they carry out, and how their behavior differs from other user groups.
  • Predictive analysis: As its name suggests, the predictive method aims to predict future developments by analyzing historical and current data. Powered by technologies such as artificial intelligence and machine learning, predictive analytics practices enable businesses to identify patterns or potential issues and plan informed strategies in advance.
  • Prescriptive analysis: Also powered by predictions, the prescriptive method uses techniques such as graph analysis, complex event processing, and neural networks, among others, to try to unravel the effect that future decisions will have in order to adjust them before they are actually made. This helps businesses to develop responsive, practical business strategies.
  • Conjoint analysis: Typically applied to survey analysis, the conjoint approach is used to analyze how individuals value different attributes of a product or service. This helps researchers and businesses to define pricing, product features, packaging, and many other attributes. A common use is menu-based conjoint analysis, in which individuals are given a “menu” of options from which they can build their ideal concept or product. Through this, analysts can understand which attributes they would pick above others and drive conclusions.
  • Cluster analysis: Last but not least, the cluster is a method used to group objects into categories. Since there is no target variable when using cluster analysis, it is a useful method to find hidden trends and patterns in the data. In a business context, clustering is used for audience segmentation to create targeted experiences. In market research, it is often used to identify age groups, geographical information, and earnings, among others.

Now that we have seen how to interpret data, let's move on and ask ourselves some questions: What are some of the benefits of data interpretation? Why do all industries engage in data research and analysis? These are basic questions, but they often don’t receive adequate attention.

Your Chance: Want to test a powerful data analysis software? Use our 14-days free trial & start extracting insights from your data!

Why Data Interpretation Is Important

illustrating quantitative data interpretation with charts & graphs

The purpose of collection and interpretation is to acquire useful and usable information and to make the most informed decisions possible. From businesses to newlyweds researching their first home, data collection and interpretation provide limitless benefits for a wide range of institutions and individuals.

Data analysis and interpretation, regardless of the method and qualitative/quantitative status, may include the following characteristics:

  • Data identification and explanation
  • Comparing and contrasting data
  • Identification of data outliers
  • Future predictions

Data analysis and interpretation, in the end, help improve processes and identify problems. It is difficult to grow and make dependable improvements without, at the very least, minimal data collection and interpretation. What is the keyword? Dependable. Vague ideas regarding performance enhancement exist within all institutions and industries. Yet, without proper research and analysis, an idea is likely to remain in a stagnant state forever (i.e., minimal growth). So… what are a few of the business benefits of digital age data analysis and interpretation? Let’s take a look!

1) Informed decision-making: A decision is only as good as the knowledge that formed it. Informed data decision-making can potentially set industry leaders apart from the rest of the market pack. Studies have shown that companies in the top third of their industries are, on average, 5% more productive and 6% more profitable when implementing informed data decision-making processes. Most decisive actions will arise only after a problem has been identified or a goal defined. Data analysis should include identification, thesis development, and data collection, followed by data communication.

If institutions only follow that simple order, one that we should all be familiar with from grade school science fairs, then they will be able to solve issues as they emerge in real-time. Informed decision-making has a tendency to be cyclical. This means there is really no end, and eventually, new questions and conditions arise within the process that need to be studied further. The monitoring of data results will inevitably return the process to the start with new data and sights.

2) Anticipating needs with trends identification: data insights provide knowledge, and knowledge is power. The insights obtained from market and consumer data analyses have the ability to set trends for peers within similar market segments. A perfect example of how data analytics can impact trend prediction is evidenced in the music identification application Shazam . The application allows users to upload an audio clip of a song they like but can’t seem to identify. Users make 15 million song identifications a day. With this data, Shazam has been instrumental in predicting future popular artists.

When industry trends are identified, they can then serve a greater industry purpose. For example, the insights from Shazam’s monitoring benefits not only Shazam in understanding how to meet consumer needs but also grant music executives and record label companies an insight into the pop-culture scene of the day. Data gathering and interpretation processes can allow for industry-wide climate prediction and result in greater revenue streams across the market. For this reason, all institutions should follow the basic data cycle of collection, interpretation, decision-making, and monitoring.

3) Cost efficiency: Proper implementation of analytics processes can provide businesses with profound cost advantages within their industries. A recent data study performed by Deloitte vividly demonstrates this in finding that data analysis ROI is driven by efficient cost reductions. Often, this benefit is overlooked because making money is typically viewed as “sexier” than saving money. Yet, sound data analyses have the ability to alert management to cost-reduction opportunities without any significant exertion of effort on the part of human capital.

A great example of the potential for cost efficiency through data analysis is Intel. Prior to 2012, Intel would conduct over 19,000 manufacturing function tests on their chips before they could be deemed acceptable for release. To cut costs and reduce test time, Intel implemented predictive data analyses. By using historical and current data, Intel now avoids testing each chip 19,000 times by focusing on specific and individual chip tests. After its implementation in 2012, Intel saved over $3 million in manufacturing costs. Cost reduction may not be as “sexy” as data profit, but as Intel proves, it is a benefit of data analysis that should not be neglected.

4) Clear foresight: companies that collect and analyze their data gain better knowledge about themselves, their processes, and their performance. They can identify performance challenges when they arise and take action to overcome them. Data interpretation through visual representations lets them process their findings faster and make better-informed decisions on the company's future.

Key Data Interpretation Skills You Should Have

Just like any other process, data interpretation and analysis require researchers or analysts to have some key skills to be able to perform successfully. It is not enough just to apply some methods and tools to the data; the person who is managing it needs to be objective and have a data-driven mind, among other skills. 

It is a common misconception to think that the required skills are mostly number-related. While data interpretation is heavily analytically driven, it also requires communication and narrative skills, as the results of the analysis need to be presented in a way that is easy to understand for all types of audiences. 

Luckily, with the rise of self-service tools and AI-driven technologies, data interpretation is no longer segregated for analysts only. However, the topic still remains a big challenge for businesses that make big investments in data and tools to support it, as the interpretation skills required are still lacking. It is worthless to put massive amounts of money into extracting information if you are not going to be able to interpret what that information is telling you. For that reason, below we list the top 5 data interpretation skills your employees or researchers should have to extract the maximum potential from the data. 

  • Data Literacy: The first and most important skill to have is data literacy. This means having the ability to understand, work, and communicate with data. It involves knowing the types of data sources, methods, and ethical implications of using them. In research, this skill is often a given. However, in a business context, there might be many employees who are not comfortable with data. The issue is the interpretation of data can not be solely responsible for the data team, as it is not sustainable in the long run. Experts advise business leaders to carefully assess the literacy level across their workforce and implement training instances to ensure everyone can interpret their data. 
  • Data Tools: The data interpretation and analysis process involves using various tools to collect, clean, store, and analyze the data. The complexity of the tools varies depending on the type of data and the analysis goals. Going from simple ones like Excel to more complex ones like databases, such as SQL, or programming languages, such as R or Python. It also involves visual analytics tools to bring the data to life through the use of graphs and charts. Managing these tools is a fundamental skill as they make the process faster and more efficient. As mentioned before, most modern solutions are now self-service, enabling less technical users to use them without problem.
  • Critical Thinking: Another very important skill is to have critical thinking. Data hides a range of conclusions, trends, and patterns that must be discovered. It is not just about comparing numbers; it is about putting a story together based on multiple factors that will lead to a conclusion. Therefore, having the ability to look further from what is right in front of you is an invaluable skill for data interpretation. 
  • Data Ethics: In the information age, being aware of the legal and ethical responsibilities that come with the use of data is of utmost importance. In short, data ethics involves respecting the privacy and confidentiality of data subjects, as well as ensuring accuracy and transparency for data usage. It requires the analyzer or researcher to be completely objective with its interpretation to avoid any biases or discrimination. Many countries have already implemented regulations regarding the use of data, including the GDPR or the ACM Code Of Ethics. Awareness of these regulations and responsibilities is a fundamental skill that anyone working in data interpretation should have. 
  • Domain Knowledge: Another skill that is considered important when interpreting data is to have domain knowledge. As mentioned before, data hides valuable insights that need to be uncovered. To do so, the analyst needs to know about the industry or domain from which the information is coming and use that knowledge to explore it and put it into a broader context. This is especially valuable in a business context, where most departments are now analyzing data independently with the help of a live dashboard instead of relying on the IT department, which can often overlook some aspects due to a lack of expertise in the topic. 

Common Data Analysis And Interpretation Problems

Man running away from common data interpretation problems

The oft-repeated mantra of those who fear data advancements in the digital age is “big data equals big trouble.” While that statement is not accurate, it is safe to say that certain data interpretation problems or “pitfalls” exist and can occur when analyzing data, especially at the speed of thought. Let’s identify some of the most common data misinterpretation risks and shed some light on how they can be avoided:

1) Correlation mistaken for causation: our first misinterpretation of data refers to the tendency of data analysts to mix the cause of a phenomenon with correlation. It is the assumption that because two actions occurred together, one caused the other. This is inaccurate, as actions can occur together, absent a cause-and-effect relationship.

  • Digital age example: assuming that increased revenue results from increased social media followers… there might be a definitive correlation between the two, especially with today’s multi-channel purchasing experiences. But that does not mean an increase in followers is the direct cause of increased revenue. There could be both a common cause and an indirect causality.
  • Remedy: attempt to eliminate the variable you believe to be causing the phenomenon.

2) Confirmation bias: our second problem is data interpretation bias. It occurs when you have a theory or hypothesis in mind but are intent on only discovering data patterns that support it while rejecting those that do not.

  • Digital age example: your boss asks you to analyze the success of a recent multi-platform social media marketing campaign. While analyzing the potential data variables from the campaign (one that you ran and believe performed well), you see that the share rate for Facebook posts was great, while the share rate for Twitter Tweets was not. Using only Facebook posts to prove your hypothesis that the campaign was successful would be a perfect manifestation of confirmation bias.
  • Remedy: as this pitfall is often based on subjective desires, one remedy would be to analyze data with a team of objective individuals. If this is not possible, another solution is to resist the urge to make a conclusion before data exploration has been completed. Remember to always try to disprove a hypothesis, not prove it.

3) Irrelevant data: the third data misinterpretation pitfall is especially important in the digital age. As large data is no longer centrally stored and as it continues to be analyzed at the speed of thought, it is inevitable that analysts will focus on data that is irrelevant to the problem they are trying to correct.

  • Digital age example: in attempting to gauge the success of an email lead generation campaign, you notice that the number of homepage views directly resulting from the campaign increased, but the number of monthly newsletter subscribers did not. Based on the number of homepage views, you decide the campaign was a success when really it generated zero leads.
  • Remedy: proactively and clearly frame any data analysis variables and KPIs prior to engaging in a data review. If the metric you use to measure the success of a lead generation campaign is newsletter subscribers, there is no need to review the number of homepage visits. Be sure to focus on the data variable that answers your question or solves your problem and not on irrelevant data.

4) Truncating an Axes: When creating a graph to start interpreting the results of your analysis, it is important to keep the axes truthful and avoid generating misleading visualizations. Starting the axes in a value that doesn’t portray the actual truth about the data can lead to false conclusions. 

  • Digital age example: In the image below, we can see a graph from Fox News in which the Y-axes start at 34%, making it seem that the difference between 35% and 39.6% is way higher than it actually is. This could lead to a misinterpretation of the tax rate changes. 

Fox news graph truncating an axes

* Source : www.venngage.com *

  • Remedy: Be careful with how your data is visualized. Be respectful and realistic with axes to avoid misinterpretation of your data. See below how the Fox News chart looks when using the correct axis values. This chart was created with datapine's modern online data visualization tool.

Fox news graph with the correct axes values

5) (Small) sample size: Another common problem is using a small sample size. Logically, the bigger the sample size, the more accurate and reliable the results. However, this also depends on the size of the effect of the study. For example, the sample size in a survey about the quality of education will not be the same as for one about people doing outdoor sports in a specific area. 

  • Digital age example: Imagine you ask 30 people a question, and 29 answer “yes,” resulting in 95% of the total. Now imagine you ask the same question to 1000, and 950 of them answer “yes,” which is again 95%. While these percentages might look the same, they certainly do not mean the same thing, as a 30-person sample size is not a significant number to establish a truthful conclusion. 
  • Remedy: Researchers say that in order to determine the correct sample size to get truthful and meaningful results, it is necessary to define a margin of error that will represent the maximum amount they want the results to deviate from the statistical mean. Paired with this, they need to define a confidence level that should be between 90 and 99%. With these two values in hand, researchers can calculate an accurate sample size for their studies.

6) Reliability, subjectivity, and generalizability : When performing qualitative analysis, researchers must consider practical and theoretical limitations when interpreting the data. In some cases, this type of research can be considered unreliable because of uncontrolled factors that might or might not affect the results. This is paired with the fact that the researcher has a primary role in the interpretation process, meaning he or she decides what is relevant and what is not, and as we know, interpretations can be very subjective.

Generalizability is also an issue that researchers face when dealing with qualitative analysis. As mentioned in the point about having a small sample size, it is difficult to draw conclusions that are 100% representative because the results might be biased or unrepresentative of a wider population. 

While these factors are mostly present in qualitative research, they can also affect the quantitative analysis. For example, when choosing which KPIs to portray and how to portray them, analysts can also be biased and represent them in a way that benefits their analysis.

  • Digital age example: Biased questions in a survey are a great example of reliability and subjectivity issues. Imagine you are sending a survey to your clients to see how satisfied they are with your customer service with this question: “How amazing was your experience with our customer service team?”. Here, we can see that this question clearly influences the response of the individual by putting the word “amazing” on it. 
  • Remedy: A solution to avoid these issues is to keep your research honest and neutral. Keep the wording of the questions as objective as possible. For example: “On a scale of 1-10, how satisfied were you with our customer service team?”. This does not lead the respondent to any specific answer, meaning the results of your survey will be reliable. 

Data Interpretation Best Practices & Tips

Data interpretation methods and techniques by datapine

Data analysis and interpretation are critical to developing sound conclusions and making better-informed decisions. As we have seen with this article, there is an art and science to the interpretation of data. To help you with this purpose, we will list a few relevant techniques, methods, and tricks you can implement for a successful data management process. 

As mentioned at the beginning of this post, the first step to interpreting data in a successful way is to identify the type of analysis you will perform and apply the methods respectively. Clearly differentiate between qualitative (observe, document, and interview notice, collect and think about things) and quantitative analysis (you lead research with a lot of numerical data to be analyzed through various statistical methods). 

1) Ask the right data interpretation questions

The first data interpretation technique is to define a clear baseline for your work. This can be done by answering some critical questions that will serve as a useful guideline to start. Some of them include: what are the goals and objectives of my analysis? What type of data interpretation method will I use? Who will use this data in the future? And most importantly, what general question am I trying to answer?

Once all this information has been defined, you will be ready for the next step: collecting your data. 

2) Collect and assimilate your data

Now that a clear baseline has been established, it is time to collect the information you will use. Always remember that your methods for data collection will vary depending on what type of analysis method you use, which can be qualitative or quantitative. Based on that, relying on professional online data analysis tools to facilitate the process is a great practice in this regard, as manually collecting and assessing raw data is not only very time-consuming and expensive but is also at risk of errors and subjectivity. 

Once your data is collected, you need to carefully assess it to understand if the quality is appropriate to be used during a study. This means, is the sample size big enough? Were the procedures used to collect the data implemented correctly? Is the date range from the data correct? If coming from an external source, is it a trusted and objective one? 

With all the needed information in hand, you are ready to start the interpretation process, but first, you need to visualize your data. 

3) Use the right data visualization type 

Data visualizations such as business graphs , charts, and tables are fundamental to successfully interpreting data. This is because data visualization via interactive charts and graphs makes the information more understandable and accessible. As you might be aware, there are different types of visualizations you can use, but not all of them are suitable for any analysis purpose. Using the wrong graph can lead to misinterpretation of your data, so it’s very important to carefully pick the right visual for it. Let’s look at some use cases of common data visualizations. 

  • Bar chart: One of the most used chart types, the bar chart uses rectangular bars to show the relationship between 2 or more variables. There are different types of bar charts for different interpretations, including the horizontal bar chart, column bar chart, and stacked bar chart. 
  • Line chart: Most commonly used to show trends, acceleration or decelerations, and volatility, the line chart aims to show how data changes over a period of time, for example, sales over a year. A few tips to keep this chart ready for interpretation are not using many variables that can overcrowd the graph and keeping your axis scale close to the highest data point to avoid making the information hard to read. 
  • Pie chart: Although it doesn’t do a lot in terms of analysis due to its uncomplex nature, pie charts are widely used to show the proportional composition of a variable. Visually speaking, showing a percentage in a bar chart is way more complicated than showing it in a pie chart. However, this also depends on the number of variables you are comparing. If your pie chart needs to be divided into 10 portions, then it is better to use a bar chart instead. 
  • Tables: While they are not a specific type of chart, tables are widely used when interpreting data. Tables are especially useful when you want to portray data in its raw format. They give you the freedom to easily look up or compare individual values while also displaying grand totals. 

With the use of data visualizations becoming more and more critical for businesses’ analytical success, many tools have emerged to help users visualize their data in a cohesive and interactive way. One of the most popular ones is the use of BI dashboards . These visual tools provide a centralized view of various graphs and charts that paint a bigger picture of a topic. We will discuss the power of dashboards for an efficient data interpretation practice in the next portion of this post. If you want to learn more about different types of graphs and charts , take a look at our complete guide on the topic. 

4) Start interpreting 

After the tedious preparation part, you can start extracting conclusions from your data. As mentioned many times throughout the post, the way you decide to interpret the data will solely depend on the methods you initially decided to use. If you had initial research questions or hypotheses, then you should look for ways to prove their validity. If you are going into the data with no defined hypothesis, then start looking for relationships and patterns that will allow you to extract valuable conclusions from the information. 

During the process of interpretation, stay curious and creative, dig into the data, and determine if there are any other critical questions that should be asked. If any new questions arise, you need to assess if you have the necessary information to answer them. Being able to identify if you need to dedicate more time and resources to the research is a very important step. No matter if you are studying customer behaviors or a new cancer treatment, the findings from your analysis may dictate important decisions in the future. Therefore, taking the time to really assess the information is key. For that purpose, data interpretation software proves to be very useful.

5) Keep your interpretation objective

As mentioned above, objectivity is one of the most important data interpretation skills but also one of the hardest. Being the person closest to the investigation, it is easy to become subjective when looking for answers in the data. A good way to stay objective is to show the information related to the study to other people, for example, research partners or even the people who will use your findings once they are done. This can help avoid confirmation bias and any reliability issues with your interpretation. 

Remember, using a visualization tool such as a modern dashboard will make the interpretation process way easier and more efficient as the data can be navigated and manipulated in an easy and organized way. And not just that, using a dashboard tool to present your findings to a specific audience will make the information easier to understand and the presentation way more engaging thanks to the visual nature of these tools. 

6) Mark your findings and draw conclusions

Findings are the observations you extracted from your data. They are the facts that will help you drive deeper conclusions about your research. For example, findings can be trends and patterns you found during your interpretation process. To put your findings into perspective, you can compare them with other resources that use similar methods and use them as benchmarks.

Reflect on your own thinking and reasoning and be aware of the many pitfalls data analysis and interpretation carry—correlation versus causation, subjective bias, false information, inaccurate data, etc. Once you are comfortable with interpreting the data, you will be ready to develop conclusions, see if your initial questions were answered, and suggest recommendations based on them.

Interpretation of Data: The Use of Dashboards Bridging The Gap

As we have seen, quantitative and qualitative methods are distinct types of data interpretation and analysis. Both offer a varying degree of return on investment (ROI) regarding data investigation, testing, and decision-making. But how do you mix the two and prevent a data disconnect? The answer is professional data dashboards. 

For a few years now, dashboards have become invaluable tools to visualize and interpret data. These tools offer a centralized and interactive view of data and provide the perfect environment for exploration and extracting valuable conclusions. They bridge the quantitative and qualitative information gap by unifying all the data in one place with the help of stunning visuals. 

Not only that, but these powerful tools offer a large list of benefits, and we will discuss some of them below. 

1) Connecting and blending data. With today’s pace of innovation, it is no longer feasible (nor desirable) to have bulk data centrally located. As businesses continue to globalize and borders continue to dissolve, it will become increasingly important for businesses to possess the capability to run diverse data analyses absent the limitations of location. Data dashboards decentralize data without compromising on the necessary speed of thought while blending both quantitative and qualitative data. Whether you want to measure customer trends or organizational performance, you now have the capability to do both without the need for a singular selection.

2) Mobile Data. Related to the notion of “connected and blended data” is that of mobile data. In today’s digital world, employees are spending less time at their desks and simultaneously increasing production. This is made possible because mobile solutions for analytical tools are no longer standalone. Today, mobile analysis applications seamlessly integrate with everyday business tools. In turn, both quantitative and qualitative data are now available on-demand where they’re needed, when they’re needed, and how they’re needed via interactive online dashboards .

3) Visualization. Data dashboards merge the data gap between qualitative and quantitative data interpretation methods through the science of visualization. Dashboard solutions come “out of the box” and are well-equipped to create easy-to-understand data demonstrations. Modern online data visualization tools provide a variety of color and filter patterns, encourage user interaction, and are engineered to help enhance future trend predictability. All of these visual characteristics make for an easy transition among data methods – you only need to find the right types of data visualization to tell your data story the best way possible.

4) Collaboration. Whether in a business environment or a research project, collaboration is key in data interpretation and analysis. Dashboards are online tools that can be easily shared through a password-protected URL or automated email. Through them, users can collaborate and communicate through the data in an efficient way. Eliminating the need for infinite files with lost updates. Tools such as datapine offer real-time updates, meaning your dashboards will update on their own as soon as new information is available.  

Examples Of Data Interpretation In Business

To give you an idea of how a dashboard can fulfill the need to bridge quantitative and qualitative analysis and help in understanding how to interpret data in research thanks to visualization, below, we will discuss three valuable examples to put their value into perspective.

1. Customer Satisfaction Dashboard 

This market research dashboard brings together both qualitative and quantitative data that are knowledgeably analyzed and visualized in a meaningful way that everyone can understand, thus empowering any viewer to interpret it. Let’s explore it below. 

Data interpretation example on customers' satisfaction with a brand

**click to enlarge**

The value of this template lies in its highly visual nature. As mentioned earlier, visuals make the interpretation process way easier and more efficient. Having critical pieces of data represented with colorful and interactive icons and graphs makes it possible to uncover insights at a glance. For example, the colors green, yellow, and red on the charts for the NPS and the customer effort score allow us to conclude that most respondents are satisfied with this brand with a short glance. A further dive into the line chart below can help us dive deeper into this conclusion, as we can see both metrics developed positively in the past 6 months. 

The bottom part of the template provides visually stunning representations of different satisfaction scores for quality, pricing, design, and service. By looking at these, we can conclude that, overall, customers are satisfied with this company in most areas. 

2. Brand Analysis Dashboard

Next, in our list of data interpretation examples, we have a template that shows the answers to a survey on awareness for Brand D. The sample size is listed on top to get a perspective of the data, which is represented using interactive charts and graphs. 

Data interpretation example using a market research dashboard for brand awareness analysis

When interpreting information, context is key to understanding it correctly. For that reason, the dashboard starts by offering insights into the demographics of the surveyed audience. In general, we can see ages and gender are diverse. Therefore, we can conclude these brands are not targeting customers from a specified demographic, an important aspect to put the surveyed answers into perspective. 

Looking at the awareness portion, we can see that brand B is the most popular one, with brand D coming second on both questions. This means brand D is not doing wrong, but there is still room for improvement compared to brand B. To see where brand D could improve, the researcher could go into the bottom part of the dashboard and consult the answers for branding themes and celebrity analysis. These are important as they give clear insight into what people and messages the audience associates with brand D. This is an opportunity to exploit these topics in different ways and achieve growth and success. 

3. Product Innovation Dashboard 

Our third and last dashboard example shows the answers to a survey on product innovation for a technology company. Just like the previous templates, the interactive and visual nature of the dashboard makes it the perfect tool to interpret data efficiently and effectively. 

Market research results on product innovation, useful for product development and pricing decisions as an example of data interpretation using dashboards

Starting from right to left, we first get a list of the top 5 products by purchase intention. This information lets us understand if the product being evaluated resembles what the audience already intends to purchase. It is a great starting point to see how customers would respond to the new product. This information can be complemented with other key metrics displayed in the dashboard. For example, the usage and purchase intention track how the market would receive the product and if they would purchase it, respectively. Interpreting these values as positive or negative will depend on the company and its expectations regarding the survey. 

Complementing these metrics, we have the willingness to pay. Arguably, one of the most important metrics to define pricing strategies. Here, we can see that most respondents think the suggested price is a good value for money. Therefore, we can interpret that the product would sell for that price. 

To see more data analysis and interpretation examples for different industries and functions, visit our library of business dashboards .

To Conclude…

As we reach the end of this insightful post about data interpretation and analysis, we hope you have a clear understanding of the topic. We've covered the definition and given some examples and methods to perform a successful interpretation process.

The importance of data interpretation is undeniable. Dashboards not only bridge the information gap between traditional data interpretation methods and technology, but they can help remedy and prevent the major pitfalls of the process. As a digital age solution, they combine the best of the past and the present to allow for informed decision-making with maximum data interpretation ROI.

To start visualizing your insights in a meaningful and actionable way, test our online reporting software for free with our 14-day trial !

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

5.3: The Interpretation of Research Results

  • Last updated
  • Save as PDF
  • Page ID 75029

  • University of Missouri–St. Louis

Imagine a researcher wanting to examine the hypothesis—a specific prediction based on previous research or scientific theory—that caffeine enhances memory. She knows there are several published studies that suggest this might be the case, and she wants to further explore the possibility. She designs an experiment to test this hypothesis. She randomly assigns some participants a cup of fully caffeinated tea and some a cup of herbal tea. All the participants are instructed to drink up, study a list of words, then complete a memory test. There are three possible outcomes of this proposed study:

  • The caffeine group performs better (support for the hypothesis).
  • The no-caffeine group performs better (evidence against the hypothesis).
  • There is no difference in the performance between the two groups (also evidence against the hypothesis).

Behaviorism_1.gif

Let’s look, from a scientific point of view, at how the researcher should interpret each of these three possibilities.

First, if the results of the memory test reveal that the caffeine group performs better, this is a piece of evidence in favor of the hypothesis: It appears, at least in this case, that caffeine is associated with better memory. It does not, however, prove that caffeine is associated with better memory. There are still many questions left unanswered. How long does the memory boost last? Does caffeine work the same way with people of all ages? Is there a difference in memory performance between people who drink caffeine regularly and those who never drink it? Could the results be a freak occurrence? Because of these uncertainties, we do not say that a study—especially a single study— proves a hypothesis. Instead, we say the results of the study offer evidence in support of the hypothesis. Even if we tested this across 10 thousand or 100 thousand people, we still could not use the word proven to describe this phenomenon. This is because inductive reasoning is based on probabilities . Probabilities are always a matter of degree; they may be extremely likely or unlikely. Science is better at shedding light on the likelihood—or probability—of something than at proving it. In this way, data are still highly useful even if they doesn’t fit Popper’s absolute standards.

The science of meteorology helps illustrate this point. You might look at your local weather forecast and see a high likelihood of rain. This is because the meteorologist has used inductive reasoning to create her forecast. She has taken current observations—lots of dense clouds coming toward your city—and compared them to historical weather patterns associated with rain, making a reasonable prediction of a high probability of rain. The meteorologist has not proven it will rain, however, by pointing out the oncoming clouds.

Proof is more associated with deductive reasoning. Deductive reasoning starts with general principles that are applied to specific instances (the reverse of inductive reasoning). When the general principles, or premises , are true, and the structure of the argument is valid, the conclusion is, by definition, proven; it must be so. A deductive truth must apply in all relevant circumstances. For example, all living cells contain DNA. From this, you can reason—deductively—that any specific living cell (of an elephant, or a person, or a snake) will therefore contain DNA. Given the complexity of psychological phenomena, which involve many contributing factors, it is nearly impossible to make these types of broad statements with certainty.

Exercise \(\PageIndex{1}\)

Inductive of Deductive?

  • The stove was on, and the water in the pot was boiling over. The front door was standing open. These clues suggest the homeowner left unexpectedly and in a hurry.
  • Gravity is associated with mass. Because the moon has a smaller mass than the Earth, it should have weaker gravity.
  • Students don’t like to pay for high-priced textbooks. It is likely that many students in the class will opt not to purchase a book.
  • To earn a college degree, students need 100 credits. Janine has 85 credits, so she cannot graduate.

See answer at end of this module

The second possible result from the caffeine-memory study is that the group who had no caffeine demonstrates better memory. This result is the opposite of what the researcher expects to find (her hypothesis). Here, the researcher must admit the evidence does not support her hypothesis. She must be careful, however, not to extend that interpretation to other claims. For example, finding increased memory in the no-caffeine group would not be evidence that caffeine harms memory. Again, there are too many unknowns. Is this finding a freak occurrence, perhaps based on an unusual sample? Is there a problem with the design of the study? The researcher doesn’t know. She simply knows that she was not able to observe support for her hypothesis.

There is at least one additional consideration: The researcher originally developed her caffeine-benefits-memory hypothesis based on conclusions drawn from previous research. That is, previous studies found results that suggested caffeine boosts memory. The researcher’s single study should not outweigh the conclusions of many studies. Perhaps the earlier research employed participants of different ages or who had different baseline levels of caffeine intake. This new study simply becomes a piece of fabric in the overall quilt of studies of the caffeine-memory relationship. It does not, on its own, definitively falsify the hypothesis.

Finally, it’s possible that the results show no difference in memory between the two groups. How should the researcher interpret this? How would you? In this case, the researcher once again has to admit that she has not found support for her hypothesis.

Interpreting the results of a study—regardless of out- come—rests on the quality of the observations from which those results are drawn. If you learn, say, that each group in a study included only four participants, or that they were all over 90 years old, you might have concerns. Specifically, you should be concerned that the observations, even if accurate, aren’t representative of the general population. This is one of the defining differences between conclusions drawn from personal anecdotes and those drawn from scientific observations. Anecdotal evidence —derived from personal experience and unsystematic observations (e.g., “common sense,”)—is limited by the quality and representativeness of observations and by memory shortcomings. Well-designed research, on the other hand, relies on observations that are systematically recorded, of high quality, and representative of the population it claims to describe.

Reporting and Interpreting of Results

Cite this chapter.

interpretation and analysis of research results

  • Lawrence M. Friedman 6 ,
  • Curt D. Furberg 7 ,
  • David L. DeMets 8 ,
  • David M. Reboussin 9 &
  • Christopher B. Granger 10  

112k Accesses

1 Citations

The final phase in any experiment is to interpret and report the results. Finding the answer to a challenging question is the goal of any research endeavor. Proper communication of the results to clinicians also provides the basis for advances in medicine [1]. To communicate appropriately, investigators have to review their results critically and avoid the temptation to overinterpret benefit or underreport harm. They are in the privileged position of knowing the quality and limitations of the data better than anyone else. Therefore, they have the responsibility for presenting the results clearly and concisely, together with any issues that might bear on their interpretation. Investigators should devote adequate care, time and attention to this critical part of the conduct of clinical trials. We believe that a policy of “conservative” interpretation and reporting best serves science, public health, clinical medicine, and the interests of readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Comroe JH Jr. The road from research to new diagnosis and therapy. Science 1978;200:931–937.

Article   Google Scholar  

Glantz SA. Biostatistics: how to detect, correct and prevent errors in the medical literature. Circulation 1980;61:1–7.

Relman AS. What a good medical journal does. The New York Times March 19, 1978; Section IV; p.22.

Google Scholar  

Ellenberg SS, Epstein JS, Fratantoni JC, et al. A trial of RSV immune globulin in infants and young children: the FDA view. N Engl J Med 1994;331:203–204.

Bhatt DL, Stone GW, Mahaffey KW, et al. Effect of platelet inhibition with cangrelor during PCI on ischemic events. N Engl J Med 2013;368:1303–1313.

FDA Briefing Document Addendum for the Cardiovascular and Renal Drugs Advisory Committee (CRDAC). http://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/cardiovascularandrenaldrugsadvisorycommittee/ucm385235.pdf

Moher D, Schulz KF, Altman DG, for the CONSORT Group. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet 2001;357:1191–1194.

Altman DG, Schulz KD, Moher D, et al, for the CONSORT Group. The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med 2001;134:663–694.

Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. PLoS Med 2010; 7 (3): e1000251.

CONSORT Statement. http://www.consort-statement.org/consort-statement/overview0/#checklist

Ioannidis JPA, Evans SJW, Gøtzsche PC, et al, for the CONSORT Group. Better reporting of harms in randomized trials: an extension of the CONSORT statement. Ann Intern Med 2004;141:781–788.

Piaggio G, Elbourne DR, Altman DG, et al, for the CONSORT Group. Reporting of noninferiority and equivalence randomized trials: an extension of the CONSORT statement. JAMA 2006;295:1152–1160.

Piaggio G, Elbourne DR, Pocock SJ, Evans SJW, Altman DG, for the CONSORT Group. Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement. JAMA 2012;308:2594–2604.

Moher D, Liberati A, Tetziaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6:e1000097.

Mills EJ, Wu P, Gagnier J, Devereaux PJ. The quality of randomized trial reporting in leading medical journals since the revised CONSORT statement. Contemp Clin Trials 2005;26:480–487.

Van Spall HGC, Toren A, Kiss A, Fowler RA. Eligibility criteria of randomized controlled trials published in high-impact general medical journals: a systematic sampling review. JAMA 2007;297:1233–1240.

Wang R, Lagakos SW, Ware JH, et al. Special Report: Statistics in medicine – reporting of subgroup analyses in clinical trials. N Engl J Med 2007;357:2189–2194.

International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to biomedical journals: writing and editing for biomedical publication (updated December, 2013) http://www.icmje.org/icmje-recommendations.pdf

International Committee of Medical Journal Editors. Is this clinical trial fully registered?: a statement from the International Committee of Medical Journal Editors http://www.icmje.org/about-icmje/faqs/clinical-trials-registration/ .

Chalmers I, Glasziou P, Godlee F. All trials must be registered and the results published. BMJ 2013; 346:f105 doi; 10.1136/bmj.f105 .

Haynes RB, McKibbon KA, Walker CJ, et al. A study on the use and usefulness of online access to MEDLINE in clinical settings. Ann Intern Med 1990;112:78–84.

Ad hoc Working Group for Critical Appraisal of the Medical Literature. A proposal for more informative abstracts of clinical articles. Ann Intern Med 1987;106:598–604.

Haynes RB, Mulrow CD, Huth EJ, et al. More informative abstracts revisited. Ann Intern Med 1990;113:69–76.

Huth EJ. Preparing to write. In: How to write and publish papers in medical sciences. Philadelphia: ISI Press, 1982, p.37–40.

Huth EJ. Guidelines for authorship of medical papers. Ann Intern Med 1986;104:269–274.

Meinert CL. In defense of the corporate author for multicenter trials. Control Clin Trials 1993;14:255–260.

Gøtzsche PC, Hrobjartsson A, Johansen HK, et al. Ghost authorship in industry-initiated randomised trials. PLoS Med 2007; 4:e19.

Ross JS, Hill KP, Egilman DS, Krumholz HM. Guest authorship and ghostwriting in publications related to rofecoxib. JAMA 2008;299:1800–1812.

Melander H, Ahlqvist-Rastad J, Meijer G, Beermann B. Evidence b(i)ased medicine—selective reporting from studies sponsored by pharmaceutical industry: review of studies in new drug applications. BMJ 2003;326:1171–1173.

Altman DG, Furberg CD, Grimshaw JM, Shanahan DR. Editorial: Linked publications from a single trial: a thread of evidence. Trials 2014:15:369.

Drazen JM, Van Der Weyden MB, Sahni P, et al. Editorial: Uniform format for disclosure of competing interests in ICMJE journals. N Engl J Med 2009; http://content.nejm.org/cgi/reprint/NEJMe0909052.pdf?resourcetype=HWCIT

DeAngelis CD, Fontanarosa PB. Editorial: Resolving unreported conflicts of interest. JAMA 2009;302:198–199.

Weinfurt KP, Seils DM, Tzeng JP, et al. Consistency of financial interest disclosures in the biomedical literature: the case of coronary stents. PLoS One 2008; 3:e2128.

Berry G. Statistical significance and confidence intervals. Med J Aust 1986;144:618–619.

Gardner MJ, Altman DG. Confidence interval rather than p -values: estimation rather than hypothesis testing. Br Med J 1986;292:746–750.

Simon R. Confidence intervals for reporting results of clinical trials. Ann Intern Med 1986;105:429–435.

Bulpitt CJ. Confidence intervals. Lancet 1987; i :494–497.

Braitman LE. Confidence intervals extract clinically useful information from data. Ann Intern Med 1988;108:296–298.

Freeman PR. The role of p-values in analyzing trial results. Stat Med 1993;12:1443–1452.

Braitman LE. Statistical estimates and clinical trials. J Biopharm Stat 1993;3:249–256.

Goodman SN, Berlin JA. The use of predicted confidence intervals when planning experiments and the misuse of power when interpreting results. Ann Intern Med 1994;121:200–206.

Pocock SJ, Ware JH. Translating statistical findings into plain English. Lancet 2009;373:1926–1928.

Wulff HR, Anderson B, Brandenholf P, Guttler F. What do doctors know about statistics? Stat Med 1987;6:3–10.

Haynes RB, McKibbon KA, Fitzgerald D, et al. How to keep up with the medical literature. Ann Intern Med 1986;105:149-153, 309-312, 474-478, 636-640, 810-816, 978-984.

Moon TE. Interpretation of cancer prevention trials. Prev Med 1989;18:721–731.

Fowkes FGR, Fulton PM. Critical appraisal of published research: introductory guidelines. Br Med J 1991;302:1136–1140.

Cuddy PG, Elenbaas RM, Elenbaas JK. Evaluating the medical literature. Ann Emerg Med 1993;12:549-555, 610-620, 679-686.

Oxman AD, Sackett DL, Guyatt GH, for the Evidence-Based Medicine Working Group. Users’ guides to the medical literature: I. How to get started. JAMA 1993;270:2093–2095.

Guyatt GH, Sackett DL, Cook DJ., for the Evidence-Based Medicine Working Group. Users’ guide to the medical literature: II. How to use an article about therapy or prevention: A. Are the results of the study valid? JAMA 1993;270:2598–2601.

Pocock SJ. Clinical Trials. A Practical Approach . Chichester: John Wiley & Sons, 1983.

Evans M, Pollock AV. Trials on trial. A review of trials of antibiotic prophylaxis. Arch Surg 1984;119:109–113.

Pocock SJ, Hughes MD, Lee RJ. Statistical problems in the reporting of clinical trials. A survey of three medical journals. N Engl J Med 1987;317:426–432.

Altman DG. Statistics in medical journals. Stat Med 1982;1:59–71.

Gøtzsche PC. Methodology and overt and hidden bias in reports of 196 double-blind trials of nonsteroidal anti-inflammatory drugs in rheumatoid arthritis. Control Clin Trials 1989;10:31–56.

Altman DG, Doré CJ. Randomization and baseline comparisons in clinical trials. Lancet 1990;335:149–153.

Tonkin K, Tritchler D, Tannock I. Criteria of tumor response used in clinical trials of chemotherapy. J Clin Oncol 1985;3:870–875.

Baar J, Tannock I. Analyzing the same data in two ways: a demonstration model to illustrate the reporting and misreporting of clinical trials. J Clin Oncol 1989;7:969–978.

Laupacis A, Sackett DL, Roberts RS. An assessment of clinically useful measures of the consequences of treatment. N Engl J Med 1988;318:1728–1733.

Forrow L, Taylor WC, Arnold RM. Absolutely relative: how research results are summarized can affect treatment decisions. Am J Med 1992;92:121–124.

Naylor CD, Chen E, Strauss B. Measured enthusiasm: Does the method of reporting trial results alter perceptions of therapeutic effectiveness? Ann Intern Med 1992;117:916–921.

Sterling TD. Publication decisions and their possible effects on inferences drawn from test of significance -- or vice versa. J Am Stat Assoc 1959;54:30–34.

Dickersin K, Min YI. Publication bias: The problem that won’t go away. Ann N.Y. Acad Sci 1993;703:135–146.

Simes RJ. Publication bias: the case for an international registry of clinical trials. J Clin Oncol 1987;4:1529–1541.

Chan A-W, Altman DG. Identifying outcome reporting bias in randomised trials on PubMed: review of publications and survey of authors. BMJ 2005;330:753. Epub 2005 Jan 28.

Chan A-W, Hrόbjartsson A, Haahr MT, et al. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA 2004;291:2457–2465.

Turer AT, Mahaffey KW, Compton KL, et al. Publication or presentation of results from multicenter clinical trials: evidence from an academic medical center. Am Heart J 2007;153:674–689.

Turner EH, Matthews AM, Linardatos E, et al. Selective publication of antidepressant trials and its influence on apparent efficacy. N Engl J Med 2008;358:252–260.

McGauran N, Wieseler B, Kreis J, Schüler Y-B, Kӧlsch H, Kaiser T. Reporting bias in medical research-a narrative review. Trials 2010;11:37.

Heres S, Davis J, Maino K, et al. Why olanzapine beats risperidone, risperidone beats quetiapine, and quetiapine beats olanzapine: an exploratory analysis of head-to-head comparison studies of second-generation antipsychotics. Am J Psychiatry 2006;163:185–194.

Gordon D, Taddei-Peters W, Mascette A, Antman M, Kaufmann PG, Lauer MS. Publication of trials funded by the National Heart, Lung, and Blood Institute. N Engl J Med 2013;369:1926–1934.

Perlis RH, Perlis CS, Wu Y, et al. Industry sponsorship and financial conflict of interest in the reporting of clinical trials in psychiatry. Am J Psychiatry 2005;162:1957–1960.

Vedula SS, Li T, Dickersin K. Differences in reporting of analyses in internal company documents versus published trial reports: comparisons in industry-sponsored trials in off-label uses of gabapentin. PLoS Med 2013;10(1):e1001378, doi: 10.1371/journal.pmed.1001378 .

Goldman L, Loscalzo A. Fate of cardiology research originally published in abstract form. N Engl J Med 1980;303:255–259.

Dickerson K, Chan S, Chalmers TC, et al. Publication bias and clinical trials. Control Clin Trials 1987;8:343–353.

Dickersin K. The existence of publication bias and risk factors for its occurrence. JAMA 1990;263:1385–1389.

Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research. Lancet 1991;337:867–872.

Gøtzsche PC. Reference bias in reports of drug trials. Br Med J 1987;295:652–659.

Al-Marzouki S, Roberts I, Marshall T, Evans S. The effect of scientific misconduct on the results of clinical trials: a Delphi survey. Contemp Clin Trials 2005;26:331–337.

Ross JS, Mulvey GK, Hines EM, Nissen SE, Krumholz HM. Trial publication after registration in ClinicalTrials.gov: a cross-sectional analysis. PLoS Med 2009;e1000144. doi: 10.1371/journal.pmed.1000144 .

Prayle AP, Hurley MN, Smyth AR. Compliance with mandatory reporting of clinical trial results on ClinicalTrials.gov: cross sectional study. BMJ 2011;344:d7373 doi: 10.1136/bmj.d7373 .

Friedman L. Commentary: Why we should report results from clinical trial pilot studies. Trials 2013;14:14:doi: 10.1186/1745-6215-14-14 .

Sackett DL. Turning a blind eye: why we don’t test for blindness at the end of our trials. BMJ 2004;328:1136.

Sackett DL. Commentary: Measuring the success of blinding in RCTs: don’t, must, can’t or needn’t? Int J Epidemiol 2007;36:664–665.

Schultz KF, Altman DG, Moher D, Fergusson D. Comment: CONSORT 2010 changes and testing blindness in RCTs. Lancet 2010;375:1144–1146.

Karlowski TR, Chalmers TC, Frenkel LD, et al. Ascorbic acid for the common cold: a prophylactic and therapeutic trial. JAMA 1975;231:1038–1042.

Report from the Committee of Principle Investigators. A cooperative trials in the primary prevention of ischaemic heart disease using clofibrate. Br Heart J 1978;40:1069–1118.

Cordoba G, Schwartz L, Woloshin S, Bae H, Gøtzsche PC. Definition, reporting, and interpretation of composite outcomes in clinical trials: systematic review. BMJ 2010;341:c3920 doi: 10.1136/bmj.c3920 .

Marantz PR, Alderman MH, Tobin JN. Diagnostic heterogeneity in clinical trials for congestive heart failure. Ann Intern Med 1988;109:55–61.

Packer M. Clinical trials in congestive heart failure: why do studies report conflicting results. Ann Intern Med 1988;109:3–5.

Psaty BM, Furberg CD, Ray WA, Weiss NS. Potential for conflict of interest in the evaluation of suspected adverse drug reactions: use of cerivastatin and risk of rhabdomyolysis. JAMA 2004;292:2622–2631.

Fineberg HV. Clinical evaluation: how does it influence medical practice? Bull Cancer 1987;74:333–346.

Collins R, Julian D. British Heart Foundation surveys (1987 and 1989) of United Kingdom treatment policies for acute myocardial infarction. Br Heart J 1991;66:250–255.

Lamas GA, Pfeffer MA, Hamm P, et al. Do the results of randomized clinical trials of cardiovascular drugs influence medical practice? N Engl J Med 1992;27:241–247.

Manolio TM, Cutler JA, Furberg CD, et al. Trends in pharmacologic management of hypertension in the United States. Arch Intern Med 1995;155:829–837.

Rothwell PM. External validity of randomised controlled trials: “To whom do the results of this trial apply?” Lancet 2005;365:82–93.

National Institutes of Health Public Access. http://publicaccess.nih.gov/

Zarin DA, Tse T. Moving toward transparency of clinical trials. Science 2008;319:1340–1342.

Gøtzsche PC. Why we need easy access to all data from all clinical trials and how to accomplish it. Trials 2011;12:249.

Mello MM, Francer JK, Wilenzick M, Teden P, Bierer BE, Barnes M. Preparing for responsible sharing of clinical trial data. N Engl J Med 2013;369:1651–1658.

Eichler H-G, Pétavy F, Pignatti F, Rasi G. Access to patient-level trial data—a boon to drug developers. N Engl J Med 2013;369:1577–1579.

Krumholz HM. The Opinion Pages: Give the data to the people. The New York Times February 2, 2014.

Zarin DA. Participant-level data and the new frontier in trial transparency. N Engl J Med 2013; 369:468–469.

Specks U, Merkel PA, Seo P, et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N Engl J Med 2013;369:417–427.

Nisen P, Rockhold F. Access to patient-level data from GlaxoSmithKline clinical trials. N Engl J Med 2013; 369:475–478.

Barron H. Letter to the editor: Access to patient-level trial data. N Engl J Med 2014;370:485–486.

Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC). https://biolincc.nhlbi.nih.gov/studies/

Summary of HHS/NIH proposals to enhance transparency of Clinical trial results. http://www.nih.gov/news/health/nov2014/od-19_summary.htm .

Hudson KL, Collins FS. Viewpoint: Sharing and reporting the results of clinical trials. JAMA 2015;313:355–356.

European Medicines Agency policy on publication of clinical data for medicinal products for human use. http://www.ema.europa.eu/docs/en_GB/document_library/Other/2014/10/WC500174796.pdf

Institute of Medicine Committee on Strategies for Responsible Sharing of Clinical Trial Data. Sharing clinical trial data: maximizing benefits, minimizing risk . Washington, D.C.: The National Academies Press, 2015.

Download references

Author information

Authors and affiliations.

North Bethesda, MD, USA

Lawrence M. Friedman

Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA

Curt D. Furberg

Department Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA

David L. DeMets

Department of Biostatistics, Wake Forest School of Medicine, Winston-Salem, NC, USA

David M. Reboussin

Department of Medicine, Duke University, Durham, NC, USA

Christopher B. Granger

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Friedman, L.M., Furberg, C.D., DeMets, D.L., Reboussin, D.M., Granger, C.B. (2015). Reporting and Interpreting of Results. In: Fundamentals of Clinical Trials. Springer, Cham. https://doi.org/10.1007/978-3-319-18539-2_20

Download citation

DOI : https://doi.org/10.1007/978-3-319-18539-2_20

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-18538-5

Online ISBN : 978-3-319-18539-2

eBook Packages : Mathematics and Statistics Mathematics and Statistics (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

UHN Library Logo

  • Introduction
  • Preamble: Systematic Review: What it is and isn't
  • Systematic Review Guidelines
  • 1. Formulate a Research Question
  • 2. Develop a Research Protocol
  • 3. Conduct a Thorough Literature Search
  • 4. Apply Inclusion and Exclusion Criteria
  • 5. Perform Data Extraction/Abstraction
  • 6. Conduct a Quality Appraisal of Included Studies
  • 7. Complete Data Analysis and Compile Results
  • 8. Interpret Results
  • How to Appraise a Systematic Review
  • Systematic Review Software and Tools
  • Knowledge Synthesis Services This link opens in a new window

Systematic Review Overview : 8. Interpret Results

  • Health Science Information Consortium
  • University Health Network - New
  • Systematic Review Overview

Table of Contents

  • Systematic Review Software

Step 8: Interpret Results

The role of the interpretation or discussion section is to provide the reader with some sort of analysis of the results of the review.

The interpretation of results should include a discussion of the evidence gathered. This includes aspects of validity, strengths and weaknesses of the evidence, possible sources of bias that may be present in the included studies, and the potential bias of the review. In addition, it should provide the reader with some understanding of the implications of the results for healthcare providers and offer suggestions for future research.

According to the Cochrane Handbook, the interpretation of results section should include:

  • Information on all important outcomes, including adverse outcomes
  • The quality of the evidence for each of these outcomes, as it applies to specific populations, and specific interventions.
  • Clarification of the manner in which particular values and preferences may bear on the balance of benefits, harms, burden and costs of the intervention.

Generally speaking, the discussion should help readers understand the implication of the results in relation to practical decisions.

Review authors should not, however, make recommendations based on assumptions, resources and values.

There are guidelines for reporting systematic reviews and meta-analysis. Please refer to the PRISMA Statement .

  • 1. Cochrane Handbook for Systematic Reviews of Interventions: The Cochrane Collaboration; 2023 [cited January 12, 2024].
  • 2. Centre for Reviews and Dissemination. Systematic Reviews: CRD's guidance for undertaking systematic reviews [PDF file]. York, UK: Centre for Reviews and Dissemination, University of York; 2009 [cited November 12, 2017].
  • << Previous: 7. Complete Data Analysis and Compile Results
  • Next: How to Appraise a Systematic Review >>
  • Last Updated: Apr 11, 2024 8:51 AM
  • URL: https://guides.hsict.library.utoronto.ca/c.php?g=699108

We acknowledge this sacred land on which the University Health Network operates. For thousands of years it has been the traditional territory of the Huron-Wendat, the Haudenosaunee, and most recently, the Mississaugas of the Credit River. This territory was the subject of the Dish With One Spoon Wampum Belt Covenant, an agreement between the Haudenosaunee Confederacy and the Confederacy of the Ojibwe and allied nations to peaceably share and care for the resources around the Great Lakes. Today, the meeting place of Toronto is still the home to many Indigenous people from across Turtle Island and we are grateful to have the opportunity to work and learn on this territory

UHN Library and Information Services

Systematic Reviews in Health

  • Introduction
  • Research Question
  • Research Protocol
  • Database Searching
  • Article Screening
  • Data Extraction
  • Quality Appraisal
  • Evidence Synthesis

Interpret the Results

  • Reporting with PRISMA 2020

Interpretation of Principal Findings and Drawing Conclusions

The Interpretation (or Discussion) section of the systematic review helps readers interpret the main findings of the review, brought together in the synthesis step.

The interpretation should include:

  • Statement of principal findings
  • An analysis of those findings (for example, on what strength of the evidence, are the review's conclusions being made?)
  • The strengths and weaknesses of the review
  • A statement that places the findings in the context of the existing evidence base, particularly in relation to any existing relevant systematic reviews. 

The interpretation should strike a balance between objectively describing the findings, and subjectively speculating on their meaning. 1  For example, a finding may be based on high-quality evidence but how applicable is it to a clinical setting?

  • Limitations

Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).

Author's Conclusions

Consist of:

  • Applicability of the Results

The interpretation should comment on the relevance of the findings to key groups, that is, what are the practical implications for groups such as healthcare providers, users, and policy makers?

  • Implications for Future Research

State any unanswered questions and implications for further research. 2

1. University of York, NHS Centre for Reviews and Dissemination. (2009). Systematic reviews: CRD's guidance for undertaking reviews in health care , 3rd ed. York, England : The Centre.  Available: https://www.york.ac.uk/crd/guidance/

2. Higgins, P.T., & Green, S. (eds.). (2008). Cochrane handbook for systematic reviews of interventions.   Chichester, England ; Hoboken, NJ : Wiley- Blackwell.  Available: http://handbook.cochrane.org/

  • << Previous: Evidence Synthesis
  • Next: Reporting with PRISMA 2020 >>
  • Last Updated: Apr 11, 2024 11:03 AM
  • URL: https://canberra.libguides.com/systematic

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Basic statistical tools in research and data analysis

Zulfiqar ali.

Department of Anaesthesiology, Division of Neuroanaesthesiology, Sheri Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India

S Bala Bhaskar

1 Department of Anaesthesiology and Critical Care, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India

Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.

INTRODUCTION

Statistics is a branch of science that deals with the collection, organisation, analysis of data and drawing of inferences from the samples to the whole population.[ 1 ] This requires a proper design of the study, an appropriate selection of the study sample and choice of a suitable statistical test. An adequate knowledge of statistics is necessary for proper designing of an epidemiological study or a clinical trial. Improper statistical methods may result in erroneous conclusions which may lead to unethical practice.[ 2 ]

Variable is a characteristic that varies from one individual member of population to another individual.[ 3 ] Variables such as height and weight are measured by some type of scale, convey quantitative information and are called as quantitative variables. Sex and eye colour give qualitative information and are called as qualitative variables[ 3 ] [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g001.jpg

Classification of variables

Quantitative variables

Quantitative or numerical data are subdivided into discrete and continuous measurements. Discrete numerical data are recorded as a whole number such as 0, 1, 2, 3,… (integer), whereas continuous data can assume any value. Observations that can be counted constitute the discrete data and observations that can be measured constitute the continuous data. Examples of discrete data are number of episodes of respiratory arrests or the number of re-intubations in an intensive care unit. Similarly, examples of continuous data are the serial serum glucose levels, partial pressure of oxygen in arterial blood and the oesophageal temperature.

A hierarchical scale of increasing precision can be used for observing and recording the data which is based on categorical, ordinal, interval and ratio scales [ Figure 1 ].

Categorical or nominal variables are unordered. The data are merely classified into categories and cannot be arranged in any particular order. If only two categories exist (as in gender male and female), it is called as a dichotomous (or binary) data. The various causes of re-intubation in an intensive care unit due to upper airway obstruction, impaired clearance of secretions, hypoxemia, hypercapnia, pulmonary oedema and neurological impairment are examples of categorical variables.

Ordinal variables have a clear ordering between the variables. However, the ordered data may not have equal intervals. Examples are the American Society of Anesthesiologists status or Richmond agitation-sedation scale.

Interval variables are similar to an ordinal variable, except that the intervals between the values of the interval variable are equally spaced. A good example of an interval scale is the Fahrenheit degree scale used to measure temperature. With the Fahrenheit scale, the difference between 70° and 75° is equal to the difference between 80° and 85°: The units of measurement are equal throughout the full range of the scale.

Ratio scales are similar to interval scales, in that equal differences between scale values have equal quantitative meaning. However, ratio scales also have a true zero point, which gives them an additional property. For example, the system of centimetres is an example of a ratio scale. There is a true zero point and the value of 0 cm means a complete absence of length. The thyromental distance of 6 cm in an adult may be twice that of a child in whom it may be 3 cm.

STATISTICS: DESCRIPTIVE AND INFERENTIAL STATISTICS

Descriptive statistics[ 4 ] try to describe the relationship between variables in a sample or population. Descriptive statistics provide a summary of data in the form of mean, median and mode. Inferential statistics[ 4 ] use a random sample of data taken from a population to describe and make inferences about the whole population. It is valuable when it is not possible to examine each member of an entire population. The examples if descriptive and inferential statistics are illustrated in Table 1 .

Example of descriptive and inferential statistics

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g002.jpg

Descriptive statistics

The extent to which the observations cluster around a central location is described by the central tendency and the spread towards the extremes is described by the degree of dispersion.

Measures of central tendency

The measures of central tendency are mean, median and mode.[ 6 ] Mean (or the arithmetic average) is the sum of all the scores divided by the number of scores. Mean may be influenced profoundly by the extreme variables. For example, the average stay of organophosphorus poisoning patients in ICU may be influenced by a single patient who stays in ICU for around 5 months because of septicaemia. The extreme values are called outliers. The formula for the mean is

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g003.jpg

where x = each observation and n = number of observations. Median[ 6 ] is defined as the middle of a distribution in a ranked data (with half of the variables in the sample above and half below the median value) while mode is the most frequently occurring variable in a distribution. Range defines the spread, or variability, of a sample.[ 7 ] It is described by the minimum and maximum values of the variables. If we rank the data and after ranking, group the observations into percentiles, we can get better information of the pattern of spread of the variables. In percentiles, we rank the observations into 100 equal parts. We can then describe 25%, 50%, 75% or any other percentile amount. The median is the 50 th percentile. The interquartile range will be the observations in the middle 50% of the observations about the median (25 th -75 th percentile). Variance[ 7 ] is a measure of how spread out is the distribution. It gives an indication of how close an individual observation clusters about the mean value. The variance of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g004.jpg

where σ 2 is the population variance, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The variance of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g005.jpg

where s 2 is the sample variance, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. The formula for the variance of a population has the value ‘ n ’ as the denominator. The expression ‘ n −1’ is known as the degrees of freedom and is one less than the number of parameters. Each observation is free to vary, except the last one which must be a defined value. The variance is measured in squared units. To make the interpretation of the data simple and to retain the basic unit of observation, the square root of variance is used. The square root of the variance is the standard deviation (SD).[ 8 ] The SD of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g006.jpg

where σ is the population SD, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The SD of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g007.jpg

where s is the sample SD, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. An example for calculation of variation and SD is illustrated in Table 2 .

Example of mean, variance, standard deviation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g008.jpg

Normal distribution or Gaussian distribution

Most of the biological variables usually cluster around a central value, with symmetrical positive and negative deviations about this point.[ 1 ] The standard normal distribution curve is a symmetrical bell-shaped. In a normal distribution curve, about 68% of the scores are within 1 SD of the mean. Around 95% of the scores are within 2 SDs of the mean and 99% within 3 SDs of the mean [ Figure 2 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g009.jpg

Normal distribution curve

Skewed distribution

It is a distribution with an asymmetry of the variables about its mean. In a negatively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the right of Figure 1 . In a positively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the left of the figure leading to a longer right tail.

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g010.jpg

Curves showing negatively skewed and positively skewed distribution

Inferential statistics

In inferential statistics, data are analysed from a sample to make inferences in the larger collection of the population. The purpose is to answer or test the hypotheses. A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. Hypothesis tests are thus procedures for making rational decisions about the reality of observed effects.

Probability is the measure of the likelihood that an event will occur. Probability is quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty).

In inferential statistics, the term ‘null hypothesis’ ( H 0 ‘ H-naught ,’ ‘ H-null ’) denotes that there is no relationship (difference) between the population variables in question.[ 9 ]

Alternative hypothesis ( H 1 and H a ) denotes that a statement between the variables is expected to be true.[ 9 ]

The P value (or the calculated probability) is the probability of the event occurring by chance if the null hypothesis is true. The P value is a numerical between 0 and 1 and is interpreted by researchers in deciding whether to reject or retain the null hypothesis [ Table 3 ].

P values with interpretation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g011.jpg

If P value is less than the arbitrarily chosen value (known as α or the significance level), the null hypothesis (H0) is rejected [ Table 4 ]. However, if null hypotheses (H0) is incorrectly rejected, this is known as a Type I error.[ 11 ] Further details regarding alpha error, beta error and sample size calculation and factors influencing them are dealt with in another section of this issue by Das S et al .[ 12 ]

Illustration for null hypothesis

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g012.jpg

PARAMETRIC AND NON-PARAMETRIC TESTS

Numerical data (quantitative variables) that are normally distributed are analysed with parametric tests.[ 13 ]

Two most basic prerequisites for parametric statistical analysis are:

  • The assumption of normality which specifies that the means of the sample group are normally distributed
  • The assumption of equal variance which specifies that the variances of the samples and of their corresponding population are equal.

However, if the distribution of the sample is skewed towards one side or the distribution is unknown due to the small sample size, non-parametric[ 14 ] statistical techniques are used. Non-parametric tests are used to analyse ordinal and categorical data.

Parametric tests

The parametric tests assume that the data are on a quantitative (numerical) scale, with a normal distribution of the underlying population. The samples have the same variance (homogeneity of variances). The samples are randomly drawn from the population, and the observations within a group are independent of each other. The commonly used parametric tests are the Student's t -test, analysis of variance (ANOVA) and repeated measures ANOVA.

Student's t -test

Student's t -test is used to test the null hypothesis that there is no difference between the means of the two groups. It is used in three circumstances:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g013.jpg

where X = sample mean, u = population mean and SE = standard error of mean

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g014.jpg

where X 1 − X 2 is the difference between the means of the two groups and SE denotes the standard error of the difference.

  • To test if the population means estimated by two dependent samples differ significantly (the paired t -test). A usual setting for paired t -test is when measurements are made on the same subjects before and after a treatment.

The formula for paired t -test is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g015.jpg

where d is the mean difference and SE denotes the standard error of this difference.

The group variances can be compared using the F -test. The F -test is the ratio of variances (var l/var 2). If F differs significantly from 1.0, then it is concluded that the group variances differ significantly.

Analysis of variance

The Student's t -test cannot be used for comparison of three or more groups. The purpose of ANOVA is to test if there is any significant difference between the means of two or more groups.

In ANOVA, we study two variances – (a) between-group variability and (b) within-group variability. The within-group variability (error variance) is the variation that cannot be accounted for in the study design. It is based on random differences present in our samples.

However, the between-group (or effect variance) is the result of our treatment. These two estimates of variances are compared using the F-test.

A simplified formula for the F statistic is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g016.jpg

where MS b is the mean squares between the groups and MS w is the mean squares within groups.

Repeated measures analysis of variance

As with ANOVA, repeated measures ANOVA analyses the equality of means of three or more groups. However, a repeated measure ANOVA is used when all variables of a sample are measured under different conditions or at different points in time.

As the variables are measured from a sample at different points of time, the measurement of the dependent variable is repeated. Using a standard ANOVA in this case is not appropriate because it fails to model the correlation between the repeated measures: The data violate the ANOVA assumption of independence. Hence, in the measurement of repeated dependent variables, repeated measures ANOVA should be used.

Non-parametric tests

When the assumptions of normality are not met, and the sample means are not normally, distributed parametric tests can lead to erroneous results. Non-parametric tests (distribution-free test) are used in such situation as they do not require the normality assumption.[ 15 ] Non-parametric tests may fail to detect a significant difference when compared with a parametric test. That is, they usually have less power.

As is done for the parametric tests, the test statistic is compared with known values for the sampling distribution of that statistic and the null hypothesis is accepted or rejected. The types of non-parametric analysis techniques and the corresponding parametric analysis techniques are delineated in Table 5 .

Analogue of parametric and non-parametric tests

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g017.jpg

Median test for one sample: The sign test and Wilcoxon's signed rank test

The sign test and Wilcoxon's signed rank test are used for median tests of one sample. These tests examine whether one instance of sample data is greater or smaller than the median reference value.

This test examines the hypothesis about the median θ0 of a population. It tests the null hypothesis H0 = θ0. When the observed value (Xi) is greater than the reference value (θ0), it is marked as+. If the observed value is smaller than the reference value, it is marked as − sign. If the observed value is equal to the reference value (θ0), it is eliminated from the sample.

If the null hypothesis is true, there will be an equal number of + signs and − signs.

The sign test ignores the actual values of the data and only uses + or − signs. Therefore, it is useful when it is difficult to measure the values.

Wilcoxon's signed rank test

There is a major limitation of sign test as we lose the quantitative information of the given data and merely use the + or – signs. Wilcoxon's signed rank test not only examines the observed values in comparison with θ0 but also takes into consideration the relative sizes, adding more statistical power to the test. As in the sign test, if there is an observed value that is equal to the reference value θ0, this observed value is eliminated from the sample.

Wilcoxon's rank sum test ranks all data points in order, calculates the rank sum of each sample and compares the difference in the rank sums.

Mann-Whitney test

It is used to test the null hypothesis that two samples have the same median or, alternatively, whether observations in one sample tend to be larger than observations in the other.

Mann–Whitney test compares all data (xi) belonging to the X group and all data (yi) belonging to the Y group and calculates the probability of xi being greater than yi: P (xi > yi). The null hypothesis states that P (xi > yi) = P (xi < yi) =1/2 while the alternative hypothesis states that P (xi > yi) ≠1/2.

Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (KS) test was designed as a generic method to test whether two random samples are drawn from the same distribution. The null hypothesis of the KS test is that both distributions are identical. The statistic of the KS test is a distance between the two empirical distributions, computed as the maximum absolute difference between their cumulative curves.

Kruskal-Wallis test

The Kruskal–Wallis test is a non-parametric test to analyse the variance.[ 14 ] It analyses if there is any difference in the median values of three or more independent samples. The data values are ranked in an increasing order, and the rank sums calculated followed by calculation of the test statistic.

Jonckheere test

In contrast to Kruskal–Wallis test, in Jonckheere test, there is an a priori ordering that gives it a more statistical power than the Kruskal–Wallis test.[ 14 ]

Friedman test

The Friedman test is a non-parametric test for testing the difference between several related samples. The Friedman test is an alternative for repeated measures ANOVAs which is used when the same parameter has been measured under different conditions on the same subjects.[ 13 ]

Tests to analyse the categorical data

Chi-square test, Fischer's exact test and McNemar's test are used to analyse the categorical or nominal variables. The Chi-square test compares the frequencies and tests whether the observed data differ significantly from that of the expected data if there were no differences between groups (i.e., the null hypothesis). It is calculated by the sum of the squared difference between observed ( O ) and the expected ( E ) data (or the deviation, d ) divided by the expected data by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g018.jpg

A Yates correction factor is used when the sample size is small. Fischer's exact test is used to determine if there are non-random associations between two categorical variables. It does not assume random sampling, and instead of referring a calculated statistic to a sampling distribution, it calculates an exact probability. McNemar's test is used for paired nominal data. It is applied to 2 × 2 table with paired-dependent samples. It is used to determine whether the row and column frequencies are equal (that is, whether there is ‘marginal homogeneity’). The null hypothesis is that the paired proportions are equal. The Mantel-Haenszel Chi-square test is a multivariate test as it analyses multiple grouping variables. It stratifies according to the nominated confounding variables and identifies any that affects the primary outcome variable. If the outcome variable is dichotomous, then logistic regression is used.

SOFTWARES AVAILABLE FOR STATISTICS, SAMPLE SIZE CALCULATION AND POWER ANALYSIS

Numerous statistical software systems are available currently. The commonly used software systems are Statistical Package for the Social Sciences (SPSS – manufactured by IBM corporation), Statistical Analysis System ((SAS – developed by SAS Institute North Carolina, United States of America), R (designed by Ross Ihaka and Robert Gentleman from R core team), Minitab (developed by Minitab Inc), Stata (developed by StataCorp) and the MS Excel (developed by Microsoft).

There are a number of web resources which are related to statistical power analyses. A few are:

  • StatPages.net – provides links to a number of online power calculators
  • G-Power – provides a downloadable power analysis program that runs under DOS
  • Power analysis for ANOVA designs an interactive site that calculates power or sample size needed to attain a given power for one effect in a factorial ANOVA design
  • SPSS makes a program called SamplePower. It gives an output of a complete report on the computer screen which can be cut and paste into another document.

It is important that a researcher knows the concepts of the basic statistical methods used for conduct of a research study. This will help to conduct an appropriately well-designed study leading to valid and reliable results. Inappropriate use of statistical techniques may lead to faulty conclusions, inducing errors and undermining the significance of the article. Bad statistics may lead to bad research, and bad research may lead to unethical practice. Hence, an adequate knowledge of statistics and the appropriate use of statistical tests are important. An appropriate knowledge about the basic statistical methods will go a long way in improving the research designs and producing quality medical research which can be utilised for formulating the evidence-based guidelines.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Current students

  • Staff intranet
  • Find an event

Research skills for HDR students

  • Overview and planning
  • Theses including publications
  • Originality
  • Structuring your thesis
  • Literature reviews
  • Writing up results

Interpreting results

In your thesis, specifically in the discussion section, you will have to present an argument, or a set of arguments, about the significance of your results, any limitations or problems of your research design or implementation, and consequent proposals for future work. This requires you to interpret your results and locate them in the context of existing research.

This usually occurs in the discussion section of a thesis based on empirical research and generally includes the following. This is not a fixed order and you won’t necessarily include all these elements.

  • Background information
  • Statement of result
  • (Un)expected outcomes
  • Reference to previous research (comparison)
  • Explanation of unexpected results
  • Exemplification
  • Deduction (a claim about the generalisability of particular findings)
  • Hypothesis (a more general claim arising from the results)
  • Reference to previous research (support)
  • Recommendation
  • Justification

(from Hopkins and Dudley-Evans, 1988).

There are therefore two reasons for referring to the research literature in the discussion of results. First, you need to compare your results with those reported previously. This allows you to show how your findings reflect, contradict or extend previous research. Second, when you are generalising from your findings, you can use the existing literature to support your deductions or hypotheses.

This material was developed by the Learning Hub (Academic Language and Learning), who offer workshops, face-to-face consultations and resources to support your learning. Find out more about how they can help you develop your communication, research and study skills .

See our handout on Writing a thesis proposal (pdf, 341KB) .

Related links

  • Learning Hub (Academic Language and Learning)
  • Learning Hub (Academic Language and Learning) workshops
  • Prepare your thesis
  • Website feedback

Your feedback has been sent.

Sorry there was a problem sending your feedback. Please try again

You should only use this form to send feedback about the content on this webpage – we will not respond to other enquiries made through this form. If you have an enquiry or need help with something else such as your enrolment, course etc you can contact the Student Centre.

  • Find an expert
  • Media contacts

Student links

  • How to log in to University systems
  • Class timetables
  • Our Rankings
  • Faculties and schools
  • Research centres
  • Campus locations
  • Find a staff member
  • Careers at Sydney
  • Emergencies and personal safety

Group Of Eight

  • Accessibility
  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Qualitative Research

A newer edition of this book is available.

  • < Previous chapter
  • Next chapter >

30 Interpretation Strategies: Appropriate Concepts

Allen Trent, College of Education, University of Wyoming

Jeasik Cho, Department of Educational Studies, University of Wyoming

  • Published: 04 August 2014
  • Cite Icon Cite
  • Permissions Icon Permissions

This essay addresses a wide range of concepts related to interpretation in qualitative research, examines the meaning and importance of interpretation in qualitative inquiry, and explores the ways methodology, data, and the self/researcher as instrument interact and impact interpretive processes. Additionally, the essay presents a series of strategies for qualitative researchers engaged in the process of interpretation. The article closes by presenting a framework for qualitative researchers designed to inform their interpretations. The framework includes attention to the key qualitative research concepts transparency, reflexivity, analysis, validity, evidence, and literature. Four questions frame the article: What is interpretation, and why are interpretive strategies important in qualitative research? How do methodology, data, and the researcher/self impact interpretation in qualitative research? How do qualitative researchers engage in the process of interpretation? And, in what ways can a framework for interpretation strategies support qualitative researchers across multiple methodologies and paradigms?

“All human knowledge takes the form of interpretation.” In this seemingly simple statement, the late German philosopher Walter Benjamin asserts that all knowledge is mediated and constructed. He makes no distinction between physical and social sciences, and so situates himself as an interpretivist, one who believes that human subjectivity, individuals’ characteristics, feelings, opinions, and experiential backgrounds impact observations, analysis of these observations, and resultant knowledge/truth constructions. Contrast this perspective with positivist claims that knowledge is based exclusively on external facts, objectively observed and recorded. Interpretivists then, acknowledge that, if positivistic notions of knowledge and truth are inadequate to explain social phenomena, then positivist, hard science approaches to research (i.e., the scientific method and its variants) are also inadequate. So, although the literature often contrasts quantitative and qualitative research as largely a difference in kinds of data employed (numerical vs. linguistic), instead, the primary differentiation is in the foundational, paradigmatic assumptions about truth, knowledge, and objectivity.

This chapter is about interpretation and the strategies that qualitative researchers use to interpret a wide variety of “texts.” Knowledge, we assert, is constructed, both individually (constructivism) and socially (constructionism). We accept this as our starting point. Our aim here is to share our perspective on a broad set of concepts associated with the interpretive or meaning-making process. Although it may happen at different times and in different ways, interpretation is a part of almost all qualitative research.

Qualitative research is an umbrella term that encompasses a wide array of paradigmatic views, goals, and methods. Still, there are key unifying elements that include a generally constructionist epistemological standpoint, attention to primarily linguistic data, and generally accepted protocols or syntax for conducting research. Typically, qualitative researchers begin with a starting point—a curiosity, a problem in need of solutions, a research question, or a desire to better understand a situation from the perspectives of the individuals who inhabit that context (what qualitative researchers call the “emic,” or insider’s, perspective).

From this starting point, researchers determine the appropriate kinds of data to collect, engage in fieldwork as participant-observers to gather these data, organize the data, look for patterns, and then attempt to make sense out of the data by synthesizing research “findings,” “assertions,” or “theories” in ways that can be shared so that others may also gain insights from the conducted inquiry.

Although there are commonalities that cut across most forms of qualitative research, this is not to say that there is an accepted, linear, standardized approach. To be sure, there are an infinite number of variations and nuances in the qualitative research process. For example, some forms of inquiry begin with a firm research question, others without even a clear focus for study. Grounded theorists begin data analysis and interpretation very early in the research process, whereas some case study researchers, for example, may collect data in the field for a period of time before seriously considering the data and its implications. Some ethnographers may be a part of the context (e.g., observing in classrooms), but they may assume more observer-like roles, as opposed to actively participating in the context. Alternatively, action researchers, in studying issues about their own practice, are necessarily situated toward the “participant” end of the participant–observer continuum.

Our focus here is on one integrated part of the qualitative research process, interpretation, the process of collective and individual “meaning making.” As we discuss throughout this chapter, researchers take a variety of approaches to interpretation in qualitative work. Four general questions guide our explorations:

What is interpretation, and why are interpretive strategies important in qualitative research?

How do methodology, data, and the researcher/self impact interpretation in qualitative research?

How do qualitative researchers engage in the process of interpretation?

In what ways can a framework for interpretation strategies support qualitative researchers across multiple methodological and paradigmatic views?

We address each of these guiding questions in our attempt to explicate our interpretation of “interpretation,” and, as educational researchers, we include examples from our own work to illustrate some key concepts.

What Is Interpretation, and Why Are Interpretive Strategies Important in Qualitative Research?

Qualitative researchers and those writing about qualitative methods often intertwine the terms analysis and interpretation . For example, Hubbard and Power (2003) describe data analysis as, “bringing order, structure, and meaning to the data” (p. 88). To us, this description combines analysis with interpretation. Although there is nothing wrong with this construction, our understanding aligns more closely with Mills’s (2007) claim that, “put simply, analysis involves summarizing what’s in the data, whereas interpretation involves making sense of—finding meaning in—that data” (p. 122). For the purpose of this chapter, we’ll adhere to Mills’s distinction, understanding analysis as summarizing and organizing, and interpretation as meaning making. Unavoidably, these closely related processes overlap and interact, but our focus will be primarily on the more complex of these endeavors, interpretation. Interpretation, in this sense, is in part translation, but translation is not an objective act. Instead, translation necessarily involves selectivity and the ascribing of meaning. Qualitative researchers “aim beneath manifest behavior to the meaning events have for those who experience them” ( Eisner, 1991 , p. 35). The presentation of these insider/emic perspectives is a hallmark of qualitative research.

Qualitative researchers have long borrowed from extant models for fieldwork and interpretation. Approaches from anthropology and the arts have become especially prominent. For example, Eisner’s form of qualitative inquiry, “educational criticism” (1991), draws heavily on accepted models of art criticism. Barrett (2000) , an authority on art criticism, describes interpretation as a complex set of processes based on a set of principles. We believe many of these principles apply as readily to qualitative research as they do to critique. The following principles, adapted from Barrett’s principles of interpretation (2000, pp. 113–120), inform our examination:

Qualitative phenomena have “aboutness ”: All social phenomena have meaning, but meanings in this context can be multiple, even contradictory.

Interpretations are persuasive arguments : All interpretations are arguments, and qualitative researchers, like critics, strive to build strong arguments grounded in the information, or data, available.

Some interpretations are better than others : Barrett notes that, “some interpretations are better argued, better grounded with evidence, and therefore more reasonable, more certain, and more acceptable than others” (p. 115). This contradicts the argument that “all interpretations are equal,” heard in the common refrain, “well, that’s just your interpretation.”

There can be different, competing, and contradictory interpretations of the same phenomena : As noted at the beginning of this chapter, we acknowledge that subjectivity matters, and, unavoidably, it impacts one’s interpretations. As Barrett notes (2000) , “Interpretations are often based on a worldview” (p. 116).

Interpretations are not (and can’t be) “right,” but instead, they can be more or less reasonable, convincing, and informative : There is never one “true” interpretation, but some interpretations are more compelling than others.

Interpretations can be judged by coherence, correspondence, and inclusiveness : Does the argument/interpretation make sense (coherence)? Does the interpretation fit the data (correspondence)? Have all data been attended to, including outlier data that don’t necessarily support identified themes (inclusiveness)?

Interpretation is ultimately a communal endeavor : Initial interpretations may be incomplete, nearsighted, and/or narrow, but eventually, these interpretations become richer, broader, and more inclusive. Feminist revisionist history projects are an exemplary case. Over time, the writing, art, and cultural contributions of countless women, previously ignored, diminished, or distorted, have come to be accepted as prominent contributions given serious consideration.

So, meaning is conferred; interpretations are socially constructed arguments; multiple interpretations are to be expected; and some interpretations are better than others. As we discuss later in this chapter, what makes an interpretation “better” often hinges on the purpose/goals of the research in question. Interpretations designed to generate theory, or generalizable rules, will be “better” for responding to research questions aligned with the aims of more traditional quantitative/positivist research, whereas interpretations designed to construct meanings through social interaction, to generate multiple perspectives, and to represent the context-specific perspectives of the research participants are “better” for researchers constructing thick, contextually rich descriptions, stories, or narratives. The former relies on more “atomistic” interpretive strategies, whereas the latter adheres to a more “holistic” approach ( Willis, 2007 ). Both approaches to analysis/interpretation are addressed in more detail later in this chapter.

At this point, readers might ask, why does interpretation matter, anyway? Our response to this question involves the distinctive nature of interpretation and the ability of the interpretive process to put unique fingerprints on an otherwise relatively static set of data. Once interview data are collected and transcribed (and we realize that even the process of transcription is, in part, interpretive), documents are collected, and observations are recorded, qualitative researchers could just, in good faith and with fidelity, represent the data in as straightforward ways as possible, allowing readers to “see for themselves” by sharing as much actual data (e.g., the transcribed words of the research participants) as possible. This approach, however, includes analysis, what we have defined as summarizing and organizing data for presentation, but it falls short of what we actually reference and define as interpretation—attempting to explain the meaning of others’ words and actions. “While early efforts at qualitative research might have stopped at description, it is now more generally accepted that a qualitative researcher adds understanding and interpretation to the description” ( Lichtman, 2006 , p. 8).

As we are fond of the arts and arts-based approaches to qualitative research, an example from the late jazz drummer, Buddy Rich, seems fitting. Rich explains the importance of having the flexibility to interpret: “I don’t think any arranger should ever write a drum part for a drummer, because if a drummer can’t create his own interpretation of the chart, and he plays everything that’s written, he becomes mechanical; he has no freedom.” The same is true for qualitative researchers; without the freedom to interpret, the researcher merely regurgitates, attempting to share with readers/reviewers exactly what the research subjects shared with him or her. It is only through interpretation that the researcher, as collaborator with unavoidable subjectivities, is able to construct unique, contextualized meaning. Interpretation then, in this sense, is knowledge construction.

In closing this section, we’ll illustrate the analysis versus interpretation distinction with the following transcript excerpt. In this study, the authors ( Trent & Zorko, 2006 ) were studying student teaching from the perspective of K–12 students. This quote comes from a high school student in a focus group interview. She is describing a student teacher she had:

The right-hand column contains “codes” or labels applied to parts of the transcript text. Coding will be discussed in more depth later in this chapter, but, for now, note that the codes are mostly summarizing the main ideas of the text, sometimes using the exact words of the research participant. This type of coding is a part of what we’ve called analysis—organizing and summarizing the data. It’s a way of beginning to say, “what is” there. As noted, though, most qualitative researchers go deeper. They want to know more than “what is”; they also ask, “what does it mean?” This is a question of interpretation.

Specific to the transcript excerpt, researchers might next begin to cluster the early codes into like groups. For example, the teacher “felt targeted,” “assumed kids were going to behave inappropriately,” and appeared to be “overwhelmed.” A researcher might cluster this group of codes in a category called “teacher feelings and perceptions” and may then cluster the codes “could not control class,” and “students off task” into a category called “classroom management.” The researcher then, in taking a fresh look at these categories and the included codes, may begin to conclude that what’s going on in this situation is that the student teacher does not have sufficient training in classroom management models and strategies and may also be lacking the skills she needs to build relationships with her students. These then would be interpretations, persuasive arguments connected to the study’s data. In this specific example, the researchers might proceed to write a memo about these emerging interpretations. In this memo, they might more clearly define their early categories and may also look through other data to see if there are other codes or categories that align with or overlap with this initial analysis. They might write further about their emergent interpretations and, in doing so, may inform future data collection in ways that will allow them to either support or refute their early interpretations. These researchers will also likely find that the processes of analysis and interpretation are inextricably intertwined. Good interpretations very often depend on thorough and thoughtful analyses.

How Do Methodology, Data, and the Researcher/Self Impact Interpretation in Qualitative Research?

Methodological conventions guide interpretation and the use of interpretive strategies. For example, in grounded theory and in similar methodological traditions, “formal analysis begins early in the study and is nearly completed by the end of data collection” ( Bogdan & Biklen, 2003 , p. 66). Alternatively, for researchers from other traditions, for example, case study researchers, “Formal analysis and theory development [interpretation] do not occur until after the data collection is near complete” (p. 66).

Researchers subscribing to methodologies that prescribe early data analysis and interpretation may employ methods like analytic induction or the constant comparison method. In using analytic induction, researchers develop a rough definition of the phenomena under study; collect data to compare to this rough definition; modify the definition as needed, based on cases that both fit and don’t fit the definition; and finally, establish a clear, universal definition (theory) of the phenomena (Robinson, 1951, cited in Bogdan & Biklen, 2003 , p. 65). Generally, those using a constant comparison approach begin data collection immediately; identify key issues, events, and activities related to the study that then become categories of focus; collect data that provide incidents of these categories; write about and describe the categories, accounting for specific incidents and seeking others; discover basic processes and relationships; and, finally, code and write about the categories as theory, “grounded” in the data ( Glaser, 1965 ). Although processes like analytic induction and constant comparison can be listed as “steps” to follow, in actuality, these are more typically recursive processes in which the researcher repeatedly goes back and forth between the data and emerging analyses and interpretations.

In addition to methodological conventions that prescribe data analysis early (e.g., grounded theory) or later (e.g., case study) in the inquiry process, methodological approaches also impact the general approach to analysis and interpretation. Ellingson (2011) situates qualitative research methodologies on a continuum spanning “science”-like approaches on one end juxtaposed with “art”-like approaches on the other.

Researchers pursuing a more science-oriented approach seek valid, reliable, generalizable knowledge; believe in neutral, objective researchers; and ultimately claim single, authoritative interpretations. Researchers adhering to these science-focused, post-positivistic approaches may count frequencies, emphasize the validity of the employed coding system, and point to intercoder reliability and random sampling as criteria that bolsters the research credibility. Researchers at or near the science end of the continuum might employ analysis and interpretation strategies that include “paired comparisons,” “pile sorts,” “word counts,” identifying “key words in context,” and “triad tests” ( Ryan & Bernard, 2000 , pp. 770–776). These researchers may ultimately seek to develop taxonomies or other authoritative final products that organize and explain the collected data.

For example, in a study we conducted about preservice teachers’ experiences learning to teach second-language learners, the researchers collected larger datasets and used a statistical analysis package to analyze survey data, and the resultant findings included descriptive statistics. These survey results were supported with open-ended, qualitative data. For example, one of the study’s findings was “a strong majority of candidates (96%) agreed that an immersion approach alone will not guarantee academic or linguistic success for second language learners.” In narrative explanations, one preservice teacher remarked, “there has to be extra instructional efforts to help their students learn English... they won’t learn English by merely sitting in the classrooms” ( Cho, Rios, Trent, & Mayfield, 2012 , p. 75).

Methodologies on the “art” side of Ellingson’s (2011) continuum, alternatively, “value humanistic, openly subjective knowledge, such as that embodied in stories, poetry, photography, and painting” (p. 599). Analysis and interpretation in these (often more contemporary) methodological approaches strive not for “social scientific truth,” but instead are formulated to “enable us to learn about ourselves, each other, and the world through encountering the unique lens of a person’s (or a group’s) passionate rendering of a reality into a moving, aesthetic expression of meaning” (p. 599). For these “artistic/interpretivists, truths are multiple, fluctuating and ambiguous” (p. 599). Methodologies taking more artistic, subjective approaches to analysis and interpretation include autoethnography, testimonio, performance studies, feminist theorists/researchers, and others from related critical methodological forms of qualitative practice.

As an example, one of us engaged in an artistic inquiry with a group of students in an art class for elementary teachers. We called it “Dreams as Data” and, among the project aims, we wanted to gather participants’ “dreams for education in the future” and display these dreams in an accessible, interactive, artistic display (see Trent, 2002 ). The intent here was not to statistically analyze the dreams/data; instead, it was more universal. We wanted, as Ellingson (2011) noted, to use participant responses in ways that “enable us to learn about ourselves, each other, and the world.” The decision was made to leave responses intact and to share the whole/raw dataset in the artistic display in ways that allowed the viewers to holistically analyze and interpret for themselves. The following text is an excerpt from one response:

Almost a century ago, John Dewey eloquently wrote about the need to imagine and create the education that ALL children deserve, not just the richest, the Whitest, or the easiest to teach. At the dawn of this new century, on some mornings, I wake up fearful that we are further away from this ideal than ever.... Collective action, in a critical, hopeful, joyful, anti-racist and pro-justice spirit, is foremost in my mind as I reflect on and act in my daily work.... Although I realize the constraints on teachers and schools in the current political arena, I do believe in the power of teachers to stand next to, encourage, and believe in the students they teach—in short, to change lives. ( Trent, 2002 , p. 49)

In sum, researchers whom Ellingson (2011) characterizes as being on the science end of the continuum typically use more detailed or “atomistic” strategies to analyze and interpret qualitative data, whereas those toward the artistic end most often employ more holistic strategies. Both of these general approaches to qualitative data analysis and interpretation, atomistic and holistic, will be addressed later in this chapter.

As noted, qualitative researchers attend to data in a wide variety of ways depending on paradigmatic and epistemological beliefs, methodological conventions, and the purpose/aims of the research. These factors impact the kinds of data collected and the ways these data are ultimately analyzed and interpreted. For example, life history or testimonio researchers conduct extensive individual interviews, ethnographers record detailed observational notes, critical theorists may examine documents from pop culture, and ethnomethodologists may collect videotapes of interaction for analysis and interpretation.

In addition to the wide range of data types that are collected by qualitative researchers (and most qualitative researchers collect multiple forms of data), qualitative researchers, again influenced by the factors noted earlier, employ a variety of approaches to analyzing and interpreting data. As mentioned earlier in this article, some advocate for a detailed/atomistic, fine-grained approach to data (see e.g., Miles & Huberman, 1994 ); others, a more broad-based, holistic, “eyeballing” of the data. “Eyeballers reject the more structured approaches to analysis that break down the data into small units and, from the perspective of the eyeballers, destroy the wholeness and some of the meaningfulness of the data” ( Willis, 2007 , p. 298).

Regardless, we assert, as illustrated in Figure 30.1 , that as the process evolves, data collection becomes less prominent later in the process, as interpretation and making sense/meaning of the data becomes more prominent. It is through this emphasis on interpretation that qualitative researchers put their individual imprints on the data, allowing for the emergence of multiple, rich perspectives. This space for interpretation allows researchers the “freedom” Buddy Rich alluded to in his quote about interpreting musical charts. Without this freedom, Rich noted that the process would be simply “mechanical.” Furthermore, allowing space for multiple interpretations nourishes the perspectives of many

As emphasis on data/data collection decreases, emphasis on interpretation increases.

others in the community. Writer and theorist Meg Wheatley explains, “everyone in a complex system has a slightly different interpretation. The more interpretations we gather, the easier it becomes to gain a sense of the whole.”

In addition to the roles methodology and data play in the interpretive process, perhaps the most important is the role of the self/the researcher in the interpretive process. “She is the one who asks the questions. She is the one who conducts the analyses. She is the one who decides who to study and what to study. The researcher is the conduit through which information is gathered and filtered” ( Lichtman, 2006 , p. 16). Eisner (1991) supports the notion of the researcher “self as instrument,” noting that expert researchers don’t simply know what to attend to, but also what to neglect. He describes the researcher’s role in the interpretive process as combining sensibility , the ability to observe and ascertain nuances, with schema , a deep understanding or cognitive framework of the phenomena under study.

Barrett (2007) describes self/researcher roles as “transformations” (p. 418) at multiple points throughout the inquiry process: early in the process, researchers create representations through data generation, conducting observations and interviews and collecting documents and artifacts. Another “transformation occurs when the ‘raw’ data generated in the field are shaped into data records by the researcher. These data records are produced through organizing and reconstructing the researcher’s notes and transcribing audio and video recordings in the form of permanent records that serve as the ‘evidentiary warrants’ of the generated data. The researcher strives to capture aspects of the phenomenal world with fidelity by selecting salient aspects to incorporate into the data record” (p. 418). Transformation continues when the researcher analyzes, codes, categorizes, and explores patterns in the data (the process we call analysis). Transformations also involve interpreting what the data mean and relating these “interpretations to other sources of insight about the phenomena, including findings from related research, conceptual literature, and common experience.... Data analysis and interpretation are often intertwined and rely upon the researcher’s logic, artistry, imagination, clarity, and knowledge of the field under study” ( Barrett, 2007 , p. 418).

We mentioned the often-blended roles of participation and observation earlier in this chapter. The role(s) of the self/researcher are often described as points along a “participant/observer continuum” (see, e.g., Bogdan & Biklen, 2003 ). On the far “observer” end of this continuum, the researcher situates as detached, tries to be inconspicuous (so as not to impact/disrupt the phenomena under study), and approaches the studied context as if viewing it from behind a one-way mirror. On the opposite, “participant” end, the researcher is completely immersed and involved in the context. It would be difficult for an outsider to distinguish between researcher and subjects. For example, “some feminist researchers and some postmodernists take on a political stance as well and have an agenda that places the researcher in an activist posture. These researchers often become quite involved with the individuals they study and try to improve their human condition” ( Lichtman, 2006 , p. 9).

We assert that most researchers fall somewhere between these poles. We believe that complete detachment is both impossible and misguided. In doing so, we, along with many others, acknowledge (and honor) the role of subjectivity, the researcher’s beliefs, opinions, biases, and predispositions. Positivist researchers seeking objective data and accounts either ignore the impact of subjectivity or attempt to drastically diminish/eliminate its impact. Even qualitative researchers have developed methods to avoid researcher subjectivity affecting research data collection, analysis, and interpretation. For example, foundational phenomenologist Husserl (1962/1913) developed the concept of “bracketing,” what Lichtman describes as “trying to identify your own views on the topic and then putting them aside” (2006, p. 13). Like Slotnick and Janesick (2011) , we ultimately claim, “it is impossible to bracket yourself” (p. 1358). Instead, we take a balanced approach, like Eisner, understanding that subjectivity allows researchers to produce the rich, idiosyncratic, insightful, and yet data-based interpretations and accounts of lived experience that accomplish the primary purposes of qualitative inquiry. “Rather than regarding uniformity and standardization as the summum bonum, educational criticism [Eisner’s form of qualitative research] views unique insight as the higher good” ( Eisner, 1991 , p. 35). That said, we also claim that, just because we acknowledge and value the role of researcher subjectivity, researchers are still obligated to ground their findings in reasonable interpretations of the data. Eisner (1991) explains:

This appreciation for personal insight as a source of meaning does not provide a license for freedom. Educational critics must provide evidence and reasons. But they reject the assumption that unique interpretation is a conceptual liability in understanding, and they see the insights secured from multiple views as more attractive than the comforts provided by a single right one. (p. 35)

Connected to this participant/observer continuum is the way the researcher positions him- or herself in relation to the “subjects” of the study. Traditionally, researchers, including early qualitative researchers, anthropologists, and ethnographers, referenced those studied as “subjects.” More recently, qualitative researchers better understand that research should be a reciprocal process in which both researcher and the foci of the research should derive meaningful benefit. Researchers aligned with this thinking frequently use the term “participants” to describe those groups and individuals included in a study. Going a step farther, some researchers view research participants as experts on the studied topic and as equal collaborators in the meaning-making process. In these instances, researchers often use the terms “co-researchers” or “co-investigators.”

The qualitative researcher, then, plays significant roles throughout the inquiry process. These roles include transforming data, collaborating with research participants or co-researchers, determining appropriate points to situate along the participant/observer continuum, and ascribing personal insights, meanings, and interpretations that are both unique and justified with data exemplars. Performing these roles unavoidably impacts and changes the researcher. “Since, in qualitative research the individual is the research instrument through which all data are passed, interpreted, and reported, the scholar’s role is constantly evolving as self evolves” ( Slotnick & Janesick, 2011 , p. 1358).

As we note later, key in all this is for researchers to be transparent about the topics discussed in the preceding section: what methodological conventions have been employed and why? How have data been treated throughout the inquiry to arrive at assertions and findings that may or may not be transferable to other idiosyncratic contexts? And, finally, in what ways has the researcher/self been situated in and impacted the inquiry? Unavoidably, we assert, the self lies at the critical intersection of data and theory, and, as such, two legs of this stool, data and researcher, interact to create the third, theory.

How Do Qualitative Researchers Engage in the Process of Interpretation?

Theorists seem to have a propensity to dichotomize concepts, pulling them apart and placing binary opposites on far ends of conceptual continuums. Qualitative research theorists are no different, and we have already mentioned some of these continua in this chapter. For example, in the last section, we discussed the participant–observer continuum. Earlier, we referenced both Willis’s (2007) conceptualization of “atomistic” versus “holistic” approaches to qualitative analysis and interpretation and Ellingson’s (2011) science–art continuum. Each of these latter two conceptualizations inform “how qualitative researchers engage in the process of interpretation.”

Willis (2007) shares that the purpose of a qualitative project might be explained as “what we expect to gain from research” (p. 288). The purpose, or “what we expect to gain,” then guides and informs the approaches researchers might take to interpretation. Some researchers, typically positivist/postpositivist, conduct studies that aim to test theories about how the world works and/or people behave. These researchers attempt to discover general laws, truths, or relationships that can be generalized. Others, less confident in the ability of research to attain a single, generalizable law or truth, might seek “local theory.” These researchers still seek truths, but “instead of generalizable laws or rules, they search for truths about the local context... to understand what is really happening and then to communicate the essence of this to others” ( Willis, 2007 , p. 291). In both of these purposes, researchers employ atomistic strategies in an inductive process in which researchers “break the data down into small units and then build broader and broader generalizations as the data analysis proceeds” (p. 317). The earlier mentioned processes of analytic induction, constant comparison, and grounded theory fit within this conceptualization of atomistic approaches to interpretation. For example, a line-by-line coding of a transcript might begin an atomistic approach to data analysis.

Alternatively, other researchers pursue distinctly different aims. Researchers with an “objective description” purpose focus on accurately describing the people and context under study. These researchers adhere to standards and practices designed to achieve objectivity, and their approach to interpretation falls between the binary atomistic/holistic distinction.

The purpose of hermeneutic approaches to research is to “understand the perspectives of humans. And because understanding is situational, hermeneutic research tends to look at the details of the context in which the study occurred. The result is generally rich data reports that include multiple perspectives” ( Willis, 2007 , p. 293).

Still other researchers see their purpose as the creation of stories or narratives that utilize “a social process that constructs meaning through interaction... it is an effort to represent in detail the perspectives of participants... whereas description produces one truth about the topic of study, storytelling may generate multiple perspectives, interpretations, and analyses by the researcher and participants” ( Willis, 2007 , p. 295).

In these latter purposes (hermeneutic, storytelling, narrative production), researchers typically employ more holistic strategies. “Holistic approaches tend to leave the data intact and to emphasize that meaning must be derived for a contextual reading of the data rather than the extraction of data segments for detailed analysis” (p. 297). This was the case with the “Dreams as Data” project mentioned earlier.

We understand the propensity to dichotomize, situate concepts as binary opposites, and to create neat continua between these polar descriptors. These sorts of reduction and deconstruction support our understandings and, hopefully, enable us to eventually reconstruct these ideas in meaningful ways. Still, in reality, we realize most of us will, and should, work in the middle of these conceptualizations in fluid ways that allow us to pursue strategies, processes, and theories most appropriate for the research task at hand. As noted, Ellingson (2011) sets up another conceptual continuum, but, like ours, her advice is to “straddle multiple points across the field of qualitative methods” (p. 595). She explains, “I make the case for qualitative methods to be conceptualized as a continuum anchored by art and science, with vast middle spaces that embody infinite possibilities for blending artistic, expository, and social scientific ways of analysis and representation” (p. 595).

We explained at the beginning of this chapter that we view analysis as organizing and summarizing qualitative data, and interpretation as constructing meaning. In this sense, analysis allows us to “describe” the phenomena under study. It enables us to succinctly answer “what” and “how” questions and ensures that our descriptions are grounded in the data collected. Descriptions, however, rarely respond to questions of “why?” Why questions are the domain of interpretation, and, as noted throughout this text, interpretation is complex. “Traditionally, qualitative inquiry has concerned itself with what and how questions... qualitative researchers typically approach why questions cautiously, explanation is tricky business” ( Gubrium & Holstein, 2000 , p. 502). Eisner (1991) describes this distinctive nature of interpretation: “it means that inquirers try to account for [interpretation] what they have given account of ” (p. 35).

Our focus here is on interpretation, but interpretation requires analysis, for without having clear understandings of the data and its characteristics, derived through systematic examination and organization (e.g., coding, memoing, categorizing, etc.), “interpretations” resulting from inquiry will likely be incomplete, uninformed, and inconsistent with the constructed perspectives of the study participants. Fortunately for qualitative researchers, we have many sources that lead us through analytic processes. We earlier mentioned the accepted processes of analytic induction and the constant comparison method. These detailed processes (see e.g., Bogdan & Biklen, 2003 ) combine the inextricably linked activities of analysis and interpretation, with “analysis” more typically appearing as earlier steps in the process and meaning construction—“interpretation”—happening later.

A wide variety of resources support researchers engaged in the processes of analysis and interpretation. Saldaña (2011) , for example, provides a detailed description of coding types and processes. He shows researchers how to use process coding (uses gerunds, “-ing” words to capture action), in vivo coding (uses the actual words of the research participants/subjects), descriptive coding (uses nouns to summarize the data topics), versus coding (uses “vs.” to identify conflicts and power issues), and values coding (identifies participants’ values, attitudes, and/or beliefs). To exemplify some of these coding strategies, we include an excerpt from a transcript of a meeting of a school improvement committee. In this study, the collaborators were focused on building “school community.” This excerpt illustrates the application of a variety of codes described by Saldaña to this text:

To connect and elaborate the ideas developed in coding, Saldaña (2011) suggests researchers categorize the applied codes, write memos to deepen understandings and illuminate additional questions, and identify emergent themes. To begin the categorization process, Saldaña recommends all codes be “classified into similar clusters... once the codes have been classified, a category label is applied to them” (p. 97). So, in continuing with the study of school community example coded here, the researcher might create a cluster/category called: “Value of Collaboration,” and in this category might include the codes, “relationships,” “building community,” and “effective strategies.”

Having coded and categorized a study’s various data forms, a typical next step for researchers is to write “memos” or “analytic memos.” Writing analytic memos allows the researcher(s) to “set in words your interpretation of the data... an analytic memo further articulates your... thinking processes on what things may mean... as the study proceeds, however, initial and substantive analytic memos can be revisited and revised for eventual integration into the report itself” ( Saldaña, 2011 , p. 98). In the study of student teaching from K–12 students’ perspectives ( Trent & Zorko, 2006 ), we noticed throughout our analysis a series of focus group interview quotes coded “names.” The following quote from a high school student is representative of many others:

I think that, ah, they [student teachers] should like know your face and your name because, uh, I don’t like it if they don’t and they’ll just like... cause they’ll blow you off a lot easier if they don’t know, like our new principal is here... he is, like, he always, like, tries to make sure to say hi even to the, like, not popular people if you can call it that, you know, and I mean, yah, and the people that don’t usually socialize a lot, I mean he makes an effort to know them and know their name like so they will cooperate better with him.

Although we didn’t ask the focus groups a specific question about whether or not student teachers knew the K–12 students’ names, the topic came up in every focus group interview. We coded the above excerpt and the others, “knowing names,” and these data were grouped with others under the category “relationships.” In an initial analytic memo about this, the researchers wrote:

STUDENT TEACHING STUDY—MEMO #3 “Knowing Names as Relationship Building” Most groups made unsolicited mentions of student teachers knowing, or not knowing, their names. We haven’t asked students about this, but it must be important to them because it always seems to come up. Students expected student teachers to know their names. When they did, students noticed and seemed pleased. When they didn’t, students seemed disappointed, even annoyed. An elementary student told us that early in the semester, “she knew our names... cause when we rose [sic] our hands, she didn’t have to come and look at our name tags... it made me feel very happy.” A high schooler, expressing displeasure that his student teacher didn’t know students’ names, told us, “They should like know your name because it shows they care about you as a person. I mean, we know their names, so they should take the time to learn ours too.” Another high school student said that even after 3 months, she wasn’t sure the student teacher knew her name. Another student echoed, “same here.” Each of these students asserted that this (knowing students’ names) had impacted their relationship with the student teacher. This high school student focus group stressed that a good relationship, built early, directly impacts classroom interaction and student learning. A student explained it like this: “If you get to know each other, you can have fun with them... they seem to understand you more, you’re more relaxed, and learning seems easier.” Meeting Transcript .  Process Coding .  Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Talking Sharing Building Listening Collaborating Understanding IN VIVO CODING Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Talking about what we want to get out of this Each of us sharing Hearing each of us reflecting Collaboration will be extremely valuable Relationships DESCRIPTIVE CODING Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Open, participatory discussion Identification of effective strategies Collaborative, productive relationships Robust Understandings VERSUS CODING Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Effective vs. Ineffective strategies Positive reflections vs. negative reflections VALUES CODING Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Sharing Building community Reflection Collaboration Relationships Deeper Understandings Meeting Transcript .  Process Coding .  Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Talking Sharing Building Listening Collaborating Understanding IN VIVO CODING Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Talking about what we want to get out of this Each of us sharing Hearing each of us reflecting Collaboration will be extremely valuable Relationships DESCRIPTIVE CODING Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Open, participatory discussion Identification of effective strategies Collaborative, productive relationships Robust Understandings VERSUS CODING Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Effective vs. Ineffective strategies Positive reflections vs. negative reflections VALUES CODING Let’s start talking about what we want to get out of this. What I’d like to hear is each of us sharing what we’re doing relative to this idea of building community. “Here’s what I’m doing. Here’s what worked. Here’s what didn’t work. I’m happy with this. I’m sad with this,” and just hearing each of us reflecting about what we’re doing I think will be interesting. That collaboration will be extremely valuable in terms of not only our relationships with one another, but also understanding the idea of community in more specific and concrete ways. Sharing Building community Reflection Collaboration Relationships Deeper Understandings Open in new tab

As noted in these brief examples, coding, categorizing, and writing memos about a study’s data are all accepted processes for data analysis and allow researchers to begin constructing new understandings and forming interpretations of the studied phenomena. We find the qualitative research literature to be particularly strong in offering support and guidance for researchers engaged in these analytic practices. In addition to those already noted in this chapter, we have found the following resources provide practical, yet theoretically grounded approaches to qualitative data analysis. For more detailed, procedural, or atomistic approaches to data analysis, we direct researchers to Miles and Huberman’s classic 1994 text, Qualitative Data Analysis , and Ryan and Bernard’s (2000) chapter on “Data Management and Analysis Methods.” For analysis and interpretation strategies falling somewhere between the atomistic and holistic poles, we suggest Hesse-Biber and Leavy’s (2011) chapter, “Analysis and Interpretation of Qualitative Data,” in their book, The Practice of Qualitative Research (2nd edition); Lichtman’s chapter, “Making Meaning From Your Data,” in her book Qualitative Research in Education: A User’s Guide; and “Processing Fieldnotes: Coding and Memoing” a chapter in Emerson, Fretz, and Shaw’s (1995) book, Writing Ethnographic Fieldnotes . Each of these sources succinctly describes the processes of data preparation, data reduction, coding and categorizing data, and writing memos about emergent ideas and findings. For more holistic approaches, we have found Denzin and Lincoln’s (2007)   Collecting and Interpreting Qualitative Materials , and Ellis and Bochner’s (2000) chapter “Autoethnography, Personal Narrative, Reflexivity,” to both be very informative.

We have not yet mentioned the use of computer software for data analysis. The use of CAQDAS (Computer Assisted Qualitative Data Analysis Software) has become prevalent. That said, it is beyond the scope of this chapter because, generally, the software is very useful for analysis, but only human researchers can interpret in the ways we describe. Multiple sources are readily available for those interested in exploring computer-assisted analysis. We have found the software to be particularly useful when working with large sets of data.

Even after reviewing the multiple resources for treating data included here, qualitative researchers might still be wondering, “but exactly how do we interpret?” In the remainder of this section, and in the concluding section of this chapter, we more concretely provide responses to this question, and, in closing, propose a framework for researchers to utilize as they engage in the complex, ambiguous, and yet exciting process of constructing meanings and new understandings from qualitative sources.

These meanings and understandings are often presented as theory, but theories in this sense should be viewed more as “guides to perception” as opposed to “devices that lead to the tight control or precise prediction of events” ( Eisner, 1991 , p. 95). Perhaps Erickson’s (1986) concept of “assertions” is a more appropriate aim for qualitative researchers. He claimed that assertions are declarative statements; they include a summary of the new understandings, and they are supported by evidence/data. These assertions are open to revision and are revised when disconfirming evidence requires modification. Assertions, theories, or other explanations resulting from interpretation in research are typically presented as “findings” in written research reports. Belgrave and Smith (2002) emphasize the importance of these interpretations (as opposed to descriptions), “the core of the report is not the events reported by the respondent, but rather the subjective meaning of the reported events for the respondent” (p. 248).

Mills (2007) views interpretation as responding to the question, “So what?” He provides researchers a series of concrete strategies for both analysis and interpretation. Specific to interpretation, Mills suggests a variety of techniques, including the following:

“ Extend the Analysis ”: In doing so, researchers ask additional questions about the research. The data appear to say X, but could it be otherwise? In what ways do the data support emergent finding X? And, in what ways do they not?

“ Connect Findings with Personal Experience ”: Using this technique, researchers share interpretations based on their intimate knowledge of the context, the observed actions of the individuals in the studied context, and the data points that support emerging interpretations, as well as their awareness of discrepant events or outlier data. In a sense, the researcher is saying, “based on my experiences in conducting this study, this is what I make of it all.”

“ Seek the Advice of ‘Critical’ Friends ”: In doing so, researchers utilize trusted colleagues, fellow researchers, experts in the field of study, and others to offer insights, alternative interpretations, and the application of their own unique lenses to a researcher’s initial findings. We especially like this strategy because we acknowledge that, too often, qualitative interpretation is a “solo” affair.

“ Contextualize the Findings in the Literature ”: This allows researchers to compare their interpretations to others writing about and studying the same/similar phenomena. The results of this contextualization may be that the current study’s findings correspond with the findings of other researchers. The results might, alternatively, differ from the findings of other researchers. In either instance, the researcher can highlight his or her unique contributions to our understanding of the topic under study.

“ Turn to Theory” : Mills defines theory as “an analytical and interpretive framework that helps the researcher make sense of ‘what is going on’ in the social setting being studied.” In turning to theory, researchers search for increasing levels of abstraction and move beyond purely descriptive accounts. Connecting to extant or generating new theory enables researchers to link their work to the broader contemporary issues in the field. (p. 136)

Other theorists offer additional advice for researchers engaged in the act of interpretation. Richardson (1995) reminds us to account for the power dynamics in the researcher–researched relationship and notes that, in doing so, we can allow for oppressed and marginalized voices to be heard in context. Bogdan and Biklen (2003) suggest that researchers engaged in interpretation revisit foundational writing about qualitative research, read studies related to the current research, ask evaluative questions (e.g., is what I’m seeing here good or bad?), ask about implications of particular findings/interpretations, think about the audience for interpretations, look for stories and incidents that illustrate a specific finding/interpretation, and attempt to summarize key interpretations in a succinct paragraph. All of these suggestions can be pertinent in certain situations and with particular methodological approaches. In the next and closing section of this chapter, we present a framework for interpretive strategies we believe will support, guide, and be applicable to qualitative researchers across multiple methodologies and paradigms.

In What Ways Can a Framework for Interpretation Strategies Support Qualitative Researchers Across Multiple Methodological and Paradigmatic Views?

The process of qualitative research is often compared to a journey, one without a detailed itinerary and ending, but instead a journey with general direction and aims and yet an open-endedness that adds excitement and thrives on curiosity. Qualitative researchers are travelers. They travel physically to field sites; they travel mentally through various epistemological, theoretical, and methodological grounds; they travel through a series of problem finding, access, data collection, and data analysis processes; and, finally—the topic of this chapter—they travel through the process of making meaning out of all this physical and cognitive travel via interpretation.

Although travel is an appropriate metaphor to describe the journey of qualitative researchers, we’ll also use “travel” to symbolize a framework for qualitative research interpretation strategies. By design, this is a framework that applies across multiple paradigmatic, epistemological, and methodological traditions. The application of this framework is not formulaic or highly prescriptive, it is also not an “anything goes” approach. It falls, and is applicable, between these poles, giving concrete (suggested) direction to qualitative researchers wanting to make the most out of the interpretations that result from their research, and yet allows the necessary flexibility for researchers to employ the methods, theories, and approaches they deem most appropriate to the research problem(s) under study.

TRAVEL, a Comprehensive Approach to Qualitative Interpretation

In using the word “TRAVEL” as a mnemonic device, our aim is to highlight six essential concepts we argue all qualitative researchers should attend to in the interpretive process: Transparency, Reflexivity, Analysis, Validity, Evidence, and Literature. The importance of each is addressed here.

Transparency , as a research concept seems, well... transparent. But, too often, we read qualitative research reports and are left with many questions: How were research participants and the topic of study selected/excluded? How were the data collected, when, and for how long? Who analyzed and interpreted these data? A single researcher? Multiple? What interpretive strategies were employed? Are there data points that substantiate these interpretations/findings? What analytic procedures were used to organize the data prior to making the presented interpretations? In being transparent about data collection, analysis, and interpretation processes, researchers allow reviewers/readers insight into the research endeavor, and this transparency leads to credibility for both researcher and researcher’s claims. Altheide and Johnson (2011) explain, “There is great diversity of qualitative research.... While these approaches differ, they also share an ethical obligation to make public their claims, to show the reader, audience, or consumer why they should be trusted as faithful accounts of some phenomenon” (p. 584). This includes, they note, articulating “what the different sources of data were, how they were interwoven, and... how subsequent interpretations and conclusions are more or less closely tied to the various data... the main concern is that the connection be apparent, and to the extent possible, transparent” (p. 590).

In the “Dreams as Data” art and research project noted earlier, transparency was addressed in multiple ways. Readers of the project write-up were informed that interpretations resulting from the study, framed as “themes,” were a result of collaborative analysis that included insights from both students and instructor. Viewers of the art installation/data display had the rare opportunity to see all participant responses. In other words, viewers had access to the entire raw dataset (see Trent, 2002 ). More frequently, we encounter only research “findings” already distilled, analyzed, and interpreted in research accounts, often by a single researcher. Allowing research consumers access to the data to interpret for themselves in the “dreams” project was an intentional attempt at transparency.

Reflexivity , the second of our concepts for interpretive researcher consideration, has garnered a great deal of attention in qualitative research literature. Some have called this increased attention the “reflexive turn” (see e.g., Denzin & Lincoln, 2004 :

Although you can find many meanings for the term reflexivity, it is usually associated with a critical reflection on the practice and process of research and the role of the researcher. It concerns itself with the impact of the researcher on the system and the system on the researcher. It acknowledges the mutual relationships between the researcher and who and what is studied... by acknowledging the role of the self in qualitative research, the researcher is able to sort through biases and think about how they affect various aspects of the research, especially interpretation of meanings. ( Lichtman, 2006 , pp. 206–207)

As with transparency, attending to reflexivity allows researchers to attach credibility to presented findings. Providing a reflexive account of researcher subjectivity and the interactions of this subjectivity within the research process is a way for researchers to communicate openly with their audience. Instead of trying to exhume inherent bias from the process, qualitative researchers share with readers the value of having a specific, idiosyncratic positionality. As a result, situated, contextualized interpretations are viewed as an asset, as opposed to a liability.

LaBanca (2011) , acknowledging the often solitary nature of qualitative research, calls for researchers to engage others in the reflexive process. Like many other researchers, LaBanca utilizes a researcher journal to chronicle reflexive thoughts, explorations and understandings, but he takes this a step farther. Realizing the value of others’ input, LaBanca posts his reflexive journal entries on a blog (what he calls an “online reflexivity blog”) and invites critical friends, other researchers, and interested members of the community to audit his reflexive moves, providing insights, questions, and critique that inform his research and study interpretations.

We agree this is a novel approach worth considering. We, too, understand that multiple interpreters will undoubtedly produce multiple interpretations, a richness of qualitative research. So, we suggest researchers consider bringing others in before the production of the report. This could be fruitful in multiple stages of the inquiry process, but especially so in the complex, idiosyncratic processes of reflexivity and interpretation. We are both educators and educational researchers. Historically, each of these roles has tended to be constructed as an isolated endeavor, the solitary teacher, the solo researcher/fieldworker. As noted earlier and in the “analysis” section that follows, introducing collaborative processes to what has often been a solitary activity offers much promise for generating rich interpretations that benefit from multiple perspectives.

Being consciously reflexive throughout our practice as researchers has benefitted us in many ways. In a study of teacher education curricula designed to prepare preservice teachers to support second-language learners, we realized hard truths that caused us to reflect on and adapt our own practices as teacher educators. Reflexivity can inform a researcher at all parts of the inquiry, even in early stages. For example, one of us was beginning a study of instructional practices in an elementary school. The communicated methods of the study indicated that the researcher would be largely an observer. Early fieldwork revealed that the researcher became much more involved as a participant than anticipated. Deep reflection and writing about the classroom interactions allowed the researcher to realize that the initial purpose of the research was not being accomplished, and the researcher believed he was having a negative impact on the classroom culture. Reflexivity in this instance prompted the researcher to leave the field and abandon the project as it was just beginning. Researchers should plan to openly engage in reflexive activities, including writing about their ongoing reflections and subjectivities. Including excerpts of this writing in research account supports our earlier recommendation of transparency.

Early in this chapter, for the purposes of discussion and examination, we defined analysis as “summarizing and organizing” data in a qualitative study, and interpretation as “finding” or “making” meaning. Although our focus has been on interpretation as the primary topic here, the importance of good analysis cannot be underestimated for, without it, resultant interpretations are likely incomplete and potentially uninformed. Comprehensive analysis puts researchers in a position to be deeply familiar with collected data and to organize these data into forms that lead to rich, unique interpretations, and yet to interpretations clearly connected to data exemplars. Although we find it advantageous to examine analysis and interpretation as different but related practices, in reality, the lines blur as qualitative researchers engage in these recursive processes.

We earlier noted our affinity for a variety of approaches to analysis (see e.g., Lichtman, 2006 ; Saldaña, 2011 ; or Hesse-Biber & Leavy 2011 ). Emerson, Fretz, and Shaw (1995) present a grounded approach to qualitative data analysis: in early stages, researchers engage in a close, line-by-line reading of data/collected text and accompany this reading with open coding , a process of categorizing and labeling the inquiry data. Next, researchers write initial memos to describe and organize the data under analysis. These analytic phases allow the researcher(s) to prepare, organize, summarize, and understand the data, in preparation for the more interpretive processes of focused coding and the writing up of interpretations and themes in the form of integrative memos .

Similarly, Mills (2007) provides guidance on the process of analysis for qualitative action researchers. His suggestions for organizing and summarizing data include coding (labeling data and looking for patterns), asking key questions about the study data (who, what, where, when, why, and how), developing concept maps (graphic organizers that show initial organization and relationships in the data), and stating what’s missing by articulating what data are not present (pp. 124–132).

Many theorists, like Emerson, Fretz, and Shaw (1995) and Mills (2007) noted here, provide guidance for individual researchers engaged in individual data collection, analysis, and interpretation; others, however, invite us to consider the benefits of collaboratively engaging in these processes through the use of collaborative research and analysis teams. Paulus, Woodside, and Ziegler (2008) wrote about their experiences in collaborative qualitative research: “Collaborative research often refers to collaboration among the researcher and the participants. Few studies investigate the collaborative process among researchers themselves” (p. 226).

Paulus, Woodside, and Ziegler (2008) claim that the collaborative process “challenged and transformed our assumptions about qualitative research” (p. 226). Engaging in reflexivity, analysis, and interpretation as a collaborative enabled these researchers to reframe their views about the research process, finding that the process was much more recursive, as opposed to following a linear progression. They also found that cooperatively analyzing and interpreting data yielded “collaboratively constructed meanings” as opposed to “individual discoveries.” And finally, instead of the traditional “individual products” resulting from solo research, collaborative interpretation allowed researchers to participate in an “ongoing conversation” (p. 226).

These researchers explain that engaging in collaborative analysis and interpretation of qualitative data challenged their previously held assumptions. They note, “through collaboration, procedures are likely to be transparent to the group and can, therefore, be made public. Data analysis benefits from an iterative, dialogic, and collaborative process because thinking is made explicit in a way that is difficult to replicate as a single researcher” ( Paulus, Woodside, & Ziegler, 2008 , p. 236). They share that during the collaborative process, “we constantly checked our interpretation against the text, the context, prior interpretations, and each other’s interpretations” (p. 234).

We, too, have engaged in analysis similar to these described processes, including working on research teams. We encourage other researchers to find processes that fit with the methodology and data of a particular study, use the techniques and strategies most appropriate, and then cite to the utilized authority to justify the selected path. We urge traditionally solo researchers to consider trying a collaborative approach. Generally, we suggest researchers be familiar with a wide repertoire of practices. In doing so, they’ll be in better positions to select and use strategies most appropriate for their studies and data. Succinctly preparing, organizing, categorizing, and summarizing data sets the researcher(s) up to construct meaningful interpretations in the forms of assertions, findings, themes, and theories.

Researchers want their findings to be sound, backed by evidence, justifiable, and to accurately represent the phenomena under study. In short, researchers seek validity for their work. We assert that qualitative researchers should attend to validity concepts as a part of their interpretive practices. We have previously written and theorized about validity, and, in doing so, we have highlighted and labeled what we consider to be two distinctly different approaches, transactional and transformational ( Cho & Trent, 2006 ). We define transactional validity in qualitative research as an interactive process occurring among the researcher, the researched, and the collected data, one that is aimed at achieving a relatively higher level of accuracy. Techniques, methods, and/or strategies are employed during the conduct of the inquiry. These techniques, such as member checking and triangulation, are seen as a medium with which to ensure an accurate reflection of reality (or, at least, participants’ constructions of reality). Lincoln and Guba’s (1985) widely known notion of trustworthiness in “naturalistic inquiry” is grounded in this approach. In seeking trustworthiness, researchers attend to research credibility, transferability, dependability, and confirmability. Validity approaches described by Maxwell (1992) as “descriptive” and “interpretive” also proceed in the usage of transactional processes.

For example, in the write-up of a study on the facilitation of teacher research, one of us ( Trent, 2012 , p. 44) wrote about the use of transactional processes: “‘Member checking is asking the members of the population being studied for their reaction to the findings’ ( Sagor, 2000 , p. 136). Interpretations and findings of this research, in draft form, were shared with teachers (for member checking) on multiple occasions throughout the study. Additionally, teachers reviewed and provided feedback on the final draft of this article.” This member checking led to changes in some resultant interpretations (called findings in this particular study) and to adaptations of others that shaped these findings in ways that made them both richer and more contextualized.

Alternatively, in transformational approaches, validity is not so much something that can be achieved solely by way of certain techniques. Transformationalists assert that because traditional or positivist inquiry is no longer seen as an absolute means to truth in the realm of human science, alternative notions of validity should be considered to achieve social justice, deeper understandings, broader visions, and other legitimate aims of qualitative research. In this sense, it is the ameliorative aspects of the research that achieve (or don’t achieve) its validity. Validity is determined by the resultant actions prompted by the research endeavor.

Lather (1993) , Richardson (1997) , and others (e.g., Lenzo, 1995 ; Scheurich, 1996 ) propose a transgressive approach to validity that emphasizes a higher degree of self-reflexivity. For example, Lather has proposed a “catalytic validity” described as “the degree to which the research empowers and emancipates the research subjects” ( Scheurich, 1996 , p. 4). Beverley (2000 , p. 556) has proposed “testimonio” as a qualitative research strategy. These first-person narratives find their validity in their ability to raise consciousness and thus provoke political action to remedy problems of oppressed peoples (e.g., poverty, marginality, exploitation).

We, too, have pursued research with transformational aims. In the earlier mentioned study of preservice teachers’ experiences learning to teach second-language learners ( Cho, Rios, Trent, & Mayfield, 2012 ), our aims were to empower faculty members, evolve the curriculum, and, ultimately, better serve preservice teachers so that they might better serve English-language learners in their classrooms. As program curricula and activities have changed as a result, we claim a degree of transformational validity for this research.

Important, then, for qualitative researchers throughout the inquiry, but especially when engaged in the process of interpretation, is to determine the type(s) of validity applicable to the study. What are the aims of the study? Providing an “accurate” account of studied phenomena? Empowering participants to take action for themselves and others? The determination of this purpose will, in turn, inform researchers’ analysis and interpretation of data. Understanding and attending to the appropriate validity criteria will bolster researcher claims to meaningful findings and assertions.

Regardless of purpose or chosen validity considerations, qualitative research depends on evidence . Researchers in different qualitative methodologies rely on different types of evidence to support their claims. Qualitative researchers typically utilize a variety of forms of evidence including texts (written notes, transcripts, images, etc.), audio and video recordings, cultural artifacts, documents related to the inquiry, journal entries, and field notes taken during observations of social contexts and interactions. “Evidence is essential to justification, and justification takes the form of an argument about the merit(s) of a given claim. It is generally accepted that no evidence is conclusive or unassailable (and hence, no argument is foolproof). Thus, evidence must often be judged for its credibility, and that typically means examining its source and the procedures by which it was produced [thus the need for transparency discussed earlier]” ( Schwandt, 2001 , p. 82).

Qualitative researchers distinguish evidence from facts. Evidence and facts are similar but not identical. We can often agree on facts, e.g., there is a rock, it is harder than cotton candy. Evidence involves an assertion that some facts are relevant to an argument or claim about a relationship. Since a position in an argument is likely tied to an ideological or even epistemological position, evidence is not completely bound by facts, but it is more problematic and subject to disagreement. ( Altheide & Johnson, 2011 , p. 586)

Inquirers should make every attempt to link evidence to claims (or findings, interpretations, assertions, conclusions, etc.). There are many strategies for making these connections. Induction involves accumulating multiple data points to infer a general conclusion. Confirmation entails directly linking evidence to resultant interpretations. Testability/falsifiability means illustrating that evidence does not necessarily contradict the claim/interpretation, and so increases the credibility of the claim ( Schwandt, 2001 ). In the “learning to teach second-language learners” study, for example, a study finding ( Cho, Rios, Trent, & Mayfield, 2012 , p. 77) was that “as a moral claim , candidates increasingly [in higher levels of the teacher education program] feel more responsible and committed to ELLs [English language learners].” We supported this finding with a series of data points that included the following preservice teacher response: “It is as much the responsibility of the teacher to help teach second-language learners the English language as it is our responsibility to teach traditional English speakers to read or correctly perform math functions.” Claims supported by evidence allow readers to see for themselves and to both examine researcher assertions in tandem with evidence and to form further interpretations of their own.

Some postmodernists reject the notion that qualitative interpretations are arguments based on evidence. Instead, they argue that qualitative accounts are not intended to faithfully represent that experience, but instead are designed to evoke some feelings or reactions in the reader of the account ( Schwandt, 2001 ). We argue that, even in these instances where transformational validity concerns take priority over transactional processes, evidence still matters. Did the assertions accomplish the evocative aims? What evidence/arguments were used to evoke these reactions? Does the presented claim correspond with the study’s evidence? Is the account inclusive? In other words, does it attend to all evidence or selectively compartmentalize some data while capitalizing on other evidentiary forms?

Researchers, we argue, should be both transparent and reflexive about these questions and, regardless of research methodology or purpose, should share with readers of the account their evidentiary moves and aims. Altheide and Johnson (2011) call this an “evidentiary narrative” and explain:

Ultimately, evidence is bound up with our identity in a situation.... An “evidentiary narrative” emerges from a reconsideration of how knowledge and belief systems in everyday life are tied to epistemic communities that provide perspectives, scenarios, and scripts that reflect symbolic and social moral orders. An “evidentiary narrative” symbolically joins an actor, an audience, a point of view (definition of a situation), assumptions, and a claim about a relationship between two or more phenomena. If any of these factors are not part of the context of meaning for a claim, it will not be honored, and thus, not seen as evidence. (p. 686)

In sum, readers/consumers of a research account deserve to know how evidence was treated and viewed in an inquiry. They want and should be aware of accounts that aim to evoke versus represent, and then they can apply their own criteria (including the potential transferability to their situated context). Renowned ethnographer and qualitative research theorist Harry Wolcott (1990) urges researchers to “let readers ‘see’ for themselves” by providing more detail rather than less and by sharing primary data/evidence to support interpretations. In the end, readers don’t expect perfection. Writer Eric Liu (2010) explains, “we don’t expect flawless interpretation. We expect good faith. We demand honesty.”

Last, in this journey through concepts we assert are pertinent to researchers engaged in interpretive processes, we include attention to the “ literature .” In discussing “literature,” qualitative researchers typically mean publications about the prior research conducted on topics aligned with or related to a study. Most often, this research/literature is reviewed and compiled by researchers in a section of the research report titled, “literature review.” It is here we find others’ studies, methods, and theories related to our topics of study, and it is here we hope the assertions and theories that result from our studies will someday reside.

We acknowledge the value of being familiar with research related to topics of study. This familiarity can inform multiple phases of the inquiry process. Understanding the extant knowledge base can inform research questions and topic selection, data collection and analysis plans, and the interpretive process. In what ways do the interpretations from this study correspond with other research conducted on this topic? Do findings/interpretations corroborate, expand, or contradict other researchers’ interpretations of similar phenomena? In any of these scenarios (correspondence, expansion, contradiction), new findings and interpretations from a study add to and deepen the knowledge base, or literature, on a topic of investigation.

For example, in our literature review for the study of student teaching, we quickly determined that the knowledge base and extant theories related to the student teaching experience was immense, but also quickly realized that few if any studies had examined student teaching from the perspective of the K–12 students who had the student teachers. This focus on the literature related to our topic of student teaching prompted us to embark on a study that would fill a gap in this literature: most of the knowledge base focused on the experiences and learning of the student teachers themselves. Our study then, by focusing on the K–12 students’ perspectives, added literature/theories/assertions to a previously untapped area. The “literature” in this area (at least we’d like to think) is now more robust as a result.

In another example, a research team ( Trent et al., 2003 ) focused on institutional diversity efforts, mined the literature, found an appropriate existing (a priori) set of theories/assertions, and then used this existing theoretical framework from the literature as a framework to analyze data; in this case, a variety of institutional activities related to diversity.

Conducting a literature review to explore extant theories on a topic of study can serve a variety of purposes. As evidenced in these examples, consulting the literature/extant theory can reveal gaps in the literature. A literature review might also lead researchers to existing theoretical frameworks that support analysis and interpretation of their data (as in the use of the a priori framework example). Finally, a review of current theories related to a topic of inquiry might confirm that much theory already exists, but that further study may add to, bolster, and/or elaborate on the current knowledge base.

Guidance for researchers conducting literature reviews is plentiful. Lichtman (2006) suggests researchers conduct a brief literature review, begin research, and then update and modify the literature review as the inquiry unfolds. She suggests reviewing a wide range of related materials (not just scholarly journals) and additionally suggests researchers attend to literature on methodology, not just the topic of study. She also encourages researchers to bracket and write down thoughts on the research topic as they review the literature, and, important for this chapter, she suggests researchers “integrate your literature review throughout your writing rather than using a traditional approach of placing it in a separate chapter [or section]” (p. 105).

We agree that the power of a literature review to provide context for a study can be maximized when this information isn’t compartmentalized apart from a study’s findings. Integrating (or at least revisiting) reviewed literature juxtaposed alongside findings can illustrate how new interpretations add to an evolving story. Eisenhart (1998) expands the traditional conception of the literature review and discusses the concept of an “interpretive review.” By taking this interpretive approach, Eisenhart claims that reviews, alongside related interpretations/findings on a specific topic, have the potential to allow readers to see the studied phenomena in entirely new ways, through new lenses, revealing heretofore unconsidered perspectives. Reviews that offer surprising and enriching perspectives on meanings and circumstances “shake things up, break down boundaries, and cause things (or thinking) to expand” (p. 394). Coupling reviews of this sort with current interpretations will “give us stories that startle us with what we have failed to notice” (p. 395).

In reviews of research studies, it can certainly be important to evaluate the findings in light of established theories and methods [the sorts of things typically included in literature reviews]. However, it also seems important to ask how well the studies disrupt conventional assumptions and help us to reconfigure new, more inclusive, and more promising perspectives on human views and actions. From an interpretivist perspective, it would be most important to review how well methods and findings permit readers to grasp the sense of unfamiliar perspectives and actions. ( Eisenhart, 1998 , p. 397)

And so, our journey through qualitative research interpretation and the selected concepts we’ve treated in this chapter nears an end, an end in the written text, but a hopeful beginning of multiple new conversations among ourselves and in concert with other qualitative researchers. Our aims here have been to circumscribe interpretation in qualitative research; emphasize the importance of interpretation in achieving the aims of the qualitative project; discuss the interactions of methodology, data, and the researcher/self as these concepts and theories intertwine with interpretive processes; describe some concrete ways that qualitative inquirers engage the process of interpretation; and, finally, to provide a framework of interpretive strategies that may serve as a guide for ourselves and other researchers.

In closing, we note that this “travel” framework, construed as a journey to be undertaken by researchers engaged in the interpretive process, is not designed to be rigid or prescriptive, but instead is designed to be a flexible set of concepts that will inform researchers across multiple epistemological, methodological, and theoretical paradigms. We chose the concepts of transparency, reflexivity, analysis, validity, evidence, and literature (TRAVEL) because they are applicable to the infinite journeys undertaken by qualitative researchers who have come before and to those who will come after us. As we journeyed through our interpretations of interpretation, we have discovered new things about ourselves and our work. We hope readers also garner insights that enrich their interpretive excursions. Happy travels to all— Bon Voyage !

Altheide, D. , & Johnson, J. M. ( 2011 ). Reflections on interpretive adequacy in qualitative research. In N. M. Denzin & Y. S. Lincoln (Eds.), The Sage handbook of qualitative research (pp. 595–610). Thousand Oaks, CA: Sage.

Google Scholar

Google Preview

Barrett, T. ( 2000 ). Criticizing art: Understanding the contemporary . New York: McGraw Hill.

Barrett, J. ( 2007 ). The researcher as instrument: learning to conduct qualitative research through analyzing and interpreting a choral rehearsal.   Music Education Research , 9 (3), 417–433.

Belgrave, L. L. , & Smith, K. J. ( 2002 ). Negotiated validity in collaborative ethnography. In N. M. Denzin & Y. S. Lincoln (Eds.), The qualitative inquiry reader (pp. 233–255). Thousand Oaks, CA: Sage.

Beverly, J. ( 2000 ). Testimonio, subalternity, and narrative authority. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research, second edition (pp. 555–566). Thousand Oaks, CA: Sage.

Bogdan, R. C. , & Biklen, S. K. ( 2003 ). Qualitative research for education: An introduction to theories and methods . Boston: Allyn and Bacon.

Cho, J. , Rios, F. , Trent, A. , & Mayfield, K. ( 2012 ). Integrating language diversity into teacher education curricula in a rural context: Candidates’ developmental perspectives and understandings.   Teacher Education Quarterly , 39 (2), 63–85.

Cho, J. , & Trent, A. ( 2006 ). Validity in qualitative research revisited.   QR—Qualitative Research Journal , 6 (3), 319–340.

Denzin, N. M. , & Lincoln, Y. S. (Eds.). ( 2004 ). Handbook of qualitative research . Newbury Park, CA: Sage.

Denzin, N. M. , & Lincoln, Y. S. ( 2007 ). Collecting and interpreting qualitative materials . Thousand Oaks, CA: Sage.

Eisenhart, M. ( 1998 ). On the subject of interpretive reviews.   Review of Educational Research , 68 (4), 391–393.

Eisner, E. ( 1991 ). The enlightened eye: Qualitative inquiry and the enhancement of educational practice . New York: Macmillan.

Ellingson, L. L. ( 2011 ). Analysis and representation across the continuum. In N. M. Denzin & Y. S. Lincoln (Eds.), The Sage handbook of qualitative research (pp. 595–610). Thousand Oaks, CA: Sage.

Ellis, C. , & Bochner, A. P. ( 2000 ). Autoethnography, personal narrative, reflexivity: Researcher as subject. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research , second edition (pp. 733–768). Thousand Oaks, CA: Sage.

Emerson, R. , Fretz, R. , & Shaw, L. ( 1995 ). Writing ethnographic fieldwork . Chicago: University of Chicago Press.

Erickson, F. ( 1986 ). Qualitative methods in research in teaching and learning. In M. C. Wittrock Ed.), Handbook of research on teaching (3rd ed., pp 119–161). New York: Macmillan.

Glaser, B. ( 1965 ). The constant comparative method of qualitative analysis.   Social Problems , 12 (4), 436–445.

Gubrium, J. F. , & Holstein, J. A. ( 2000 ). Analyzing interpretive practice. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research , second edition (pp. 487–508). Thousand Oaks, CA: Sage.

Hesse-Biber, S. N. , & Leavy, P. ( 2011 ). The practice of qualitative research (2nd ed.). Thousand Oaks, CA: Sage.

Hubbard, R. S. , & Power, B. M. ( 2003 ). The art of classroom inquiry: A handbook for teacher researchers . Portsmouth, NH: Heinemann.

Husserl, E. ( 1962 ). Ideas: general introduction to pure phenomenology . ( W. R. Boyce Gibson , Trans.). London, New York: Collier, Macmillan. (Original work published 1913)

LaBanca, F. ( 2011 ). Online dynamic asynchronous audit strategy for reflexivity in the qualitative paradigm.   Qualitative Report , 16 (4), 1160–1171.

Lather, P. ( 1993 ). Fertile obsession: Validity after poststructuralism.   Sociological Quarterly , 34 (4), 673–693.

Lenzo, K. ( 1995 ). Validity and self reflexivity meet poststructuralism: Scientific ethos and the transgressive self.   Educational Researcher , 24 (4), 17–23, 45.

Lichtman, M. ( 2006 ). Qualitative research in education: A user’s guide . Thousand Oaks, CA: Sage.

Liu, E. (2010). The real meaning of balls and strikes. Retrieved September 20, 2012, from http://www.huffingtonpost.com/eric-liu/the-real-meaning-of-balls_b_660915.html

Lincoln, Y. S. , & Guba, E. G. ( 1985 ). Naturalistic inquiry . Beverly Hills, CA: Sage.

Maxwell, J. ( 1992 ). Understanding and validity in qualitative research.   Harvard Educational Review , 62 (3), 279–300.

Miles, M. B. , & Huberman, A. M. ( 1994 ). Qualitative data analysis . Thousand Oaks, CA: Sage.

Mills, G. E. ( 2007 ). Action research: A guide for the teacher researcher . Upper Saddle River, NJ: Pearson.

Paulus, T. , Woodside, M. , & Ziegler, M. ( 2008 ). Extending the conversation: Qualitative research as dialogic collaborative process.   Qualitative Report , 13 (2), 226–243.

Richardson, L. ( 1995 ). Writing stories: Co-authoring the “sea monster,” a writing story.   Qualitative Inquiry , 1 , 189–203.

Richardson, L. ( 1997 ). Fields of play: Constructing an academic life . New Brunswick, NJ: Rutgers University Press.

Ryan, G. W. , & Bernard, H. R. ( 2000 ). Data management and analysis methods. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research , second edition (pp. 769–802). Thousand Oaks, CA: Sage.

Sagor, R. ( 2000 ). Guiding school improvement with action research . Alexandria, VA: ASCD.

Saldaña, J. ( 2011 ). Fundamentals of qualitative research . New York: Oxford University Press.

Scheurich, J. ( 1996 ). The masks of validity: A deconstructive investigation.   Qualitative Studies in Education , 9 (1), 49–60.

Slotnick, R. C. , & Janesick, V. J. ( 2011 ). Conversations on method: Deconstructing policy through the researcher reflective journal.   Qualitative Report , 16 (5), 1352–1360.

Schwandt, T. A. ( 2001 ). Dictionary of qualitative inquiry . Thousand Oaks, CA: Sage.

Trent, A. ( 2002 ). Dreams as data: Art installation as heady research,   Teacher Education Quarterly , 29 (4), 39–51.

Trent, A. ( 2012 ). Action research on action research: A facilitator’s account.   Action Learning and Action Research Journal , 18 (1), 35–67.

Trent, A. , Rios, F. , Antell, J. , Berube, W. , Bialostok, S. , Cardona, D. , et al. ( 2003 ). Problems and possibilities in the pursuit of diversity: An institutional analysis.   Equity & Excellence , 36(3), 213–224.

Trent, A. , & Zorko, L. ( 2006 ). Listening to students: “New” perspectives on student teaching.   Teacher Education & Practice , 19 (1), 55–70.

Willis, J. W. ( 2007 ). Foundations of qualitative research: Interpretive and critical approaches . Thousand Oaks, CA: Sage.

Wolcott, H. ( 1990 ). On seeking-and rejecting-validity in qualitative research. In E. Eisner & A. Peshkin (Eds.), Qualitative inquiry in education: The continuing debate (pp. 121–152). New York: Teachers College Press.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write the Results/Findings Section in Research

interpretation and analysis of research results

What is the research paper Results section and what does it do?

The Results section of a scientific research paper represents the core findings of a study derived from the methods applied to gather and analyze information. It presents these findings in a logical sequence without bias or interpretation from the author, setting up the reader for later interpretation and evaluation in the Discussion section. A major purpose of the Results section is to break down the data into sentences that show its significance to the research question(s).

The Results section appears third in the section sequence in most scientific papers. It follows the presentation of the Methods and Materials and is presented before the Discussion section —although the Results and Discussion are presented together in many journals. This section answers the basic question “What did you find in your research?”

What is included in the Results section?

The Results section should include the findings of your study and ONLY the findings of your study. The findings include:

  • Data presented in tables, charts, graphs, and other figures (may be placed into the text or on separate pages at the end of the manuscript)
  • A contextual analysis of this data explaining its meaning in sentence form
  • All data that corresponds to the central research question(s)
  • All secondary findings (secondary outcomes, subgroup analyses, etc.)

If the scope of the study is broad, or if you studied a variety of variables, or if the methodology used yields a wide range of different results, the author should present only those results that are most relevant to the research question stated in the Introduction section .

As a general rule, any information that does not present the direct findings or outcome of the study should be left out of this section. Unless the journal requests that authors combine the Results and Discussion sections, explanations and interpretations should be omitted from the Results.

How are the results organized?

The best way to organize your Results section is “logically.” One logical and clear method of organizing research results is to provide them alongside the research questions—within each research question, present the type of data that addresses that research question.

Let’s look at an example. Your research question is based on a survey among patients who were treated at a hospital and received postoperative care. Let’s say your first research question is:

results section of a research paper, figures

“What do hospital patients over age 55 think about postoperative care?”

This can actually be represented as a heading within your Results section, though it might be presented as a statement rather than a question:

Attitudes towards postoperative care in patients over the age of 55

Now present the results that address this specific research question first. In this case, perhaps a table illustrating data from a survey. Likert items can be included in this example. Tables can also present standard deviations, probabilities, correlation matrices, etc.

Following this, present a content analysis, in words, of one end of the spectrum of the survey or data table. In our example case, start with the POSITIVE survey responses regarding postoperative care, using descriptive phrases. For example:

“Sixty-five percent of patients over 55 responded positively to the question “ Are you satisfied with your hospital’s postoperative care ?” (Fig. 2)

Include other results such as subcategory analyses. The amount of textual description used will depend on how much interpretation of tables and figures is necessary and how many examples the reader needs in order to understand the significance of your research findings.

Next, present a content analysis of another part of the spectrum of the same research question, perhaps the NEGATIVE or NEUTRAL responses to the survey. For instance:

  “As Figure 1 shows, 15 out of 60 patients in Group A responded negatively to Question 2.”

After you have assessed the data in one figure and explained it sufficiently, move on to your next research question. For example:

  “How does patient satisfaction correspond to in-hospital improvements made to postoperative care?”

results section of a research paper, figures

This kind of data may be presented through a figure or set of figures (for instance, a paired T-test table).

Explain the data you present, here in a table, with a concise content analysis:

“The p-value for the comparison between the before and after groups of patients was .03% (Fig. 2), indicating that the greater the dissatisfaction among patients, the more frequent the improvements that were made to postoperative care.”

Let’s examine another example of a Results section from a study on plant tolerance to heavy metal stress . In the Introduction section, the aims of the study are presented as “determining the physiological and morphological responses of Allium cepa L. towards increased cadmium toxicity” and “evaluating its potential to accumulate the metal and its associated environmental consequences.” The Results section presents data showing how these aims are achieved in tables alongside a content analysis, beginning with an overview of the findings:

“Cadmium caused inhibition of root and leave elongation, with increasing effects at higher exposure doses (Fig. 1a-c).”

The figure containing this data is cited in parentheses. Note that this author has combined three graphs into one single figure. Separating the data into separate graphs focusing on specific aspects makes it easier for the reader to assess the findings, and consolidating this information into one figure saves space and makes it easy to locate the most relevant results.

results section of a research paper, figures

Following this overall summary, the relevant data in the tables is broken down into greater detail in text form in the Results section.

  • “Results on the bio-accumulation of cadmium were found to be the highest (17.5 mg kgG1) in the bulb, when the concentration of cadmium in the solution was 1×10G2 M and lowest (0.11 mg kgG1) in the leaves when the concentration was 1×10G3 M.”

Captioning and Referencing Tables and Figures

Tables and figures are central components of your Results section and you need to carefully think about the most effective way to use graphs and tables to present your findings . Therefore, it is crucial to know how to write strong figure captions and to refer to them within the text of the Results section.

The most important advice one can give here as well as throughout the paper is to check the requirements and standards of the journal to which you are submitting your work. Every journal has its own design and layout standards, which you can find in the author instructions on the target journal’s website. Perusing a journal’s published articles will also give you an idea of the proper number, size, and complexity of your figures.

Regardless of which format you use, the figures should be placed in the order they are referenced in the Results section and be as clear and easy to understand as possible. If there are multiple variables being considered (within one or more research questions), it can be a good idea to split these up into separate figures. Subsequently, these can be referenced and analyzed under separate headings and paragraphs in the text.

To create a caption, consider the research question being asked and change it into a phrase. For instance, if one question is “Which color did participants choose?”, the caption might be “Color choice by participant group.” Or in our last research paper example, where the question was “What is the concentration of cadmium in different parts of the onion after 14 days?” the caption reads:

 “Fig. 1(a-c): Mean concentration of Cd determined in (a) bulbs, (b) leaves, and (c) roots of onions after a 14-day period.”

Steps for Composing the Results Section

Because each study is unique, there is no one-size-fits-all approach when it comes to designing a strategy for structuring and writing the section of a research paper where findings are presented. The content and layout of this section will be determined by the specific area of research, the design of the study and its particular methodologies, and the guidelines of the target journal and its editors. However, the following steps can be used to compose the results of most scientific research studies and are essential for researchers who are new to preparing a manuscript for publication or who need a reminder of how to construct the Results section.

Step 1 : Consult the guidelines or instructions that the target journal or publisher provides authors and read research papers it has published, especially those with similar topics, methods, or results to your study.

  • The guidelines will generally outline specific requirements for the results or findings section, and the published articles will provide sound examples of successful approaches.
  • Note length limitations on restrictions on content. For instance, while many journals require the Results and Discussion sections to be separate, others do not—qualitative research papers often include results and interpretations in the same section (“Results and Discussion”).
  • Reading the aims and scope in the journal’s “ guide for authors ” section and understanding the interests of its readers will be invaluable in preparing to write the Results section.

Step 2 : Consider your research results in relation to the journal’s requirements and catalogue your results.

  • Focus on experimental results and other findings that are especially relevant to your research questions and objectives and include them even if they are unexpected or do not support your ideas and hypotheses.
  • Catalogue your findings—use subheadings to streamline and clarify your report. This will help you avoid excessive and peripheral details as you write and also help your reader understand and remember your findings. Create appendices that might interest specialists but prove too long or distracting for other readers.
  • Decide how you will structure of your results. You might match the order of the research questions and hypotheses to your results, or you could arrange them according to the order presented in the Methods section. A chronological order or even a hierarchy of importance or meaningful grouping of main themes or categories might prove effective. Consider your audience, evidence, and most importantly, the objectives of your research when choosing a structure for presenting your findings.

Step 3 : Design figures and tables to present and illustrate your data.

  • Tables and figures should be numbered according to the order in which they are mentioned in the main text of the paper.
  • Information in figures should be relatively self-explanatory (with the aid of captions), and their design should include all definitions and other information necessary for readers to understand the findings without reading all of the text.
  • Use tables and figures as a focal point to tell a clear and informative story about your research and avoid repeating information. But remember that while figures clarify and enhance the text, they cannot replace it.

Step 4 : Draft your Results section using the findings and figures you have organized.

  • The goal is to communicate this complex information as clearly and precisely as possible; precise and compact phrases and sentences are most effective.
  • In the opening paragraph of this section, restate your research questions or aims to focus the reader’s attention to what the results are trying to show. It is also a good idea to summarize key findings at the end of this section to create a logical transition to the interpretation and discussion that follows.
  • Try to write in the past tense and the active voice to relay the findings since the research has already been done and the agent is usually clear. This will ensure that your explanations are also clear and logical.
  • Make sure that any specialized terminology or abbreviation you have used here has been defined and clarified in the  Introduction section .

Step 5 : Review your draft; edit and revise until it reports results exactly as you would like to have them reported to your readers.

  • Double-check the accuracy and consistency of all the data, as well as all of the visual elements included.
  • Read your draft aloud to catch language errors (grammar, spelling, and mechanics), awkward phrases, and missing transitions.
  • Ensure that your results are presented in the best order to focus on objectives and prepare readers for interpretations, valuations, and recommendations in the Discussion section . Look back over the paper’s Introduction and background while anticipating the Discussion and Conclusion sections to ensure that the presentation of your results is consistent and effective.
  • Consider seeking additional guidance on your paper. Find additional readers to look over your Results section and see if it can be improved in any way. Peers, professors, or qualified experts can provide valuable insights.

One excellent option is to use a professional English proofreading and editing service  such as Wordvice, including our paper editing service . With hundreds of qualified editors from dozens of scientific fields, Wordvice has helped thousands of authors revise their manuscripts and get accepted into their target journals. Read more about the  proofreading and editing process  before proceeding with getting academic editing services and manuscript editing services for your manuscript.

As the representation of your study’s data output, the Results section presents the core information in your research paper. By writing with clarity and conciseness and by highlighting and explaining the crucial findings of their study, authors increase the impact and effectiveness of their research manuscripts.

For more articles and videos on writing your research manuscript, visit Wordvice’s Resources page.

Wordvice Resources

  • How to Write a Research Paper Introduction 
  • Which Verb Tenses to Use in a Research Paper
  • How to Write an Abstract for a Research Paper
  • How to Write a Research Paper Title
  • Useful Phrases for Academic Writing
  • Common Transition Terms in Academic Papers
  • Active and Passive Voice in Research Papers
  • 100+ Verbs That Will Make Your Research Writing Amazing
  • Tips for Paraphrasing in Research Papers

Logo for Rhode Island College Digital Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Qualitative Data Analysis

23 Presenting the Results of Qualitative Analysis

Mikaila Mariel Lemonik Arthur

Qualitative research is not finished just because you have determined the main findings or conclusions of your study. Indeed, disseminating the results is an essential part of the research process. By sharing your results with others, whether in written form as scholarly paper or an applied report or in some alternative format like an oral presentation, an infographic, or a video, you ensure that your findings become part of the ongoing conversation of scholarship in your field, forming part of the foundation for future researchers. This chapter provides an introduction to writing about qualitative research findings. It will outline how writing continues to contribute to the analysis process, what concerns researchers should keep in mind as they draft their presentations of findings, and how best to organize qualitative research writing

As you move through the research process, it is essential to keep yourself organized. Organizing your data, memos, and notes aids both the analytical and the writing processes. Whether you use electronic or physical, real-world filing and organizational systems, these systems help make sense of the mountains of data you have and assure you focus your attention on the themes and ideas you have determined are important (Warren and Karner 2015). Be sure that you have kept detailed notes on all of the decisions you have made and procedures you have followed in carrying out research design, data collection, and analysis, as these will guide your ultimate write-up.

First and foremost, researchers should keep in mind that writing is in fact a form of thinking. Writing is an excellent way to discover ideas and arguments and to further develop an analysis. As you write, more ideas will occur to you, things that were previously confusing will start to make sense, and arguments will take a clear shape rather than being amorphous and poorly-organized. However, writing-as-thinking cannot be the final version that you share with others. Good-quality writing does not display the workings of your thought process. It is reorganized and revised (more on that later) to present the data and arguments important in a particular piece. And revision is totally normal! No one expects the first draft of a piece of writing to be ready for prime time. So write rough drafts and memos and notes to yourself and use them to think, and then revise them until the piece is the way you want it to be for sharing.

Bergin (2018) lays out a set of key concerns for appropriate writing about research. First, present your results accurately, without exaggerating or misrepresenting. It is very easy to overstate your findings by accident if you are enthusiastic about what you have found, so it is important to take care and use appropriate cautions about the limitations of the research. You also need to work to ensure that you communicate your findings in a way people can understand, using clear and appropriate language that is adjusted to the level of those you are communicating with. And you must be clear and transparent about the methodological strategies employed in the research. Remember, the goal is, as much as possible, to describe your research in a way that would permit others to replicate the study. There are a variety of other concerns and decision points that qualitative researchers must keep in mind, including the extent to which to include quantification in their presentation of results, ethics, considerations of audience and voice, and how to bring the richness of qualitative data to life.

Quantification, as you have learned, refers to the process of turning data into numbers. It can indeed be very useful to count and tabulate quantitative data drawn from qualitative research. For instance, if you were doing a study of dual-earner households and wanted to know how many had an equal division of household labor and how many did not, you might want to count those numbers up and include them as part of the final write-up. However, researchers need to take care when they are writing about quantified qualitative data. Qualitative data is not as generalizable as quantitative data, so quantification can be very misleading. Thus, qualitative researchers should strive to use raw numbers instead of the percentages that are more appropriate for quantitative research. Writing, for instance, “15 of the 20 people I interviewed prefer pancakes to waffles” is a simple description of the data; writing “75% of people prefer pancakes” suggests a generalizable claim that is not likely supported by the data. Note that mixing numbers with qualitative data is really a type of mixed-methods approach. Mixed-methods approaches are good, but sometimes they seduce researchers into focusing on the persuasive power of numbers and tables rather than capitalizing on the inherent richness of their qualitative data.

A variety of issues of scholarly ethics and research integrity are raised by the writing process. Some of these are unique to qualitative research, while others are more universal concerns for all academic and professional writing. For example, it is essential to avoid plagiarism and misuse of sources. All quotations that appear in a text must be properly cited, whether with in-text and bibliographic citations to the source or with an attribution to the research participant (or the participant’s pseudonym or description in order to protect confidentiality) who said those words. Where writers will paraphrase a text or a participant’s words, they need to make sure that the paraphrase they develop accurately reflects the meaning of the original words. Thus, some scholars suggest that participants should have the opportunity to read (or to have read to them, if they cannot read the text themselves) all sections of the text in which they, their words, or their ideas are presented to ensure accuracy and enable participants to maintain control over their lives.

Audience and Voice

When writing, researchers must consider their audience(s) and the effects they want their writing to have on these audiences. The designated audience will dictate the voice used in the writing, or the individual style and personality of a piece of text. Keep in mind that the potential audience for qualitative research is often much more diverse than that for quantitative research because of the accessibility of the data and the extent to which the writing can be accessible and interesting. Yet individual pieces of writing are typically pitched to a more specific subset of the audience.

Let us consider one potential research study, an ethnography involving participant-observation of the same children both when they are at daycare facility and when they are at home with their families to try to understand how daycare might impact behavior and social development. The findings of this study might be of interest to a wide variety of potential audiences: academic peers, whether at your own academic institution, in your broader discipline, or multidisciplinary; people responsible for creating laws and policies; practitioners who run or teach at day care centers; and the general public, including both people who are interested in child development more generally and those who are themselves parents making decisions about child care for their own children. And the way you write for each of these audiences will be somewhat different. Take a moment and think through what some of these differences might look like.

If you are writing to academic audiences, using specialized academic language and working within the typical constraints of scholarly genres, as will be discussed below, can be an important part of convincing others that your work is legitimate and should be taken seriously. Your writing will be formal. Even if you are writing for students and faculty you already know—your classmates, for instance—you are often asked to imitate the style of academic writing that is used in publications, as this is part of learning to become part of the scholarly conversation. When speaking to academic audiences outside your discipline, you may need to be more careful about jargon and specialized language, as disciplines do not always share the same key terms. For instance, in sociology, scholars use the term diffusion to refer to the way new ideas or practices spread from organization to organization. In the field of international relations, scholars often used the term cascade to refer to the way ideas or practices spread from nation to nation. These terms are describing what is fundamentally the same concept, but they are different terms—and a scholar from one field might have no idea what a scholar from a different field is talking about! Therefore, while the formality and academic structure of the text would stay the same, a writer with a multidisciplinary audience might need to pay more attention to defining their terms in the body of the text.

It is not only other academic scholars who expect to see formal writing. Policymakers tend to expect formality when ideas are presented to them, as well. However, the content and style of the writing will be different. Much less academic jargon should be used, and the most important findings and policy implications should be emphasized right from the start rather than initially focusing on prior literature and theoretical models as you might for an academic audience. Long discussions of research methods should also be minimized. Similarly, when you write for practitioners, the findings and implications for practice should be highlighted. The reading level of the text will vary depending on the typical background of the practitioners to whom you are writing—you can make very different assumptions about the general knowledge and reading abilities of a group of hospital medical directors with MDs than you can about a group of case workers who have a post-high-school certificate. Consider the primary language of your audience as well. The fact that someone can get by in spoken English does not mean they have the vocabulary or English reading skills to digest a complex report. But the fact that someone’s vocabulary is limited says little about their intellectual abilities, so try your best to convey the important complexity of the ideas and findings from your research without dumbing them down—even if you must limit your vocabulary usage.

When writing for the general public, you will want to move even further towards emphasizing key findings and policy implications, but you also want to draw on the most interesting aspects of your data. General readers will read sociological texts that are rich with ethnographic or other kinds of detail—it is almost like reality television on a page! And this is a contrast to busy policymakers and practitioners, who probably want to learn the main findings as quickly as possible so they can go about their busy lives. But also keep in mind that there is a wide variation in reading levels. Journalists at publications pegged to the general public are often advised to write at about a tenth-grade reading level, which would leave most of the specialized terminology we develop in our research fields out of reach. If you want to be accessible to even more people, your vocabulary must be even more limited. The excellent exercise of trying to write using the 1,000 most common English words, available at the Up-Goer Five website ( https://www.splasho.com/upgoer5/ ) does a good job of illustrating this challenge (Sanderson n.d.).

Another element of voice is whether to write in the first person. While many students are instructed to avoid the use of the first person in academic writing, this advice needs to be taken with a grain of salt. There are indeed many contexts in which the first person is best avoided, at least as long as writers can find ways to build strong, comprehensible sentences without its use, including most quantitative research writing. However, if the alternative to using the first person is crafting a sentence like “it is proposed that the researcher will conduct interviews,” it is preferable to write “I propose to conduct interviews.” In qualitative research, in fact, the use of the first person is far more common. This is because the researcher is central to the research project. Qualitative researchers can themselves be understood as research instruments, and thus eliminating the use of the first person in writing is in a sense eliminating information about the conduct of the researchers themselves.

But the question really extends beyond the issue of first-person or third-person. Qualitative researchers have choices about how and whether to foreground themselves in their writing, not just in terms of using the first person, but also in terms of whether to emphasize their own subjectivity and reflexivity, their impressions and ideas, and their role in the setting. In contrast, conventional quantitative research in the positivist tradition really tries to eliminate the author from the study—which indeed is exactly why typical quantitative research avoids the use of the first person. Keep in mind that emphasizing researchers’ roles and reflexivity and using the first person does not mean crafting articles that provide overwhelming detail about the author’s thoughts and practices. Readers do not need to hear, and should not be told, which database you used to search for journal articles, how many hours you spent transcribing, or whether the research process was stressful—save these things for the memos you write to yourself. Rather, readers need to hear how you interacted with research participants, how your standpoint may have shaped the findings, and what analytical procedures you carried out.

Making Data Come Alive

One of the most important parts of writing about qualitative research is presenting the data in a way that makes its richness and value accessible to readers. As the discussion of analysis in the prior chapter suggests, there are a variety of ways to do this. Researchers may select key quotes or images to illustrate points, write up specific case studies that exemplify their argument, or develop vignettes (little stories) that illustrate ideas and themes, all drawing directly on the research data. Researchers can also write more lengthy summaries, narratives, and thick descriptions.

Nearly all qualitative work includes quotes from research participants or documents to some extent, though ethnographic work may focus more on thick description than on relaying participants’ own words. When quotes are presented, they must be explained and interpreted—they cannot stand on their own. This is one of the ways in which qualitative research can be distinguished from journalism. Journalism presents what happened, but social science needs to present the “why,” and the why is best explained by the researcher.

So how do authors go about integrating quotes into their written work? Julie Posselt (2017), a sociologist who studies graduate education, provides a set of instructions. First of all, authors need to remain focused on the core questions of their research, and avoid getting distracted by quotes that are interesting or attention-grabbing but not so relevant to the research question. Selecting the right quotes, those that illustrate the ideas and arguments of the paper, is an important part of the writing process. Second, not all quotes should be the same length (just like not all sentences or paragraphs in a paper should be the same length). Include some quotes that are just phrases, others that are a sentence or so, and others that are longer. We call longer quotes, generally those more than about three lines long, block quotes , and they are typically indented on both sides to set them off from the surrounding text. For all quotes, be sure to summarize what the quote should be telling or showing the reader, connect this quote to other quotes that are similar or different, and provide transitions in the discussion to move from quote to quote and from topic to topic. Especially for longer quotes, it is helpful to do some of this writing before the quote to preview what is coming and other writing after the quote to make clear what readers should have come to understand. Remember, it is always the author’s job to interpret the data. Presenting excerpts of the data, like quotes, in a form the reader can access does not minimize the importance of this job. Be sure that you are explaining the meaning of the data you present.

A few more notes about writing with quotes: avoid patchwriting, whether in your literature review or the section of your paper in which quotes from respondents are presented. Patchwriting is a writing practice wherein the author lightly paraphrases original texts but stays so close to those texts that there is little the author has added. Sometimes, this even takes the form of presenting a series of quotes, properly documented, with nothing much in the way of text generated by the author. A patchwriting approach does not build the scholarly conversation forward, as it does not represent any kind of new contribution on the part of the author. It is of course fine to paraphrase quotes, as long as the meaning is not changed. But if you use direct quotes, do not edit the text of the quotes unless how you edit them does not change the meaning and you have made clear through the use of ellipses (…) and brackets ([])what kinds of edits have been made. For example, consider this exchange from Matthew Desmond’s (2012:1317) research on evictions:

The thing was, I wasn’t never gonna let Crystal come and stay with me from the get go. I just told her that to throw her off. And she wasn’t fittin’ to come stay with me with no money…No. Nope. You might as well stay in that shelter.

A paraphrase of this exchange might read “She said that she was going to let Crystal stay with her if Crystal did not have any money.” Paraphrases like that are fine. What is not fine is rewording the statement but treating it like a quote, for instance writing:

The thing was, I was not going to let Crystal come and stay with me from beginning. I just told her that to throw her off. And it was not proper for her to come stay with me without any money…No. Nope. You might as well stay in that shelter.

But as you can see, the change in language and style removes some of the distinct meaning of the original quote. Instead, writers should leave as much of the original language as possible. If some text in the middle of the quote needs to be removed, as in this example, ellipses are used to show that this has occurred. And if a word needs to be added to clarify, it is placed in square brackets to show that it was not part of the original quote.

Data can also be presented through the use of data displays like tables, charts, graphs, diagrams, and infographics created for publication or presentation, as well as through the use of visual material collected during the research process. Note that if visuals are used, the author must have the legal right to use them. Photographs or diagrams created by the author themselves—or by research participants who have signed consent forms for their work to be used, are fine. But photographs, and sometimes even excerpts from archival documents, may be owned by others from whom researchers must get permission in order to use them.

A large percentage of qualitative research does not include any data displays or visualizations. Therefore, researchers should carefully consider whether the use of data displays will help the reader understand the data. One of the most common types of data displays used by qualitative researchers are simple tables. These might include tables summarizing key data about cases included in the study; tables laying out the characteristics of different taxonomic elements or types developed as part of the analysis; tables counting the incidence of various elements; and 2×2 tables (two columns and two rows) illuminating a theory. Basic network or process diagrams are also commonly included. If data displays are used, it is essential that researchers include context and analysis alongside data displays rather than letting them stand by themselves, and it is preferable to continue to present excerpts and examples from the data rather than just relying on summaries in the tables.

If you will be using graphs, infographics, or other data visualizations, it is important that you attend to making them useful and accurate (Bergin 2018). Think about the viewer or user as your audience and ensure the data visualizations will be comprehensible. You may need to include more detail or labels than you might think. Ensure that data visualizations are laid out and labeled clearly and that you make visual choices that enhance viewers’ ability to understand the points you intend to communicate using the visual in question. Finally, given the ease with which it is possible to design visuals that are deceptive or misleading, it is essential to make ethical and responsible choices in the construction of visualization so that viewers will interpret them in accurate ways.

The Genre of Research Writing

As discussed above, the style and format in which results are presented depends on the audience they are intended for. These differences in styles and format are part of the genre of writing. Genre is a term referring to the rules of a specific form of creative or productive work. Thus, the academic journal article—and student papers based on this form—is one genre. A report or policy paper is another. The discussion below will focus on the academic journal article, but note that reports and policy papers follow somewhat different formats. They might begin with an executive summary of one or a few pages, include minimal background, focus on key findings, and conclude with policy implications, shifting methods and details about the data to an appendix. But both academic journal articles and policy papers share some things in common, for instance the necessity for clear writing, a well-organized structure, and the use of headings.

So what factors make up the genre of the academic journal article in sociology? While there is some flexibility, particularly for ethnographic work, academic journal articles tend to follow a fairly standard format. They begin with a “title page” that includes the article title (often witty and involving scholarly inside jokes, but more importantly clearly describing the content of the article); the authors’ names and institutional affiliations, an abstract , and sometimes keywords designed to help others find the article in databases. An abstract is a short summary of the article that appears both at the very beginning of the article and in search databases. Abstracts are designed to aid readers by giving them the opportunity to learn enough about an article that they can determine whether it is worth their time to read the complete text. They are written about the article, and thus not in the first person, and clearly summarize the research question, methodological approach, main findings, and often the implications of the research.

After the abstract comes an “introduction” of a page or two that details the research question, why it matters, and what approach the paper will take. This is followed by a literature review of about a quarter to a third the length of the entire paper. The literature review is often divided, with headings, into topical subsections, and is designed to provide a clear, thorough overview of the prior research literature on which a paper has built—including prior literature the new paper contradicts. At the end of the literature review it should be made clear what researchers know about the research topic and question, what they do not know, and what this new paper aims to do to address what is not known.

The next major section of the paper is the section that describes research design, data collection, and data analysis, often referred to as “research methods” or “methodology.” This section is an essential part of any written or oral presentation of your research. Here, you tell your readers or listeners “how you collected and interpreted your data” (Taylor, Bogdan, and DeVault 2016:215). Taylor, Bogdan, and DeVault suggest that the discussion of your research methods include the following:

  • The particular approach to data collection used in the study;
  • Any theoretical perspective(s) that shaped your data collection and analytical approach;
  • When the study occurred, over how long, and where (concealing identifiable details as needed);
  • A description of the setting and participants, including sampling and selection criteria (if an interview-based study, the number of participants should be clearly stated);
  • The researcher’s perspective in carrying out the study, including relevant elements of their identity and standpoint, as well as their role (if any) in research settings; and
  • The approach to analyzing the data.

After the methods section comes a section, variously titled but often called “data,” that takes readers through the analysis. This section is where the thick description narrative; the quotes, broken up by theme or topic, with their interpretation; the discussions of case studies; most data displays (other than perhaps those outlining a theoretical model or summarizing descriptive data about cases); and other similar material appears. The idea of the data section is to give readers the ability to see the data for themselves and to understand how this data supports the ultimate conclusions. Note that all tables and figures included in formal publications should be titled and numbered.

At the end of the paper come one or two summary sections, often called “discussion” and/or “conclusion.” If there is a separate discussion section, it will focus on exploring the overall themes and findings of the paper. The conclusion clearly and succinctly summarizes the findings and conclusions of the paper, the limitations of the research and analysis, any suggestions for future research building on the paper or addressing these limitations, and implications, be they for scholarship and theory or policy and practice.

After the end of the textual material in the paper comes the bibliography, typically called “works cited” or “references.” The references should appear in a consistent citation style—in sociology, we often use the American Sociological Association format (American Sociological Association 2019), but other formats may be used depending on where the piece will eventually be published. Care should be taken to ensure that in-text citations also reflect the chosen citation style. In some papers, there may be an appendix containing supplemental information such as a list of interview questions or an additional data visualization.

Note that when researchers give presentations to scholarly audiences, the presentations typically follow a format similar to that of scholarly papers, though given time limitations they are compressed. Abstracts and works cited are often not part of the presentation, though in-text citations are still used. The literature review presented will be shortened to only focus on the most important aspects of the prior literature, and only key examples from the discussion of data will be included. For long or complex papers, sometimes only one of several findings is the focus of the presentation. Of course, presentations for other audiences may be constructed differently, with greater attention to interesting elements of the data and findings as well as implications and less to the literature review and methods.

Concluding Your Work

After you have written a complete draft of the paper, be sure you take the time to revise and edit your work. There are several important strategies for revision. First, put your work away for a little while. Even waiting a day to revise is better than nothing, but it is best, if possible, to take much more time away from the text. This helps you forget what your writing looks like and makes it easier to find errors, mistakes, and omissions. Second, show your work to others. Ask them to read your work and critique it, pointing out places where the argument is weak, where you may have overlooked alternative explanations, where the writing could be improved, and what else you need to work on. Finally, read your work out loud to yourself (or, if you really need an audience, try reading to some stuffed animals). Reading out loud helps you catch wrong words, tricky sentences, and many other issues. But as important as revision is, try to avoid perfectionism in writing (Warren and Karner 2015). Writing can always be improved, no matter how much time you spend on it. Those improvements, however, have diminishing returns, and at some point the writing process needs to conclude so the writing can be shared with the world.

Of course, the main goal of writing up the results of a research project is to share with others. Thus, researchers should be considering how they intend to disseminate their results. What conferences might be appropriate? Where can the paper be submitted? Note that if you are an undergraduate student, there are a wide variety of journals that accept and publish research conducted by undergraduates. Some publish across disciplines, while others are specific to disciplines. Other work, such as reports, may be best disseminated by publication online on relevant organizational websites.

After a project is completed, be sure to take some time to organize your research materials and archive them for longer-term storage. Some Institutional Review Board (IRB) protocols require that original data, such as interview recordings, transcripts, and field notes, be preserved for a specific number of years in a protected (locked for paper or password-protected for digital) form and then destroyed, so be sure that your plans adhere to the IRB requirements. Be sure you keep any materials that might be relevant for future related research or for answering questions people may ask later about your project.

And then what? Well, then it is time to move on to your next research project. Research is a long-term endeavor, not a one-time-only activity. We build our skills and our expertise as we continue to pursue research. So keep at it.

  • Find a short article that uses qualitative methods. The sociological magazine Contexts is a good place to find such pieces. Write an abstract of the article.
  • Choose a sociological journal article on a topic you are interested in that uses some form of qualitative methods and is at least 20 pages long. Rewrite the article as a five-page research summary accessible to non-scholarly audiences.
  • Choose a concept or idea you have learned in this course and write an explanation of it using the Up-Goer Five Text Editor ( https://www.splasho.com/upgoer5/ ), a website that restricts your writing to the 1,000 most common English words. What was this experience like? What did it teach you about communicating with people who have a more limited English-language vocabulary—and what did it teach you about the utility of having access to complex academic language?
  • Select five or more sociological journal articles that all use the same basic type of qualitative methods (interviewing, ethnography, documents, or visual sociology). Using what you have learned about coding, code the methods sections of each article, and use your coding to figure out what is common in how such articles discuss their research design, data collection, and analysis methods.
  • Return to an exercise you completed earlier in this course and revise your work. What did you change? How did revising impact the final product?
  • Find a quote from the transcript of an interview, a social media post, or elsewhere that has not yet been interpreted or explained. Write a paragraph that includes the quote along with an explanation of its sociological meaning or significance.

The style or personality of a piece of writing, including such elements as tone, word choice, syntax, and rhythm.

A quotation, usually one of some length, which is set off from the main text by being indented on both sides rather than being placed in quotation marks.

A classification of written or artistic work based on form, content, and style.

A short summary of a text written from the perspective of a reader rather than from the perspective of an author.

Social Data Analysis Copyright © 2021 by Mikaila Mariel Lemonik Arthur is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

  • Open access
  • Published: 22 April 2024

Training nurses in an international emergency medical team using a serious role-playing game: a retrospective comparative analysis

  • Hai Hu 1 , 2 , 3   na1 ,
  • Xiaoqin Lai 2 , 4 , 5   na1 &
  • Longping Yan 6 , 7 , 8  

BMC Medical Education volume  24 , Article number:  432 ( 2024 ) Cite this article

37 Accesses

Metrics details

Although game-based applications have been used in disaster medicine education, no serious computer games have been designed specifically for training these nurses in an IEMT setting. To address this need, we developed a serious computer game called the IEMTtraining game. In this game, players assume the roles of IEMT nurses, assess patient injuries in a virtual environment, and provide suitable treatment options.

The design of this study is a retrospective comparative analysis. The research was conducted with 209 nurses in a hospital. The data collection process of this study was conducted at the 2019-2020 academic year. A retrospective comparative analysis was conducted on the pre-, post-, and final test scores of nurses in the IEMT. Additionally, a survey questionnaire was distributed to trainees to gather insights into teaching methods that were subsequently analyzed.

There was a significant difference in the overall test scores between the two groups, with the game group demonstrating superior performance compared to the control group (odds ratio = 1.363, p value = 0.010). The survey results indicated that the game group exhibited higher learning motivation scores and lower cognitive load compared with the lecture group.

Conclusions

The IEMT training game developed by the instructor team is a promising and effective method for training nurses in disaster rescue within IEMTs. The game equips the trainees with the necessary skills and knowledge to respond effectively to emergencies. It is easily comprehended, enhances knowledge retention and motivation to learn, and reduces cognitive load.

Peer Review reports

Since the beginning of the twenty-first century, the deployment of international emergency medical teams in disaster-stricken regions has increased world wide [ 1 ]. To enhance the efficiency of these teams, the World Health Organization (WHO) has introduced the International Emergency Medical Team (IEMT) initiative to guarantee their competence. Adequate education and training play a vital role in achieving this objective [ 2 ].

Nurses play a vital role as IEMTs by providing essential medical care and support to populations affected by disasters and emergencies. Training newly joined nurses is an integral part of IEMT training.

Typical training methods include lectures, field-simulation exercises, and tabletop exercises [ 3 , 4 , 5 ]. However, lectures, despite requiring fewer teaching resources, are often perceived as boring and abstract. This may not be the most ideal method for training newly joined nurses in the complexities of international medical responses. However, simulation field exercises can be effective in mastering the knowledge and skills of disaster medicine responsiveness. However, they come with significant costs and requirements, such as extended instructional periods, additional teachers or instructors, and thorough preparation. These high costs make it challenging to organize simulation exercises repeatedly, making them less ideal for training newly joined nurses [ 6 ].

Moreover, classic tabletop exercises that use simple props, such as cards in a classroom setting, have limitations. The rules of these exercises are typically simple, which makes it challenging to simulate complex disaster scenarios. In addition, these exercises cannot replicate real-life situations, making them too abstract for newly joined nurses to fully grasp [ 7 , 8 ].

Recently, game-based learning has gained increasing attention as an interactive teaching method [ 9 , 10 ]. Previous studies have validated the efficacy of game-based mobile applications [ 11 , 12 ]. Serious games that align with curricular objectives have shown potential to facilitate more effective learner-centered educational experiences for trainees [ 13 , 14 ]. Although game-based applications have been used in disaster medicine education, no serious computer games have been designed specifically for training newly joined nurses in an international IEMT setting.

Our team is an internationally certified IEMT organization verified by the WHO, underscoring the importance of providing training for newly joined nurses in international medical responses. To address this need, we organized training courses for them. As part of the training, we incorporated a serious computer game called the IEMTtraining game. In this game, players assume the roles of IEMT nurses, assess patient injuries in a virtual environment, and provide suitable treatment options. This study aims to investigate the effectiveness of the IEMTtraining game. To the best of our knowledge, this is the first serious game specifically designed to train newly joined nurses in an IEMT setting.

The IEMTtraining game was subsequently applied to the training course for newly joined nurses, and this study aimed to investigate its effectiveness. To the best of our knowledge, this is the first serious game specifically designedto train newly joined nurses in an IEMT setting.

Study design

This study was conducted using data from the training records database of participants who had completed the training. The database includes comprehensive demographic information, exam scores, and detailed information from post-training questionnaires for all trainees. We reviewed the training scores and questionnaires of participants who took part in the training from Autumn 2019 to Spring 2020.

The local Institutional Review Committee approved the study and waived the requirement for informed consent due to the study design. The study complied with the international ethical guidelines for human research, such as the Declaration of Helsinki. The accessed data were anonymized.

Participants

A total of 209 newly joined nurses needed to participate in the training. Due to limitations in the size of the training venue, the trainees had to be divided into two groups for the training. All trainees were required to choose a group and register online. The training team provided the schedule and training topic for the two training sessions to all trainees before the training commenced. Each trainee had the opportunity to sign up based on their individual circumstances. Furthermore, the training team set a maximum limit of 110 trainees for each group, considering the dimensions of the training venue. Trainees were assigned on a first-come-first-served basis. In the event that a group reached its capacity, any unregistered trainees would be automatically assigned to another group.

In the fall of 2019, 103 newly joined nurses opted for the lecture training course (lecture group). In this group, instructors solely used the traditional teaching methods of lectures and demonstrations. The remaining 106 newly joined nurses underwent game-based training (game group). In addition to the traditional lectures and demonstrations, the instructor incorporated an IEMTtraining game to enhance the training experience in the game group.

The IEMTTraining game

The IEMTtraining game, a role-playing game, was implemented using the RPG Maker MV Version1.6.1 (Kadokawa Corporation, Tokyo, Tokyo Metropolis, Japan). Players assumed the roles of rescuers in a fictional setting of an earthquake (Part1 of Supplemental Digital Content ).

The storyline revolves around an earthquake scenario, with the main character being an IEMT nurse. Within the game simulation, there were 1000 patients in the scenario. The objective for each player was to treat as many patients as possible to earn higher experience points compared to other players. In addition, within the game scene, multiple nonplayer characters played the role of injured patients. The players navigate the movements of the main character using a computer mouse. Upon encountering injured persons, the player can view their injury information by clicking on them and selecting the triage tags. The player can then select the necessary medical supplies from the kit to provide treatment. Additionally, the player is required to act according to the minimum standards for IEMTs, such as registration in the IEMT coordination cell and reporting of injury information following the minimum data set (MDS) designed by the WHO [ 15 , 16 ]. This portion of the training content imposes uniform requirements for all IEMT members, hence it is necessary for IEMT nurses to learn it. All correct choices result in the accumulation of experience points. Game duration can be set by the instructor and the player with the highest experience points at the end of the game.

Measurement

We have collected the test scores of the trainees in our training database to explore their knowledge mastery. Additionally, we have collected post-training questionnaire data from the trainees to investigate their learning motivation, cognitive load, and technology acceptance.

Pre-test, post-test, and final test

All trainees were tested on three separate occasions: (1) a “pre-test”before the educational intervention, (2) a “post-test”following the intervention, and (3) a “final test”at the end of the term (sixweeks after the intervention). Each test comprised 20 multiple-choice questions (0.5 points per item) assessing the trainees’ mastery of crucial points in their knowledge and decision-making. The higher the score, the better the grade will be.

Questionnaires

The questionnaires used in this study can be found in Part 2 of the Supplemental Digital Content .

The learning motivation questionnaire used in this study was based on the measure developed by Hwang and Chang [ 17 ]. It comprises seven items rated on a six-point scale. The reliability of the questionnaire, as indicated by Cronbach’s alpha, was 0.79.

The cognitive load questionnaire was adapted from the questionnaire developed by Hwang et al [ 18 ]. It consisted of five items for assessing “mental load” and three items for evaluating “mental effort.” The items were rated using a six-point Likert scale. The Cronbach’s alpha values for the two parts of the questionnaire were 0.86 and 0.85, respectively.

The technology acceptance questionnaire, which was only administered to the game group, as it specifically focused on novel teaching techniques and lacked relevance tothe lecture group, was derived from the measurement instrument developed by Chu et al [ 19 ]. It comprised seven items for measuring “perceived ease of use” and six items for assessing “perceived usefulness.” The items were rated on a six-point Likert scale. The Cronbach’s alpha values for the two parts of the questionnaire were 0.94 and 0.95, respectively.

The lecture group received 4 hours of traditional lectures. Additionally, 1 week before the lecture, the trainees were provided with a series of references related to the topic and were required to preview the content before the class. A pre-test was conducted before the lecture to assess the trainees’ prior knowledge, followed by a post-test immediately after the lecture, and a final test 6 weeks after training.

In the game group, the delivery and requirements for references were the same as those in the lecture group. However, the training format differed. The game group received a half-hour lecture introducinggeneral principles, followed by 3 hours of gameplay. The last halfhour was dedicated to summarizing the course and addressing questions or concerns. Similar to the lecture group, the trainees in this group also completed pre-, post-, and final tests. Additionally, a brief survey ofthe teaching methods was conducted at the end of the final test (see Fig.  1 ).

figure 1

General overview of the teaching procedure. Figure Legend: The diagram shows the teaching and testing processes for the two groups of trainees. Q&A: questions and answers

Data analysis

All data were analyzed using IBM SPSS Statistics (version 20.0;IBM Inc., Armonk, NY, USA). Only the trainees who participated in all three tests were included in the analysis. In total, there were 209 trainees, but 11 individuals (6 from the lecture group and 5 from the game group) were excluded due to incomplete data. Therefore, the data of 198 trainees were ultimately included in the analysis.

In addition, measurement data with a normal distribution were described as mean (standard deviation, SD). In contrast, measurement data with non-normal distributions were expressed as median [first quartile, third quartile]. Furthermore, enumeration data were constructed using composition ratios.

Moreover, a generalized estimating equation (GEE) was employed to compare the groups’ pre-, post-, and final test scores. The Mann–Whitney U test was used to compare the questionnaire scores between the two groups. The statistical significance was set at a level of 0.05.

Among the data included in the analysis, 97 (48.99%) participants were in the lecture group, and 101 (51.01%)were in the game group.

The number of male trainees in the lecture and game groups was 30 (30.93%) and 33 (32.67%), respectively. The mean age of participants in the lecture group was 27.44 ± 4.31 years, whereas that of the game group was 28.05 ± 4.29 years. There were no significant differences in sex or age (Table  1 ). Regarding the test scores, no significant differences were found between the two groups in the pre- and post-tests. However, a significant difference was observed in the final test scores conducted 6 weeks later (Table 1 ).

According to the GEE analysis, the overall scores for the post-test and final test were higher compared to the pre-test scores. Additionally, there was a significant difference in the overall test scores between the two groups, with the game group demonstrating superior performance compared to the control group (odds ratio = 1.363, p value = 0.010). Further details of the GEE results can be found in Part 3 of the supplementary materials .

Table  2 presents the results of the questionnaire ratings for the two groups. The median [first quartile, third quartile] of the learning motivation questionnaire ratings were 4 [3, 4] for the lecture group and 5 [4, 5] for the game group. There were significant differences between the questionnaire ratings of the two groups ( p  < 0.001), indicating that the game group had higher learning motivation for the learning activity.

The median [first quartile, third quartile] of the overall cognitive load ratings were 3 [3, 4] and 4 [4, 5] for the game and lecture groups, respectively. There was a significant difference between the cognitive load ratings of the two groups ( p  < 0.001).

This study further compared two aspects of cognitive load: mental load and mental effort. The median [first quartile, third quartile] for the mental effort dimension were 3 [2, 3] and 4 [4, 5] for the game and lecture groups, respectively (p < 0.001). For mental load, the median [first quartile, third quartile] were 4 [3, 4] and 4 [3, 4] for the game and lecture groups, respectively. There was no significant difference in the mental load ratings between the two groups ( p  = 0.539).

To better understand the trainees’ perceptions of the use of the serious game, this study collected the feedback of the trainees in the game group regarding “perceived usefulness” and “perceived ease of use,” as shown in Table 2 . Most trainees provided positive feedback on the two dimensions of the serious game.

To the best of our knowledge, this IEMT training game is the first serious game intended for newly joined nurses of IEMTs. Therefore, this study presents an initial investigation into the applicability of serious games.

Both lectures and serious games improved post-class test scores to the same level, consistent with previous studies. Krishnan et al. found that an educational game on hepatitis significantly improved knowledge scores [ 20 ]. Additionally, our study showed higher knowledge retention in the game group after 6 weeks, in line with previous studies on serious games. In a study on sexually transmitted diseases, game-based instruction was found to improve knowledge retention for resident physicians compared to traditional teaching methods [ 21 ]. The IEMTtraining game, designed as a role-playing game, is more likely to enhance knowledge retention in newly joined nurses in the long term. Therefore, serious games should be included in the teaching of IEMT training.

This study demonstrated improved learning motivation in the game group, consistent with previous research indicating that game-based learning enhances motivation due to the enjoyable and challenging nature of the games [ 22 , 23 ]. A systematic review by Allan et al. further supports the positive impact of game-based learning tools on the motivation, attitudes, and engagement of healthcare trainees [ 24 ].

As serious games are a novel learning experience for trainees, it is worth investigating the cognitive load they experience. Our study found that serious games effectively reduce trainees’ overall cognitive load, particularly in terms of lower mental effort. Mental effort refers to the cognitive capacity used to handle task demands, reflecting the cognitive load associated with organizing and presenting learning content, as well as guiding student learning strategies [ 25 , 26 ]. This reduction in cognitive load is a significant advantage of serious gaming, as it helps learners better understand and organize their knowledge. However, our study did not find a significant difference in mental load between the two groups. Mental load considers the interaction between task and subject characteristics, based on students’ understanding of tasks and subject characteristics [ 18 ]. This finding is intriguing as it aligns with similar observations in game-based education for elementary and secondary school students [ 27 ], but is the first mention of game-based education in academic papers related to nursing training.

In our survey of the game group participants, we found that their feedback regarding the perceived ease of use and usefulness of the game was overwhelmingly positive. This indicates that the designed game was helpful to learners during the learning process. Moreover, the game’s mechanics were easily understood by the trainees without requiring them to investsignificant time and effort to understand the game rules and controls.

This study had some limitations. First, this retrospective observational study may have been susceptible to sampling bias due to the non-random grouping of trainees. It only reviewed existing data from the training database, and future research should be conducted to validate our findings through prospective studies. Therefore, randomized controlled trials are required. Second, the serious game is currently available only in China. We are currently developing an English version to better align with the training requirements of international IEMT nurses. Third, the development of such serious gamescan be time-consuming. To address this problem, we propose a meta-model to help researchers and instructors select appropriate game development models to implement effective serious games.

An IEMT training game for newly joined nurses is a highly promising training method. Its potential lies in its ability to offer engaging and interactive learning experiences, thereby effectively enhancing the training process. Furthermore, the game improved knowledge retention, increased motivation to learn, and reduced cognitive load. In addition, the game’s mechanics are easily understood by trainees, which further enhances its effectiveness as a training instrument.

Availability of data and materials

Availability of data and materials can be ensured through direct contact with the author. If you require access to specific data or materials mentioned in a study or research article, reaching out to the author is the best way to obtain them. By contacting the author directly, you can inquire about the availability of the desired data and materials, as well as any necessary procedures or restrictions for accessing them.

Authors are willing to provide data and materials to interested parties. They understand the importance of transparency and the positive impact of data sharing on scientific progress. Whether it is raw data, experimental protocols, or unique materials used in the study, authors can provide valuable insights and resources to support further investigations or replications.

To contact the author, one can refer to the email address provided in the article.

Abbreviations

World Health Organization

International Emergency Medical Team

Minimum Data Set

Generalized estimating eq.

Standard deviation

World Health Organization.Classification and minimum standards for emergency medical teams. https://apps.who.int/iris/rest/bitstreams/1351888/retrieve . Published 2021. Accessed May 6, 2023.

World Health Organization. Classification and Minimum Standards for Foreign Medical Teams in Sudden Onset Disasters. https://cdn.who.int/media/docs/default-source/documents/publications/classification-and-minimum-standards-for-foreign-medical-teams-in-suddent-onset-disasters65829584-c349-4f98-b828-f2ffff4fe089.pdf?sfvrsn=43a8b2f1_1&download=true . Published 2013. Accessed May 6, 2023.

Brunero S, Dunn S, Lamont S. Development and effectiveness of tabletop exercises in preparing health practitioners in violence prevention management: a sequential explanatory mixed methods study. Nurse Educ Today. 2021;103:104976. https://doi.org/10.1016/j.nedt.2021.104976 .

Article   Google Scholar  

Sena A, Forde F, Yu C, Sule H, Masters MM. Disaster preparedness training for emergency medicine residents using a tabletop exercise. Med Ed PORTAL. 2021;17:11119. https://doi.org/10.15766/mep_2374-8265.11119 .

Moss R, Gaarder C. Exercising for mass casualty preparedness. Br J Anaesth. 2022;128(2):e67–70. https://doi.org/10.1016/j.bja.2021.10.016 .

Hu H, Liu Z, Li H. Teaching disaster medicine with a novel game-based computer application: a case study at Sichuan University. Disaster Med Public Health Prep. 2022;16(2):548–54. https://doi.org/10.1017/dmp.2020.309 .

Chi CH, Chao WH, Chuang CC, Tsai MC, Tsai LM. Emergency medical technicians' disaster training by tabletop exercise. Am J Emerg Med. 2001;19(5):433–6. https://doi.org/10.1053/ajem.2001.24467 .

Hu H, Lai X, Li H, et al. Teaching disaster evacuation management education to nursing students using virtual reality Mobile game-based learning. Comput Inform Nurs. 2022;40(10):705–10. https://doi.org/10.1097/CIN.0000000000000856 .

van Gaalen AEJ, Brouwer J, Schönrock-Adema J, et al. Gamification of health professions education: a systematic review. Adv Health Sci Educ Theory Pract. 2021;26(2):683–711. https://doi.org/10.1007/s10459-020-10000-3 .

Adjedj J, Ducrocq G, Bouleti C, et al. Medical student evaluation with a serious game compared to multiple choice questions assessment. JMIR Serious Games. 2017;5(2):e11. https://doi.org/10.2196/games.7033 .

Hu H, Xiao Y, Li H. The effectiveness of a serious game versus online lectures for improving medical Students' coronavirus disease 2019 knowledge. Games Health J. 2021;10(2):139–44. https://doi.org/10.1089/g4h.2020.0140.E .

Pimentel J, Arias A, Ramírez D, et al. Game-based learning interventions to Foster cross-cultural care training: a scoping review. Games Health J. 2020;9(3):164–81. https://doi.org/10.1089/g4h.2019.0078 .

Hu H, Lai X, Yan L. Improving nursing Students' COVID-19 knowledge using a serious game. Comput Inform Nurs. 2021;40(4):285–9. https://doi.org/10.1097/CIN.0000000000000857 .

Menin A, Torchelsen R, Nedel L. An analysis of VR technology used in immersive simulations with a serious game perspective. IEEE Comput Graph Appl. 2018;38(2):57–73. https://doi.org/10.1109/MCG.2018.021951633 .

Kubo T, Chimed-Ochir O, Cossa M, et al. First activation of the WHO emergency medical team minimum data set in the 2019 response to tropical cyclone Idai in Mozambique. Prehosp Disaster Med. 2022;37(6):727–34.

Jafar AJN, Sergeant JC, Lecky F. What is the inter-rater agreement of injury classification using the WHO minimum data set for emergency medical teams? Emerg Med J. 2020;37(2):58–64. https://doi.org/10.1136/emermed-2019-209012 .

Hwang GJ, Chang HF. A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Comput Educ. 2011;56(4):1023–31. https://doi.org/10.1016/j.compedu.2010.12.002 .

Hwang G-J, Yang L-H. Sheng-yuan Wang.Concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Comput Educ. 2013;69:121–30.

Chu HC, Hwang GJ, Tsai CC, et al. A two-tier test approach to developing location-aware mobile learning system for natural science course. Comput Educ. 2010;55(4):1618–27. https://doi.org/10.1016/j.compedu.2010.07.004 .

Krishnan S, Blebil AQ, Dujaili JA, Chuang S, Lim A. Implementation of a hepatitis-themed virtual escape room in pharmacy education: A pilot study. Educ Inf Technol (Dordr). 2023;5:1–13. https://doi.org/10.1007/s10639-023-11745-1 . Epub ahead of print. PMID: 37361790; PMCID: PMC10073791

Butler SK, Runge MA, Milad MP. A game show-based curriculum for teaching principles of reproductive infectious disease (GBS PRIDE trial). South Med J. 2020;113(11):531–7. https://doi.org/10.14423/SMJ.0000000000001165 . PMID: 33140104

Haruna H, Hu X, Chu SKW, et al. Improving sexual health education programs for adolescent students through game-based learning and gamification. Int J Environ Res Public Health. 2018;15(9):2027. https://doi.org/10.3390/ijerph15092027 .

Rewolinski JA, Kelemen A, Liang Y. Type I diabetes self-management with game-based interventions for pediatric and adolescent patients. Comput Inform Nurs. 2020;39(2):78–88. https://doi.org/10.1097/CIN.0000000000000646 .

Allan R, McCann L, Johnson L, Dyson M, Ford J. A systematic review of 'equity-focused' game-based learning in the teaching of health staff. Public Health Pract (Oxf). 2023;27(7):100462. https://doi.org/10.1016/j.puhip.2023.100462 . PMID: 38283754; PMCID: PMC10820634

Zumbach J, Rammerstorfer L, Deibl I. Cognitive and metacognitive support in learning with a serious game about demographic change. Comput Hum Behav. 2020;103:120–9. https://doi.org/10.1016/j.chb.2019.09.026 .

Chang C-C, Liang C, Chou P-N, et al. Is game-based learning better in flow experience and various types of cognitive load than non-game-based learning? Perspective from multimedia and media richness. Comput Hum Behav. 2017;71:218–27. https://doi.org/10.1016/j.chb.2017.01.031 .

Kalmpourtzis G, Romero M. Constructive alignment of learning mechanics and game mechanics in serious game design in higher education. Int J Serious Games. 2020;7(4):75–88. https://doi.org/10.17083/ijsg.v7i4.361 .

Download references

Acknowledgements

We would like to thank all the staffs who contribute to the database. We would like to thank Editage ( www.editage.cn ) for English language editing. We also would like to thank Dr. Yong Yang for statistics help. We would like to thank The 10th Sichuan University Higher Education Teaching Reform Research Project (No. SCU10170) and West China School of Medicine (2023-2024) Teaching Reform Research Project (No. HXBK-B2023016) for the support.

Author information

Both Hai Hu and Xiaoqin Lai contributed equally to this work and should be regarded as co-first authors.

Authors and Affiliations

Emergency Management Office of West China Hospital, Sichuan University, The street address: No. 37. Guoxue Road, Chengdu City, Sichuan Province, China

China International Emergency Medical Team (Sichuan), Chengdu City, Sichuan Province, China

Hai Hu & Xiaoqin Lai

Emergency Medical Rescue Base, Sichuan University, Chengdu City, Sichuan Province, China

Day Surgery Center, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China

Xiaoqin Lai

Department of Thoracic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu City, Sichuan Province, China

West China School of Nursing, Sichuan University, Chengdu City, Sichuan Province, China

Longping Yan

West China School of Public Health, Sichuan University, Chengdu, Sichuan, China

West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China

You can also search for this author in PubMed   Google Scholar

Contributions

HH conceived the study, designed the trial, and obtained research funding. XL supervised the conduct of the data collection from the database, and managed the data, including quality control. HH and LY provided statistical advice on study design and analyzed the data. All the authors drafted the manuscript, and contributed substantially to its revision. HH takes responsibility for the paper as a whole.

Corresponding author

Correspondence to Hai Hu .

Ethics declarations

Ethics approval and consent to participate.

The local institutional review committee approved the study and waived the need for informed consent from the participants owing to the study design.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Hu, H., Lai, X. & Yan, L. Training nurses in an international emergency medical team using a serious role-playing game: a retrospective comparative analysis. BMC Med Educ 24 , 432 (2024). https://doi.org/10.1186/s12909-024-05442-x

Download citation

Received : 05 November 2023

Accepted : 17 April 2024

Published : 22 April 2024

DOI : https://doi.org/10.1186/s12909-024-05442-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Rescue work
  • Gamification
  • Simulation training

BMC Medical Education

ISSN: 1472-6920

interpretation and analysis of research results

IMAGES

  1. What is Data Analysis in Research

    interpretation and analysis of research results

  2. What Is Data Interpretation? Meaning, Methods & Examples

    interpretation and analysis of research results

  3. How to Analyze and Interpret Survey Results

    interpretation and analysis of research results

  4. Data Interpretation: Definition and Steps with Examples

    interpretation and analysis of research results

  5. Results interpretation

    interpretation and analysis of research results

  6. Writing about survey results

    interpretation and analysis of research results

VIDEO

  1. Data Analysis & Interpretation

  2. Differences Between Research and Analysis

  3. Cosmic Matter: A Marvelous Journey from Macro to Micro

  4. Gait Analysis Research Results

  5. Analysis of Data? Some Examples to Explore

  6. Techniques of Interpretation

COMMENTS

  1. How to Write a Results Section

    Checklist: Research results 0 / 7. I have completed my data collection and analyzed the results. I have included all results that are relevant to my research questions. I have concisely and objectively reported each result, including relevant descriptive statistics and inferential statistics. I have stated whether each hypothesis was supported ...

  2. Chapter 15: Interpreting results and drawing conclusions

    If review authors decide to present a P value with the results of a meta-analysis, they should report a precise P value (as calculated by most statistical software), together with the 95% confidence interval. ... To aid interpretation of the results of a meta-analysis of risk ratios, review authors may compute an absolute risk reduction or NNT ...

  3. PDF Analyzing and Interpreting Findings

    analysis. • Explain how to analyze and interpret the findings of your research. • Explain the concept of synthesis as an ongoing process. • Describe how to go about presenting a final synthesis. Section II: Application • Presentation of a completed analysis and interpretation chapter based on the content and process as described earlier.

  4. Reporting Research Results in APA Style

    Making scientific research available to others is a key part of academic integrity and open science. Interpretation or discussion of results; This belongs in your discussion section. Your results section is where you objectively report all relevant findings and leave them open for interpretation by readers.

  5. Interpretation and display of research results

    It important to properly collect, code, clean and edit the data before interpreting and displaying the research results. Computers play a major role in different phases of research starting from conceptual, design and planning, data collection, data analysis and research publication phases. The main objective of data display is to summarize the ...

  6. Understanding the Interpretation of Results in Research

    The interpretation of results in research requires multiple steps, including checking, cleaning, and editing data to ensure its accuracy, and properly organizing it in order to simplify interpretation. To examine data and derive reliable findings, researchers must employ suitable statistical methods.

  7. Research Results Section

    Research results refer to the findings and conclusions derived from a systematic investigation or study conducted to answer a specific question or hypothesis. These results are typically presented in a written report or paper and can include various forms of data such as numerical data, qualitative data, statistics, charts, graphs, and visual aids.

  8. PDF Interpreting Findings and Discussing Implications for All ...

    d'être of all research by anticipating results in such a way that interpretation is colored and implications are either understated or overstated. Interpretation of research findings begins with an accurate understanding of analysis and the rigor of the study. Clear descriptions of findings allow for better inter-pretation and increased ...

  9. What Is Data Interpretation? Meaning & Analysis Examples

    2. Brand Analysis Dashboard. Next, in our list of data interpretation examples, we have a template that shows the answers to a survey on awareness for Brand D. The sample size is listed on top to get a perspective of the data, which is represented using interactive charts and graphs. **click to enlarge**.

  10. 5.3: The Interpretation of Research Results

    Figure 5.3.1 5.3. 1: "Caffeine Study Hypothesis" by Judy Schmitt is licensed under CC BY-SA 4.0. Let's look, from a scientific point of view, at how the researcher should interpret each of these three possibilities. First, if the results of the memory test reveal that the caffeine group performs better, this is a piece of evidence in ...

  11. Reporting and Interpreting of Results

    The final phase in any experiment is to interpret and report the results. Finding the answer to a challenging question is the goal of any research endeavor. Proper communication of the results to clinicians also provides the basis for advances in medicine [ 1 ]. To communicate appropriately, investigators have to review their results critically ...

  12. LibGuides: Systematic Review Overview: 8. Interpret Results

    The interpretation of results should include a discussion of the evidence gathered. This includes aspects of validity, strengths and weaknesses of the evidence, possible sources of bias that may be present in the included studies, and the potential bias of the review. In addition, it should provide the reader with some understanding of the ...

  13. PDF Results Section for Research Papers

    The results section of a research paper tells the reader what you found, while the discussion section tells the reader what your findings mean. The results section should present the facts in an academic and unbiased manner, avoiding any attempt at analyzing or interpreting the data. Think of the results section as setting the stage for the ...

  14. Data Interpretation

    The purpose of data interpretation is to make sense of complex data by analyzing and drawing insights from it. The process of data interpretation involves identifying patterns and trends, making comparisons, and drawing conclusions based on the data. The ultimate goal of data interpretation is to use the insights gained from the analysis to ...

  15. Interpret Results

    The Interpretation (or Discussion) section of the systematic review helps readers interpret the main findings of the review, brought together in the synthesis step. The interpretation should include: Statement of principal findings. An analysis of those findings (for example, on what strength of the evidence, are the review's conclusions being ...

  16. Six Steps to Interpret Research Results Effectively

    How can you interpret research results more effectively? Powered by AI and the LinkedIn community. 1. Research question and hypothesis. 2. Research design and methods. 3. Data quality and analysis. 4.

  17. Basic statistical tools in research and data analysis

    Abstract. Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise ...

  18. Interpreting results

    Interpreting results. In your thesis, specifically in the discussion section, you will have to present an argument, or a set of arguments, about the significance of your results, any limitations or problems of your research design or implementation, and consequent proposals for future work. This requires you to interpret your results and locate ...

  19. From Analysis to Interpretation in Qualitative Studies

    From Analysis to Interpretation in Qualitative Studies. Data Analysis. Sep 1, 2023. by Janet Salmons, PhD Research Community Manager for Sage Methodspace. Data analysis can only get you so far - then you need to make sense of what you have found. This stage of interpretation can be challenging for qualitative researchers.

  20. Interpretation Strategies: Appropriate Concepts

    Collapse Part 6 Analysis, Interpretation, Representation, and Evaluation 28 Coding and Analysis Strategies Notes. ... This essay addresses a wide range of concepts related to interpretation in qualitative research, examines the meaning and importance of interpretation in qualitative inquiry, and explores the ways methodology, data, and the self ...

  21. How to Write the Results/Findings Section in Research

    The Results section of a scientific research paper represents the core findings of a study derived from the methods applied to gather and analyze information. It presents these findings in a logical sequence without bias or interpretation from the author, setting up the reader for later interpretation and evaluation in the Discussion section.

  22. (PDF) Qualitative Data Analysis and Interpretation: Systematic Search

    Qualitative data analysis is. concerned with transforming raw data by searching, evaluating, recogni sing, cod ing, mapping, exploring and describing patterns, trends, themes an d categories in ...

  23. 23 Presenting the Results of Qualitative Analysis

    There are a variety of other concerns and decision points that qualitative researchers must keep in mind, including the extent to which to include quantification in their presentation of results, ethics, considerations of audience and voice, and how to bring the richness of qualitative data to life. Quantification, as you have learned, refers ...

  24. PDF Chapter 4: Analysis and Interpretation of Results

    The analysis and interpretation of data is carried out in two phases. The. first part, which is based on the results of the questionnaire, deals with a quantitative. analysis of data. The second, which is based on the results of the interview and focus group. discussions, is a qualitative interpretation.

  25. (PDF) Interpretation and display of research results

    Interpretation and display of research results. ABSTRACT. It important to properly collect, code, clean and edit the data before interpreting and displaying. the research results. Computers play a ...

  26. PDF Chapter 4 Analysis and Interpretation of Research Results

    The measuring instrument was discussed and an indication was given of the method of statistical analysis. Chapter 4 investigates the inherent meaning of the research data obtained from the empirical study. Learnership perspectives, as the focal point of this study, have to be evaluated against critical elements, such as organisational culture ...

  27. Assessment of Pediatric Anthropometric Data Quality to Guide Analysis

    This project will fill those knowledge gaps to help people plan better research about children's growth and help them understand research results. First, the project team will identify study topics of interest to a stakeholder advisory board that includes patients, caregivers, medical assistants, researchers, clinicians, EHR data experts and ...

  28. Bayesian Interpretation and Analysis of Research Results

    Repeating the Bayesian analysis with different values for A until the lower posterior limit equals 1, we find A = 275 prior leukemia cases per group (550 total) makes the lower 95% posterior limit equal 1.00. That number is over twice the number of exposed cases seen in all epidemiologic studies to date.

  29. Full article: The application of statistical and novel unsupervised

    The novel application of unsupervised ML to colour model values and microscopic images of hair is a novel approach to forensic hair analysis. This research holds significant importance in determining the capacity of computer vision models to effectively analyze and categorize the intricate details and variations present in high-magnification ...

  30. Training nurses in an international emergency medical team using a

    The design of this study is a retrospective comparative analysis. The research was conducted with 209 nurses in a hospital. The data collection process of this study was conducted at the 2019-2020 academic year. A retrospective comparative analysis was conducted on the pre-, post-, and final test scores of nurses in the IEMT.